ECULAR DYNAMICS IETHODS FOR THE SIMULATION BIOLOGICAL SYSTEMS

Chris Chipot 0100110010

00011

Laboratoire International Associé CNRS-UIUC, té Mixte de Recherche n° 7565, Université de Lorraine

> for Advanced Science and Technology, lepartment of Physics Illinois at Urbana-Champaign

Run your own simulations after only one day of training

Learn to:

- set up your molecular assays
- run your simulations
- perform your own analyses

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS 🐨 Dalian Institute of Chemical Physics, Dalian, China, July 2018

... and understand what you are doing

UNIVERSITÉ DE LORRAINE

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

1. Introduction

- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

ld we wa

TO

PRODUCTIO

upply the microscopic detail that experiment cannot capture;

Attain key-thermodynamic properties of the system,

e.g., AGadsorption, A Jhydration, ...

Acquire structural information,

e.g., refinement of three-dimensional structures,

Acquire dynamic information,

e.g., $c(t), D(z), \ldots$

The massive increase of computational resources in the past twenty years has opened the way to the investigation of sizable molecular assemblies of chemical, physical and biological interests, over representative time scales.

Complementing experiment — The computational microscope

Ideally, for an N-particle chemical system,

$$i \; \frac{\partial \left| \Psi(\mathbf{r}^N;t) \right\rangle}{\partial t} = \mathscr{H} \; \left| \Psi(\mathbf{r}^N;t) \right\rangle$$

In practice, the full quantum treatment of the system is virtually impossible for obvious overwhelming computational reasons.

At the Hartree-Fock level, for N atoms, the CPU investment grows as $\mathcal{O}(N^3)$.

One possible solution: Linear-scaling approaches, or *divide and conquer* growing as $\mathcal{O}(N)$. Currently, they are limited to small systems with a sampling of a few ps. Moreover, they are restrained to the Born-Oppenheimer approximation, and are significantly more costly than molecular mechanics.

Yang, W.; Lee, T. S. J. Chem. Phys. 1995, 103, 5674-5678

The Born-Oppenheimer approximation: The motion of the electrons and that of the nuclei are dissociated;

The de Broglie wavelength associated to a given particle is substantially smaller than the intermolecular distances in a liquid;

Quantum effects can be globally neglected. It is, therefore, legitimate to turn to the classical equations of motion in molecular dynamics simulations

Time averages and ensemble averages coincide for ergodic systems,

$$\lim_{t \to \infty} \overline{\mathscr{A}}_t = \langle \mathscr{A} \rangle$$

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987
Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002
McQuarrie, D. A. Statistical mechanics, Harper and Row, 1976
Chandler, D. Introduction to modern statistical mechanics Oxford, University Press, 1987

We turn to molecular dynamics simulations to access the atomic detail not always accessible to experiment, to gain dynamic information and to predict thermodynamic and kinetic properties.

Molecular dynamics simulations rely on the equations of classical mechanics and, therefore, are restrained to the motion of the nuclei. They are limited to the description of molecular assemblies that do not involve the creation or rupture of chemical bonds.

Ergodicity implies coincidence of ensemble and time averages — and, hence, of properties inferred from Monte-Carlo and molecular dynamics simulations.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

Bridge the macroscopic, or the mesoscopic world to the microscopic one;

Can we relate the properties of a system containing a number of particles on the order of \mathcal{N}_A to those of a system containing only a few hundreds to a few thousands particles?

How can we handle edge effects ?

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, **1987** Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, **2002**

CellBasisVector1	70	0	0
CellBasisVector2	0	70	0
CellBasisVector3	0	0	70

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

NAMP Of a cultur Dynamics							
CellBasisVector1	70	0	0				
CellBasisVector2	0	70	0				
CellBasisVector3	0	0	70				

minimum-image convention: each individual particle in the cell interacts with the closest image of the remaining particles in the assay.

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

hard cut-off

Conventionally, beyond the spherical truncation, the interaction potential is nil.

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, **1987** Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, **2002**

Conventionally, beyond the spherical truncation, the interaction potential is nil. Yet, it is possible to include a reaction-field term, $\mathscr{V}_{\text{elec}}(r) = \sum_{i < j} q_i q_j \left[\frac{1}{r_{ij}} + \left(\frac{\epsilon_{\text{RF}} - 1}{2\epsilon_{\text{RF}} + 1} \right) \frac{r_i j^2}{R_{\text{cut}}^3} \right].$

Barker, J. A.; Watts, R. O. Mol. Phys. 1973, 26, 789-792

hard cut-off ≠ switched cut-off

In principle, spherical truncation is acceptable for electrostatic interactions in $1/r^n$, with $n \ge 3$. For n < 3, an appropriate treatment is required — e.g., Ewald, or Ladd.

Toukmaji, A. Y.; Board Jr., J. A. *Comput. Phys. Comm.* **1996**, *95*, 73-92 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, **1987**

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

UNIVERSITÉ DE LORRAINE

- Build a simple molecular assay using VMD
- Load the topology and Cartesian coordinates, $\{x\}$, of the biological object — Solvate in a pre-equilibrated solvent cell

- At what salinity was the experiment carried out?
- What is the excess charge of the complex?

• •	•			Au	toionize						
	Rando	mly pl	ace ions in a	previou	usly solva	ated s	ystem		H	lelp	
Input:											_
PSF:	barnas	e.psf							Brow	se	
PDB:	DB: barnase.pdb								Browse		
Output prefix: ionized				Choose salt:			t: (NaCl ᅌ			
0	Neutralize and set NaCl concentration				ion to 0.		0.1	15 mol/l		Ĺ	
[Ná	1+	CI-	K+	Mg2+		Cs+		Ca2+		Zn2+
Mininu	um dista	nce fro	m solute:	5	Angstro	ms					
Minim	um dista	ince be	etween ions:	5	Angstro	ms					
Segment name of placed ions:			ION								
				Autoio	nize					Ĩ	

UNIVERSITÉ DE LORRAINE

Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics 1996, 14, 33-38

Periodic boundary conditions

harelip

Building a membrane protein assay

equilibrated membrane patch

insert randomly additives

insert membrane protein

add water if necessary

insert ions if necessary

Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics 1996, 14, 33-38

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

extracellul

Periodic boundary conditions

Building a membrane protein assay with different lipids

equilibrated pure-lipid patch

random insertion of lipids

embed membrane protein

add aqueous environment

adjust salinity

Humphrey, W.; Dalke, A.; Schulten, K. J. Molec

eplacement of lipids r perturbative

CHARMM is a versatile program for atomic-level simulation of many-particle systems, particularly macromolecules of biological interest. - M. Karplus

about us :: input generator :: archive :: charmm docs :: MD lectures :: movie gallery :: video demo :: citations :: update log

CHARMM-GUI has updated. See our upload log to see what is changed. Contact us (E-mail or CHARMM Forum) if you have any problem/question/comment.

CHARMM-GUI	Front Page
About Us	CHARMM-GUI provides a web-based graphical user interface to generate various molecular simulation systems and input files to
Archive	facilitate and standardize the usage of common and advanced simulation techniques. Currently, CHARMM-GUI supports CHARMM, NAMD, GROMACS, AMBER, and OpenMM simulation programs mostly based on the CHARMM force fields.
CHARMM Docs	CHARMM CITLIC powered by CHARMM, on academic receptob program used world wide for macromologular dynamics and mechanics.
MD Lectures	(http://www.charmm.org). Its development began in the research group of Professor Martin Karplus at Harvard University and continues
Movie Gallery	throughout the world with contributing developers. CHARMM performs standard molecular dynamics and energy minimization with the
Video Demo	potential energy functions for proteins, nucleic acids, lipids, carbohydrates, and various small molecules. In addition, CHARMM can be used for various chemical and conformational free energy calculations with many types of restraints.
Citations	used for various chemical and conformational nee energy calculations with many types of restraints.
Update Log	The CHARMM-GUI team hopes that the tools and materials offered here are useful and helpful for your research and education.

The University of Kansas / Department of Molecular Biosciences / Center for Computational Biology / Im Lab Problems, Questions, & Comments? CHARMM Forum or E-Mail / Copyright(c) 2006-2015 by the Im Lab

Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W. Biophys. J. 2009, 97, 50-58

Jo, S.; Jiang, W.; Lee, H. S.; Roux, B.; Im, W. J. Chem. Inf. Model. 2013, 53, 267-277

Jo, S. et al. Adv. Protein Chem. Struct. Biol. 2014, 96, 235-265

UNIVERSITÉ De lorraine

Ribeiro, J. V. et al. Sci. Rep. 2016, 6, 26536

Periodic boundary conditions offer a convenient framework to bridge the microscopic world to the macroscopic one, whilst being emancipated from edge effects.

Spherical truncation is in general valid only for short-range interactions.

Switching is recommended to ensure continuous derivative across the cut-off sphere.

When constructing molecular assays, leave enough headspace to avoid spurious periodicityinduced artifacts.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

SYNOPSIS OF A MOLECULAR DYNAMICS SIMULATION

Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1957, 27, 1208-1209

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Goal: Follow the trajectory of an ensemble of particles with time:

$$\begin{cases} m_i \ \frac{\mathrm{d}^2 \mathbf{x}_i(t)}{\mathrm{d}t^2} = \mathbf{f}_i \\ \mathbf{f}_i = -\frac{\partial \mathscr{V}(\mathbf{x})}{\partial \mathbf{x}_i} \end{cases}$$

Rely upon a potential energy function capable of describing the chemical system:

$$\mathscr{V}(\mathbf{x}) = \sum_{i} v_1(\mathbf{x}_i) + \sum_{i} \sum_{j>i} v_2(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i} \sum_{j>i} \sum_{k>j>i} v_3(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) + \dots$$

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Goal: Follow the trajectory of an ensemble of particles with time:

$$\begin{cases} m_i \ \frac{\mathrm{d}^2 \mathbf{x}_i(t)}{\mathrm{d}t^2} = \mathbf{f}_i \\ \mathbf{f}_i = -\frac{\partial \mathscr{V}(\mathbf{x})}{\partial \mathbf{x}_i} \end{cases}$$

Rely upon a potential energy function capable of describing the chemical system:

$$\mathscr{V}(\mathbf{x}) = \sum_{i} v_1(\mathbf{x}_i) + \sum_{i} \sum_{j>i} v_2^{\text{effective}}(\mathbf{x}_i, \mathbf{x}_j)$$

Require a numerical integration of the Newtonian equations of motion, utilizing an infinitesimal time-step, namely $\delta t = 1-2 \times 10^{-15}$ s. why are we limited to such low δt 's?

v=1/2πc (k/μ)^{1/2}

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Typical timescales explored in molecular dynamics and the computational resource required to access them.

The error associated to the propagator should be bound, that is,

$$\lim_{n_{\text{steps}}\to\infty} \left(\frac{1}{n_{\text{steps}}}\right) \sum_{k=1}^{n_{\text{steps}}} \left|\frac{\mathscr{E}(k\delta t) - \mathscr{E}(0)}{\mathscr{E}(0)}\right| \le \varepsilon_{\text{MD}}$$

which is true for a *symplectic* propagator.

Energy drifts stem from inaccuracies in the integration of the equations of motion.

These drifts can be in principle monitored by means of a shadow Hamiltonian.

Lagrangian formalism,

$$egin{aligned} &\mathscr{L}(\mathbf{q},\mathbf{p}) = \mathscr{T}(\mathbf{p}_x) - \mathscr{V}(\mathbf{q}) \ & \left\{ egin{aligned} &\mathscr{T}(\mathbf{p}_x) &=& \sum_i \; rac{1}{2} \; rac{p_i^2}{m_i} \ & \mathscr{V}(\mathbf{x}) \;\; = \;\; \sum_i \; v_1(\mathbf{q}_i) \ & + \;\; \sum_i \; \sum_{j>i} \; v_2(\mathbf{q}_i,\mathbf{q}_j) + \ldots \end{aligned}
ight.$$

Lagrange's equation of motion,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathscr{L}(\mathbf{q}, \mathbf{p})}{\partial \dot{q}} \right) - \frac{\partial \mathscr{L}(\mathbf{q}, \mathbf{p})}{\partial q} = 0$$

Derivative of the Lagrangian,

$$\frac{\mathrm{d}\mathscr{L}(\mathbf{q},\mathbf{p})}{\mathrm{d}t} = \sum_{i} \frac{\partial\mathscr{L}(\mathbf{q},\mathbf{p})}{\partial q_{i}} \ \dot{q}_{i} + \sum_{i} \frac{\partial\mathscr{L}(\mathbf{q},\mathbf{p})}{\partial \dot{q}_{i}} \ \ddot{q}_{i}$$

Goldstein, H. Classical mechanics. Addison-Wesley, 1980

Lagrange's equation of motion,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathscr{L}(\mathbf{q}, \mathbf{p})}{\partial \dot{q}} \right) - \frac{\partial \mathscr{L}(\mathbf{q}, \mathbf{p})}{\partial q} = 0$$

Newton's equations of motion,

$$\begin{cases} m_i \mathbf{a}_i(t) = \mathbf{f}_i \\ \mathbf{f}_i = \nabla_{(q_i)} \mathscr{L}(\mathbf{q}, \mathbf{p}) = -\nabla_{(r_i)} \mathscr{V}(\mathbf{x}) \end{cases}$$

Hamilton's equations of motion,

$$\begin{cases} \dot{q_i} = \frac{\partial \mathscr{H}(\mathbf{q}, \mathbf{p}_x)}{\partial p_i} \\ \dot{p_i} = -\frac{\partial \mathscr{H}(\mathbf{q}, \mathbf{p}_x)}{\partial q_i} \end{cases}$$

Goldstein, H. Classical mechanics. Addison-Wesley, 1980

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

Leimkuhler, B.; Reich, S. Simulating Hamiltonian Dynamics. Cambridge University Press, 2005

CLASSICAL MOLECULAR DYNAMICS

 $m_i \frac{\mathrm{d}^2 \mathbf{x}_i(t)}{\mathrm{d}t^2} = \mathbf{f}_i$ $\mathbf{f}_i = -\frac{\partial \mathscr{V}(\mathbf{x})}{\partial \mathbf{x}_i}$

where we stand now ...

Robust methodology, allowing the modeler to work in realistic conditions and apt thermodynamic ensembles.

Historical perspective

A turning point in computational structural biology

to a small protein, BPTI, over 8 ps.

First molecular dynamics simulation applied

time scale

size scale

McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature **1977**, 267, 585-590 Shaw, D. E.et al. SIGARCH Comput. Archit. News, ACM **2007**, 35, 1-12 Cartron, M. L. et al. Biochim. Biophys. Acta **2014**, 1837, 1769-1780

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

17 µs per day for about 24,000 atoms

100 million atoms

(100 nm)³ Ribosome STMV (2 nm)³ 1994 1998 2010 1990 2002 2006 2014 year

In its simplest acceptation, molecular dynamics consists in solving the Newton equations of motion, using small time increments.

Choice of the time increment is dictated by the fastest vibration in the molecular assay.

Discretization errors are bounded provided that a symplectic integrator is used.

Current molecular dynamics simulations attain the millisecond timescale and the hundredmillion-atom size scale.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

THE POTENTIAL ENERGY FUNCTION

Modeling a complex reality with a rudimentary toolkit

villin headpiece

Freddolino, P. L.; L., F.; Gruebele, M.; Schulten, K. *Biophys. J.* 2008, *94*, L75-L77
Freddolino, P. L.; Schulten, K. *Biophys. J.* 2009, *97*, 2338-2347
Freddolino, P. L.; Harrison, C. B.; Liu, Y.; Schulten, K. *Nat. Phys.* 2010, *6*, 751-758
Bowman, G. R.; Voelz, V. A.; Pande, V. S. *J. Am. Chem. Soc.* 2011, *133*, 664-667
Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. *Science* 2011, *334*, 517-520

UNIVERSITÉ De LORRAINE

THE POTENTIAL ENERGY FUNCTION

Modeling a complex reality with a rudimentary toolkit

CLASSICAL MOLECULAR DYNAMICS

Case example of the macromolecular AMBER force field,

$$\begin{aligned} \mathcal{V}(\mathbf{x}) &= \sum_{\text{bonds}} k_r (r - r_0)^2 + \sum_{\text{valence angles}} k_{\theta} (\theta - \theta_0)^2 \\ &+ \sum_{\text{torsions}} \frac{V_n}{2} \left[1 + \cos(n\phi - \gamma) \right] \\ &+ \frac{1}{k_{\text{vdW}}^{1-4}} \sum_{\substack{i < j \\ \{i,j\} \in 1^{-4}}} \varepsilon_{ij} \left[\left(\frac{R_{ij}^*}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{ij}^*}{r_{ij}} \right)^6 \right] + \frac{1}{k_{\text{Coulomb}}^{1-4}} \sum_{\substack{i < j \\ \{i,j\} \in 1^{-4}}} \frac{q_i q_j}{4\pi\epsilon_0\epsilon_1 r_{ij}} \\ &+ \sum_{\substack{i < j \\ \{i,j\} > 1^{-4}}} \varepsilon_{ij} \left[\left(\frac{R_{ij}^*}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{ij}^*}{r_{ij}} \right)^6 \right] + \sum_{\substack{i < j \\ \{i,j\} > 1^{-4}}} \frac{q_i q_j}{4\pi\epsilon_0\epsilon_1 r_{ij}} \end{aligned}$$

Other macromolecular force fields — CHARMM, MM3, OPLS.

Cornell, W. D. et al. J. Am. Chem. Soc., 1995, 117, 5179-5197

MacKerell Jr., A. D. et al. J. Phys. Chem. B 1998, 102, 3586-3616

Lii, J. H.; Allinger, N. L. J. Comput. Chem. 1991, 12, 186-199

Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 2001, 105, 6474-6487

atom type description carbon CT any sp ³ carbon and (Cc of Arg) CA any aromatic sp ² carbon and (Cc of Arg) CM any sp ² carbon, double bonded CC sp ³ aromatic in 5-membered ring with one substituent + next to nitrogen (Cy in His) CV sp ² aromatic in 5-membered ring next to carbon and lone pair nitrogen (e.g. Cô in His (d)) CW sp ² aromatic in 5-membered ring next to carbon and NH (e.g. Cô in His (e) and in Tp) CR sp ² aromatic in 5-membered ring next to to two nitrogens (Cy and Cc in His) CB sp ² aromatic in 5-membered ring next to two nitrogens (Cy and Cc in His) CB sp ² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp ² auction between 5- and 6-membered rings (Cd in Trp) and both junction atoms in Ade and Gua C* sp ² carbon in 5-membered aromatic between N and bonded to CH and NH (Ce in Trp) CK sp ² carbon in 6-membered aromatic between N and N-R (C8 in purines) N sp ² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp ² nitrogen in aromatic rings with hydrogen attached (e.g. notonated His, Gua, Trp) NS sp ² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp ² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) NS sp ² nitrogen in 5-membered ring with carbon substituent (no prine nucleosides) NS sp ³ nitrogen oxygen OW sp ³ oxygen in TIP3P water OH sp ³ oxygen in anionic acids Sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to sulfur H Attached to aliphatic carbon with no electron-withdrawing substituents H H attached to aliphatic carbon with no electron-withdrawing substituents H H attached to carbon with no electron-withdrawing substituents H H attached to carbon with two electron-withdrawing substituents H H attached to carbon with two electron-withdrawing substituents H H at	Table I.	List of A	Atom Types"
carbon CT any sp ² carbon C any carbonyl sp ² carbon CA any aromatic sp ² carbon and (Ce of Arg) CM any sp ² carbon, double bonded CC sp ² aromatic in 5-membered ring with one substituent + next to nitrogen (Cy in His) CV sp ² aromatic in 5-membered ring next to carbon and lone pair nitrogen (c, Cô in His (ð)) CW sp ² aromatic in 5-membered ring next to carbon and NH (e.g. Cô in His (e) and in Trp) CR sp ² aromatic in 5-membered ring next to two nitrogens (Cy and Ce in His) CB sp ² aromatic in 5-membered ring next to two nitrogens (Cy in Trp) CR sp ² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp ² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp ² carbon in 5-membered ring between lone pair nitrogens (e.g. C2 in purines) CQ sp ² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) N sp ² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp ² nitrogen in no-membered ring with lone pair (e.g. N3 in purines) NC sp ² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp ² nitrogen in fo-membered ring with lone pair (e.g. N3 in purines) NS sp ² nitrogen in fo-membered ring with lone pair (s.g. N3 in purines) NS sp ² nitrogen in fo-membered ring with lone pair (s.g. N3 in purines) NS sp ³ nitrogen of aromatic arines and guanidinium ions N3 sp ³ nitrogen oxygen OW sp ³ oxygen in atloshs Suffur S sulfur in methionine and cysteine SP soxygen in anionic acids Sulfur S sulfur in methionine and cysteine SP sportonated carboxylic acids OS sp ² oxygen in anionic acids Sulfur S sulfur in cysteine phosphorus in phosphates hydrogen H H attached to sulfur H A ttached to aliphatic carbon with no electron-withdrawing substituents HP H attached to carbon with two electron-withdrawing substituents HP H attached to carbon with two	atom	type	description
 C any carbony sp² carbon and (Ce of Arg) any sp² carbon, double bonded sp² aromatic in 5-membered ring next to carbon and lone pair nitrogen (cg. Cô in His) CV sp² aromatic in 5-membered ring next to carbon and NH (c.g. Cô in His (c) and in Trp) CR sp² aromatic in 5-membered ring next to carbon in Sp² aromatic in 5-membered ring next to two nitrogens (C) and Ce in His) CB sp² aromatic in 1rp) and both junction atoms in Ade and Gua C* sp² aromatic in 5-membered ring next to two nitrogens (C) and Ce in His) CB sp² aromatic in 5-membered ring next to two arbons (cg. C) in Trp) CR sp² aromatic in 5-membered aromatic between N in Ade and Gua C* sp² aromatic in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² nitrogen in aromatic rings with hydrogen attached (c.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (c.g. N7 in purines) NC sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in TIP3P water OX sp² oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in alcohols, tyrosine, and protonated carboxylic carbon with arabone display and infinite and cysteine Phosphorus P phosphorus in phosphates H attached to aliphatic carbon with one electron-withdrawing substituents H attached to aliphatic carbon with one electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aromatic carbon with two electron-withdrawing substituents H attached to aromatic carbon with two electron-withdrawing substituents H attached to aromatic carbon with one electron-withdrawing	carbon	CT	any sp ³ carbon
 CM any sp² carbon, double bonded CC sp² aromatic in 5-membered ring mext to carbon and lone pair nitrogen (e.g. Cô in His (ô)) CW sp² aromatic in 5-membered ring next to carbon and NH (e.g. Cô in His (e) and in Trp) Sp² aromatic in 5-membered ring next to carbon in 5-membered ring next to carbon two nitrogens (C2 and C6 in His) CB sp² aromatic in 5-membered ring next to carbon in Ade and Gua C* sp² aromatic in 5-membered ring next to two nitrogens (C2 in Trp) CR sp² aromatic in 5-membered ring next to two nitrogens (C2 and C6 in His) CB sp² aromatic in 5-membered ring next to two carbons (e.g. C2 in purines) Sp² carbon in 5-membered ring between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 6-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in 3-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in 3-membered ring with lone pair (b.g. N3 in purines) NX sp² nitrogen in 12P3P water OH sp² oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp² oxygen in anionic acids sulfur sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to aromatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aromatic carbon with two electron-withdrawing substituents H2 H attached to aromatic carbon with one electron-withdrawing substituents H3 H attached to aromatic car		C	any carbonyl sp ² carbon and (C_c of Arg)
 Cit any 5p² aromatic in 5-membered ring with one substituent + next to nitrogen (Cy in His) CV sp² aromatic in 5-membered ring next to carbon and lone pair nitrogen (e.g. Cd in His) CW sp² aromatic in 5-membered ring next to carbon and NH (e.g. Cd in His) (e.g. Cd in His) CB sp² aromatic in 5-membered ring next to two nitrogens (Cy and Ce in His) CB sp² aromatic in 5-membered ring next to two nitrogens (Cy and Ce in His) CB sp² aromatic in 5-membered ring next to two nitrogens (Co and Ce in His) CB sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered ring between lone pair nitrogens (e.g. C2 in purines) NQ sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in 5-membered ring with carbon substituent (arbonylic acids N3 sp² nitrogen in theres and guanidinium ions N3 sp² nitrogen in theters O sp² oxygen in alcohols, tyrosine, and protonated carboxylic acids Sulfur sulfur in methonine and cysteine Sh sulfur in methoen and cysteine Sh sulfur in methoen and cysteine Sh sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to aliphatic carbon with nor electron-withdrawing substituents H1 H attached to aliphatic carbon with nor electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to a		CA	any aromatic sp ² carbon double bonded
 substituent + next to nitrogen (Cy in His) SP² aromatic in 5-membered ring next to carbon and lone pair nitrogen (cg. Cô in His) SP² aromatic in 5-membered ring next to carbon and NH (e.g. Cô in His (e) and in Trp) SP² aromatic in 5-membered ring next to two nitrogens (Cy and Ce in His) SP² aromatic in 7p) and both junction atoms in Ade and Gua SP² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) SP² aromatic in 5-membered aromatic between N and N-R (C8 in purines) SP² carbon in 5-membered aromatic between N and N-R (C8 in purines) SP² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions SP³ nitrogen SP³ oxygen in anides SP³		CC	sp ² aromatic in 5-membered ring with one
 CV sp² aromatic in 5-membered ring next to carbon and lone pair nitrogen (e.g. Cő in His (ð)) CW sp² aromatic in 5-membered ring next to carbon and NH (e.g. Cő in His (e) and in Trp) CR sp² aromatic in 5-membered ring next to two nitrogens (Cý and Cé in His) CB sp² aromatic in 5-membered ring next to two nitrogens (Cý and Gua C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cý in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring seture N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in aromatic rings with hydrogen attached (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen of aromatic amines and guanidinium ions substituent (in purine nucleosides) N2 sp² nitrogen in athese set set set set set set set set set		66	substituent + next to nitrogen (Cy in His)
and lone pair nitrogen (e.g. C5 in His (ð)) CW sp ² aromatic in 5-membered ring next to carbon and NH (e.g. C5 in His) (e) and in Trp) CR sp ² aromatic at junction of 5- and 6-membered rings (C5 in Trp) and both junction atoms in Ade and Gua C* sp ² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp ² junction between 5- and 6-membered rings and bonded to CH and NH (Cc in Trp) CK sp ² carbon in 5-membered ring between lone pair nitrogens (e.g. C2 in purines) CQ sp ² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp ² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp ² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp ² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp ² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp ² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp ² nitrogen in 5-membered ring with carbon substituent (apurine nucleosides) N2 sp ² nitrogen in 5-membered ring with carbon substituent (apurine nucleosides) N2 sp ² nitrogen in 3-membered ring with carbon substituent (apurine nucleosides) N2 sp ² nitrogen in atomatic amines and guanidinium ions N3 sp ³ nitrogen oxygen OW sp ³ oxygen in atleshols, tyrosine, and protonated carboxylic acids OS sp ³ oxygen in anionic acids sulfur S sulfur in cysteine phosphorus in phosphates hydrogen H H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached t		CV	sp ² aromatic in 5-membered ring next to carbon
 cW sp² aromatic in 5-membered ring next to carbon and NH (e.g. Cδ in His (ε) and in Trp) CR sp² aromatic in 5-membered ring next to two nitrogens (Cγ and Cc in His) CB sp² aromatic in 5-membered ring next to two carbons (e.g. Cγ in Trp) CN sp² aromatic in 5-membered ring next to two carbons (e.g. Cγ in Trp) CN sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 5-membered aromatic between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 15-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in fo-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in formembered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in aromatic amines and guanidinium ions N3 sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anides O4 sulfur in cysteine Phosphorus in phosphates H attached to sulfur HA H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H4 attached to aliphatic carbon with two electron-withdrawing substituents H4 attached to aliphatic carbon with two electron-withdrawing substituents H4 attached to aliphatic carbon with two ele			and lone pair nitrogen (e.g. $C\delta$ in His (δ))
 and NH (e.g. Co in Fils (e) and in Trp) CR sp² aromatic at junction of 5- and 6-membered rings (C) in Trp) and both junction atoms in Ade and Gua C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogen (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen of aromatic armines and guanidinium ions N3 sp³ nitrogen N4 sp² nitrogen in alcohols, tyrosine, and guanidinium ions N3 sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anides O2 sp² oxygen in anides O2 sp² oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anides O4 sp³ oxygen in anides O5 sp³ oxygen in anides O4 sp³ that attached to sulfur H attached to sulfur H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H		CW	sp ² aromatic in 5-membered ring next to carbon
 c K sp² aromatic at junction of 5- and 6-membered rings (Cð in Trp) and both junction atoms in Ade and Gua C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in anides NA sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in atlobals, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anionic acids sulfur in cysteine phosphorus in phosphates H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with thre electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with thre electron-withdrawing substituents H attached to aliphatic carbon with thre electron-withdrawing substituents H attached to aliphatic carbon with thre electron-withdrawing substituents H attached to aliphatic carbon with thre electron-gaitor enghbors (e.g. C next to NH₄⁺ of lysine) H attached to aliphati		CP	and NH (e.g. Co in His (ϵ) and in Trp) sn^2 aromatic in 5 membered ring part to
 CB sp² aromatic at junction of 5- and 6-membered rings (Cð in Trp) and both junction atoms in Ade and Gua C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Cé in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in aromatic rings with hydrogen attached (e.g. N7 in purines) NC sp² nitrogen in 6-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in formethered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in anides O2 sp² oxygen in anides O3 sp³ oxygen in anides O4 sp³ oxygen in anides O5 sp³ oxygen in thools, tyrosine, and protonated carboxylia caids Sulfur in methionine and cysteine SH sulfur in cysteine Phosphorus in phosphates H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to alip		CK	two nitrogens (Cy and Ce in His)
 and band Gua C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 6-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 6-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in TP3P water OW sp³ oxygen in TIP3P water OH sp³ oxygen in anides O2 sp² oxygen in anides O2 sp² oxygen in anides O2 sp² oxygen in anides Sulfur s sulfur in cysteine SH sulfur in cysteine SH sulfur in cysteine H attached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with three electron-withdrawing substituents H attached to aromatic carbon with three dectron-withdrawing substituents H attached to aromatic carbon with three dectron-withdrawing substituents H attached to aliphatic carbon with three dectron-withdrawing substituents H attached to aromatic carbon with three dectron-withdrawing substituents H attached to aromatic carbon with one electronegative neighbors		CB	sp ² aromatic at junction of 5- and 6-membered
 C* sp² aromatic in 5-membered ring next to two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NC sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carb			in Ade and Gua
 two carbons (e.g. Cy in Trp) CN sp² junction between 5- and 6-membered rings and bonded to CH and NH (Cc in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NY sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp² oxygen in anionic acids sulfur S sulfur in cysteine SH attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H4 attached to aliphatic carbon with two electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with on electron-withdrawing substituents H5 H attached to aromatic carbon with one electronegative neighbor (e.g. H8 of Ade an Gua and H2 of Ade) 		C*	sp ² aromatic in 5-membered ring next to
 CN sp² junction between 5- and o-membered rings and bonded to CH and NH (Ce in Trp) CK sp² carbon in 5-membered aromatic between N and N-R (CS in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) NX sp² nitrogen in amides NA sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) NX sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in achohs, tyrosine, and protonated carboxylic acids OS sp² oxygen in amides O2 sp² oxygen in anionic acids sulfur in cysteine phosphorus P phosphorus in phosphates H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with one electron-withdrawing substituents H5 H attached to aromatic carbon with one electron-withdrawing substituents H6 H attached to aromatic carbon with one electron-withdrawing substituents H6 H attached to aromatic carbon with one electron-withdrawing substituents H6 H attached to aromatic carbon with		C 11	two carbons (e.g. $C\gamma$ in Trp)
 cK sp² carbon in 5-membered aromatic between N and N-R (C8 in purines) CQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N in purines) NC sp² nitrogen in 6-membered ring with lone pair (e.g. N in purines) NS sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp² oxygen in anides O2 sp² oxygen in anides D4 statched to N HW H in TIP3P water HO H in alcohols and acids H attached to sulfur H attached to sulfur H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aromatic carbon with two electron-withdrawing substituents H3 H attached to aromatic carbon with two electron-withdrawing substituents H4 tatached to aromatic carbon with two electron-withdrawing substituents H4 tatached to aromatic carbon with one electron-withdrawing substituents H4 tatached to aromatic carbon with one electron-gative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		CN	sp ² junction between 5- and 6-membered rings and bonded to CH and NH (Cc in Trp)
 cQ sp² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) N² sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp² nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp² oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anides O2 sp² oxygen in anides Sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to arbon directly bonded to formally positive atoms (e.g. C next to NH₃+ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		СК	sp^2 carbon in 5-membered aromatic between N
CQ sp ² carbon in 6-membered ring between lone pair nitrogens (e.g. C2 in purines) sp ² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp ² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp ² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) N* sp ² nitrogen of aromatic amines and guanidinium ions N3 sp ³ nitrogen oxygen OW sp ³ oxygen in TIP3P water OH sp ³ oxygen in alcohols, tyrosine, and protonated carboxylic acids Ss ⁴ oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H tattached to N HW H in TIP3P water HO H ti nalcohols and acids HS tattached to aliphatic carbon with no electron-withdrawing substituents H1 tattached to aliphatic carbon with no electron-withdrawing substituents H1 tattached to aliphatic carbon with two electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H4 H attached to aliphatic carbon with the two electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with three electron-withdrawing substituents H6 H attached to aromatic carbon with three electron-withdrawing substituents H6 H attached to aromatic carbon with one electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		CK	and N-R (C8 in purines)
 lone pair nitrogens (e.g. C2 in purines) nitrogen N sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guandinium ions N3 sp² nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anides O4 sulfur in cysteine phosphorus phosphorus in phosphates hydrogen H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H2 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with one electron-withdrawing substituents H5 H4 H attached to aromatic carbon with one electron-withdrawing substituents H5 H4 H attached to aromatic carbon with one electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		CQ	sp ² carbon in 6-membered ring between
nitrogen N sp ² nitrogen in amides NA sp ² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp ² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp ² nitrogen in 5-membered ring with lone pair (e.g. N3 in purines) N* sp ² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp ² nitrogen of aromatic amines and guanidinium ions N3 sp ³ nitrogen oxygen OW sp ³ oxygen in TIP3P water OH sp ³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp ³ oxygen in amides O2 sp ² oxygen in amides O2 sp ² oxygen in amides O2 sp ² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H5 H attached to aliphatic carbon with three electron-withdrawing substituents H5 H attached to aliphatic carbon with three electron-withdrawing substituents H6 H attached to aliphatic carbon with three electron-withdrawing substituents H6 H attached to aliphatic carbon with three electron-withdrawing substituents H7 H attached to aromatic carbon with on electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)			lone pair nitrogens (e.g. C2 in purines)
 NA sp² nitrogen in aromatic rings with hydrogen attached (e.g. protonated His, Gua, Trp) NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus in phosphates H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H2 H attached to aromatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with one electron-gaive neighbors (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with two electronegaive neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 	nitrogen	N	sp ² nitrogen in amides
 NB sp² nitrogen in 5-membered ring with lone pair (e.g. N7 in purines) NC sp² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA tatached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with one electron-gaive neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegaive neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		NA	sp ² nitrogen in aromatic rings with hydrogen
 NC sp² nitrogen in 5 membered ring with role pair (e.g. N7 in purines) NC sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in aniotic acids Sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aiphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H9 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with three electron-withdrawing substituents H6 H attached to aromatic carbon with on electronegative neighbors (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		NB	sn^2 nitrogen in 5-membered ring with lone pair
 NC sp² nitrogen in 6-membered ring with lone pair (e.g. N3 in purines) N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anides O2 sp² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to ailphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H9 H attached to aromatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		112	(e.g. N7 in purines)
 (e.g. N3 in purines) N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in ethers O sp² oxygen in amides O2 sp² oxygen in anionic acids sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates HS H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electron-gative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		NC	sp ² nitrogen in 6-membered ring with lone pair
 N* sp² nitrogen in 5-membered ring with carbon substituent (in purine nucleosides) N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in ethers O sp² oxygen in amides O2 sp² oxygen in anionic acids sulfur sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates HS H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 			(e.g. N3 in purines)
 N2 sp² nitrogen of aromatic amines and guanidinium ions N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in ethers O sp² oxygen in amides O2 sp² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA tatached to ailphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 attached to aromatic carbon with one electron-gative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		N*	sp ² nitrogen in 5-membered ring with carbon
 oxygen N3 sp³ nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in anionic acids OS sp² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA tatached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with three electron-withdrawing substituents H6 H attached to aromatic carbon with three electron-withdrawing substituents H7 H attached to aromatic carbon with three electron-withdrawing substituents H8 H attached to aromatic carbon with three electron-gative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		N2	sn^2 nitrogen of aromatic amines and
 N3 sp² nitrogen oxygen OW sp³ oxygen in TIP3P water OH sp³ oxygen in alcohols, tyrosine, and protonated carboxylic acids OS sp³ oxygen in ethers O sp² oxygen in amides O2 sp² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H9 H attached to aromatic carbon with three electron-withdrawing substituents H1 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aromatic carbon with three electron-withdrawing substituents H4 attached to aromatic carbon with three electron-withdrawing substituents H5 H attached to aromatic carbon with three electron-gative atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		1.2	guanidinium ions
oxygenOW sp^3 oxygen in TIP3P waterOH sp^3 oxygen in alcohols, tyrosine, and protonated carboxylic acidsOS sp^3 oxygen in ethersO sp^2 oxygen in amidesO2 sp^2 oxygen in anionic acidssulfurSsulfur in methionine and cysteinephosphorusPphosphorus in phosphateshydrogenHHattached to NHWH in TIP3P waterHOH in alcohols and acidsHSH attached to sulfurHAH attached to aromatic carbonHCH attached to aliphatic carbon with no electron-withdrawing substituentsH1H attached to aliphatic carbon with one electron-withdrawing substituentsH2H attached to aliphatic carbon with two electron-withdrawing substituentsH3H attached to aliphatic carbon with three electron-withdrawing substituentsH9H attached to aliphatic carbon with three electron-withdrawing substituentsH4H attached to aromatic carbon with three electron-withdrawing substituentsH9H attached to aromatic carbon with on Formally positive atoms (e.g. C next to NH ₃ + of lysine)H4H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy)H5H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		N3	sp ³ nitrogen
OHsp3 oxygen in alcohols, tyrosine, and protonated carboxylic acidsOSsp3 oxygen in ethersOsp2 oxygen in amidesO2sp2 oxygen in anionic acidssulfurSsulfur in methionine and cysteinephosphorusPphosphorus in phosphateshydrogenHHattached to NHWH in TIP3P waterHOH in alcohols and acidsHSH attached to sulfurHAH attached to aromatic carbonHCH attached to aliphatic carbon with no electron-withdrawing substituentsH1H attached to aliphatic carbon with two electron-withdrawing substituentsH2H attached to aliphatic carbon with two electron-withdrawing substituentsH3H attached to aliphatic carbon with three electron-withdrawing substituentsH9H attached to aliphatic carbon with three electron-withdrawing substituentsH4H attached to aromatic carbon with three electron-withdrawing substituentsH9H attached to aromatic carbon with three electron-withdrawing substituentsH9H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy)H5H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)	oxygen	OW	sp ³ oxygen in TIP3P water
Protonated carboxylic acids OS sp ³ oxygen in ethers O sp ² oxygen in amides O2 sp ² oxygen in anionic acids sulfur S sulfur in methionine and cysteine SH sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with cone electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with two electron-withdrawing substituents H4 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 Attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aromatic carbon with on electronegative atoms (e.g. C next to NH ₃ ⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		OH	sp ³ oxygen in alcohols, tyrosine, and
 of sp² oxygen in eners of sp² oxygen in amides of sp² oxygen in amides of sp² oxygen in amides sulfur sulfur in methionine and cysteine sulfur in cysteine phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H9 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		05	protonated carboxylic acids
 O2 sp² oxygen in anionic acids sulfur S sulfur in methionine and cysteine sulfur in cysteine phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with two electron-withdrawing substituents H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		03	sp ² oxygen in amides
 sulfur sulfur in methionine and cysteine sulfur in cysteine phosphorus phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with cone electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		02	sp ² oxygen in anionic acids
SHsulfur in cysteinephosphorusPhydrogenHHHattached to NHWH in TIP3P waterHOH in alcohols and acidsHSH attached to sulfurHAH attached to aromatic carbonHCH attached to aliphatic carbon with no electron-withdrawing substituentsH1H attached to aliphatic carbon with one electron-withdrawing substituentH2H attached to aliphatic carbon with two electron-withdrawing substituentsH3H attached to aliphatic carbon with two electron-withdrawing substituentsH3H attached to aliphatic carbon with three electron-withdrawing substituentsH9H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH3+ of lysine)H4H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy)H5H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)	sulfur	S	sulfur in methionine and cysteine
phosphorus P phosphorus in phosphates hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to sulfur HA H attached to aromatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH ₃ ⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		SH	sulfur in cysteine
 hydrogen H H attached to N HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to sulfur HA H attached to aliphatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to aliphatic carbon with three electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to aromatic carbon with on on Soft Plysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. H8 of Ade an Gua and H2 of Ade) 	phosphorus	P	phosphorus in phosphates
 HW H in TIP3P water HO H in alcohols and acids HS H attached to sulfur HA H attached to sulfur HA H attached to aliphatic carbon HC H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 	hydrogen	H	H attached to N
 HO H in alconois and actos HS H attached to sulfur HA H attached to sulfur HA H attached to aliphatic carbon with no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents H4 H attached to aliphatic carbon with three electron-withdrawing substituents H9 H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		HW	H in TIP3P water
 Hattached to suminary in a trached to suminary in the sum of the		HU	H in alcohols and acids
 Hattached to aliphatic carbon with no electron-withdrawing substituents H attached to aliphatic carbon with one electron-withdrawing substituent H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with two electron-withdrawing substituents H attached to aliphatic carbon with three electron-withdrawing substituents H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		ΗΔ	H attached to aromatic carbon
 no electron-withdrawing substituents H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		HC	H attached to aliphatic carbon with
 H1 H attached to aliphatic carbon with one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 			no electron-withdrawing substituents
 one electron-withdrawing substituent H2 H attached to aliphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		H 1	H attached to aliphatic carbon with
 H2 H attached to aniphatic carbon with two electron-withdrawing substituents H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		110	one electron-withdrawing substituent
 H3 H attached to aliphatic carbon with three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		H 2	two electron-withdrawing substituents
 three electron-withdrawing substituents HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 		H3	H attached to aliphatic carbon with
 HP H attached to carbon directly bonded to formally positive atoms (e.g. C next to NH₃⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 			three electron-withdrawing substituents
formally positive atoms (e.g. C next to NH ₃ ⁺ of lysine) H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		HP	H attached to carbon directly bonded to
 H4 H attached to aromatic carbon with one electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade) 			tormally positive atoms (e.g. C next to NH ₂ ⁺ of lysine)
electronegative neighbor (e.g. hydrogen on C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		H4	H attached to aromatic carbon with one
C5 of Trp, C6 of Thy) H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)			electronegative neighbor (e.g. hydrogen on
H5 H attached to aromatic carbon with two electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)			C5 of Trp, C6 of Thy)
electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)		H5	H attached to aromatic carbon with two
			electronegative neighbors (e.g. H8 of Ade an Gua and H2 of Ade)

UNIVERSITÉ DE LORRAINE

Parametrization of a concise set of chemically unique atoms;

Underlying hypothesis: The parameters describing a given atom are essentially local, and may, therefore, be ported to different chemical environments.

Cornell, W. D. et al. J. Am. Chem. Soc., 1995, 117, 5179-5197

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Torsional potential — description of a complex potential requires several terms,

Leach, A. R. Molecular modeling. Longman, 1996

CLASSICAL MOLECULAR DYNAMICS

Torsional potential — description of a complex potential requires several terms,

Leach, A. R. Molecular modeling. Longman, 1996

Torsional potential — description of a complex potential requires several terms,

- Modeling the electrostatic contribution
- Two distinct philosophies:
- AMBER: The electrostatic potential is the *fingerprint* of the molecule

$$V^{\text{reference}}(\mathbf{r}_k) = \sum_{A} \left| \frac{Z_A}{|\mathbf{r}_k - \mathbf{R}_A|} - \sum_{i}^{\text{occ.}} \sum_{\mu} \sum_{\nu} c^*_{\mu i} c_{\nu i} \left| \left\langle \phi_{\mu} \right| \frac{1}{|\mathbf{r}_k - \mathbf{r}|} \right| \phi_{\nu} \right\rangle$$

CHARMM: The electrostatic term is parameterized from intermolecular interactions

Cornell, W. D. et al. J. Am. Chem. Soc., **1995**, 117, 5179-5197 MacKerell Jr., A. D. et al. J. Phys. Chem. B **1998**, 102, 3586-3616

Charges derived from the molecular electrostatic potential,

$$f(\{q_k\}) = \sum_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \sum_{j=1}^{N_{\text{atoms}}} \frac{q_j}{r_{ij}} \right]^2$$

Cox, S. R.; Williams, D. E. J. Comput. Chem. 1981, 2, 304-323

Cornell, W. D.; Chipot, C. in Schleyer, P. v. R. et al. Eds. Encyclopedia of computational chemistry, Wiley and Sons, Chichester, 1998, 1, 258-263.

CLASSICAL MOLECULAR DYNAMICS

Beyond the simple and limited monopole approximation,

$$g(\lbrace q_k \rbrace, \lbrace \boldsymbol{\mu_{k'}} \rbrace) = \sum_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j'} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j' \in \mathcal{N}_{ij'}} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 \right]^2 = \min_{i=1}^{N_{\text{points}}} \left[V^{\text{reference}}(\mathbf{r}_i) - \left(\sum_j \frac{q_j}{r_{ij}} - \sum_{j' \in \mathcal{N}_{ij'}} \frac{\boldsymbol{\mu_{j'}} \cdot \mathbf{r}_{ij'}}{r_{ij'}^3} \right) \right]^2 \right]^2$$

Including intramolecular induction effects,

$$h(\{q_k\}) = \sum_{k=1}^{N_{\text{conformations}}} w_k \sum_{i=1}^{N_{\text{points}}} \left(V_k^{\text{reference}}(\mathbf{r}_i) - \sum_j \frac{q_j}{r_{ij}} \right)^2 = \min$$

Including intermolecular induction effects,

$$\mathscr{H} = \mathscr{H}^{0} - \sum_{\ell m} \sum_{\ell' m'} Q_{\ell m} f_{\ell \ell'}^{mm'} \langle \Psi | Q_{\ell' m'} | \Psi \rangle$$

Chipot, C.; Ángyán, J. G. New J. Chem. 2005, 29, 411-420 Reynolds, C. A.; Essex, J. W.; Richards, W. G. J. Am. Chem. Soc. 1992, 114, 9075-9079

Chipot, C. J. Comput. Chem. 2003, 24, 409-415

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Leach, A. R. Molecular modeling. Longman, 1996

Transferability of parameters constitutes one of the key assumptions of macromolecular force fields.

The underlying idea of macromolecular force fields is a minimalist description of complex chemical objects, based on a limited number of terms — often ad hoc.

Parametrization of different macromolecular force fields rely on distinct philosophies.

Parameters are not interchangeable between different potential energy functions.

Synopsis of a force-field parametrization

If parameters are missing from the force field

Option 1. Parametrize the missing terms following the philosophy of the force field

Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C. J. Comput. Chem. 2013, 34, 2757-2770

If parameters are missing from the force field

Option 2. Turn to a more comprehensive force field, e.g., OPLS

CA (len= 4):	(3.5500,0.0700) n= 571	6
	(3.5500,0.0500) n= 3	$\begin{bmatrix} NH_2 \\ H_2N NH_2 \end{bmatrix}^+$
	(3.5000,0.0800) n= 7	NH2 NH2 NH2 O
	(3.5500,0.0760) n= 14	

Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657-1666 Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B 2001, 105, 6474-6487

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS DALIAN INSTITUTE OF CHEMICAL PHYSICS, DALIAN, CHINA, JULY 2018

If parameters are missing from the force field

Option 3. Resort to servers relying upon ad-hoc inferences and educated guesses of missing

parameters

Genry	F. Fr					
23	W-V	My Account	Opload mob	ecule Mor	e Info & Toola	About OGenFF
Welcome to CGe	n FF					
Re Clark F program 's a par Arrest program air par te	datt of the PassaClass project. Other	uniting redending in such as the d	fitain pragram for robust fitter	ų e ^r bouled poramaeri ari	Estad on Parandhenis ach	aley ; says. Tance Excition for
the CHARMM General	Fasce Field (Distal F) program	n performs alom typing and	d assignment of pension	eters and charges by a	nelogy in a fully euton	ated fishien. Atom typin
force by a deterministic a securitari with many	programmable desistion area substitution and the existing	seignment of bonded para parameter with the lowest	unoters is based on exb t total peculty is chose	atinuing atom types in a sean applied in a in	n the definition of the 1 for the desired para	fectred parameter. A pen- meter; the "proofly scan"
end modilism-range tails	a monstary for the accuracy of active and masomeric efforts.	the approximation. Chargi	is art assigned using a	n estended bond ehar	te istroment scheme	that is able to explore the
CCenFF program	et links					
• Usage afermatic	15.					
· Gunnary of cult	out data and its at least in law	paired seading L				
• MAC (read this in	efine contacting os with quest	(m)				
 The Application (198) 	210DUCK					
CGenFF force fa	dd links					
+ Latest OGen HT v	cases trequired for using the	output of the OGen. V pro	(CIMITA)			
• Introduction.			Sec. 1			
• FMQ.						
 Parameter optim 	instica tetorial					
+ The CHARME A	crumes provide additional med	upper on how to accornitie	th common and lease on	meters teales paper Cit	ARMM, there heally	there is a script archive w
recommended p	recodures, a basic questions fo	rum, and fast box not least,	a parameter set diacus	tion forum that is freq	penied incernitionity	by the CGenFF authors.
PARAMCHEM CO	SENI-F IS AVAILABLE	TOR NON-PROPIT/	ACADEMIC PUR	POSES ONLY. 1	OR COMMERCI	AL USE OF COENI
LICENSING AND	ALL SCITCKI QUESI	DONS, PLEASE COD	THE E Support ga	succession com		
CCS		In west y of Marshan.	CAPP	F FLORID	1	
Total Total Cold Total		Plamoes	2 M 1		1.44	
In weary of Kanzaday	National Carvas for	Hiltmore	Universitywi	University or Blon da.	Nutional Science	
	for his spectrum of the	School of Faarmany	Maryland Telefores		Technistics	
	Appasitions		Califacenter			
	5	(per willing and from Nach	inal Science Faculation	Read No. of Spice		

Vanommeslaeghe, K. et al. J. Comput. Chem. 2010, 31, 671-690

Vanommeslaeghe, K.; MacKerell, Jr, A. J. Chem. Inf. Model. 2012, 52, 3144-3154

Vanommeslaeghe, K.; Raman, E. P.; MacKerell, Jr, A. J. Chem. Inf. Model. 2012, 52, 3155-3168

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS

DALIAN INSTITUTE OF CHEMICAL PHYSICS, DALIAN, CHINA, JULY 2018

Water models

One of the commonest molecules — and one of the hardest to model.

Main culprit — the electrostatics. A simple threepoint charge model yields an error of about 50% in the regeneration of the potential.

This error drops to less than 10% with a fourpoint charge model.

Problem — Most force fields were developed with three-point charge water models.

model	model $N = r_{\rm c}({\rm \AA})$		E _{pot} (kJ/mol)	ho (g cm ⁻³)	<i>T</i> (K)	$D (\times 10^{-9} \text{ m}^2 \text{ s}^{-1})$
SPC/E ^a original	820	12.0	-47.2(0.18)	1.008	301(4.4)	2.7(0.12)
SPC/E ^b original	901	12.0	-45.4(0.03)	0.998	298.2(1.4)	2.8(0.06)
SPC ^a original	820	12.0	-42.2(0.16)	0.988	301(4.4)	4.2(0.08)
SPC ^b original	901	12.0	-40.5(0.03)	0.998	298.6(1.1)	4.2(0.08)
TIP3P ^a original	820	12.0	-40.8(0.16)	1.001	301(4.4)	5.4(0.14)
TIP3P ^b original	901	12.0	-39.0(0.02)	0.998	297.0(0.9)	5.6(0.08)
TIP3P ^b modified	901	12.0	-39.8(0.02)	0.998	299.2(1.0)	5.9(0.08)
SPC ^b refined	901	12.0	-40.3(0.03)	0.998	297.7(1.2)	4.2(0.10)
exptl			-41.5	0.997	and the second second	2.3

Jorgensen, W. L. et al. J. Chem. Phys. 1983, 79, 926-935

Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269-6271

Archambault, F. et al. J. Chem. Theor. Comput. 2009, 5, 3022-3031

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

dynamic properties are more difficult to reproduce accurately

How to handle induction effects?

Ahlström, P.; Wallquist, A.; Engströms, S.; Jönsson, B. Mol. Phys. 1989, 68, 563-581

Wang, W.; Skeel, R. D. J. Chem. Phys. 2005, 123, 164107

Open	P	the second			0.101 50	Ung ser	water	- ter g	tel canci	Laur Bor	group of	itone 🚺 🕅	1949 Bot	p & Tao	
CHOICE WE GROUP	3		201 104	I ROFERT		PURE	nt perso	1728005	ex		CONTRACT CONTRACTOR				
ncoloritatia syst lancama sovo	3		Dpsp	optio	an - E		ite	2	-	steen.	z		2	family	
Or Burglowsky		10	SINC	(re		-	1	14	4		0.000404	9.000034	2000000	T	
WA PIPENOTASY:	1.00					diam.	-	-	Constant of		anacosc [0.0000.00	5546800	1	
ty-unnervol, deter	100	12	colored, L	boud it		(Control	acit2			an a l	1301675	0.000034	1 3841 23	13	
stonaye substant.ov	1.		. BORCH	Killet		Least.	abas	- 11	Deco	init-sited	1.524505	-3204716	1 100320	14	
MATCHINE ACTIVALITY:	1.22	8	-	and part	PATRE	Sale			ines.	Personal .	109720*	11074	33544	1	
ystatestaes ingo	10.00					Inde			1	-	1.54 (51)	2104440	LUNALS	-	
instyl alfide adva	11.53	204	-	YOUN	2000	-	-		-	-	15210-7	Annativ	1000100	-	
tions av.	12	6	işlət v	anits	lor	富	NIN				271114	1.000025	-2001205	10	
dange	1.40	i an	10			Contract of the local division of the local				1 - 1				TA.	
to pelt.xyr	100	-	-	-		1.00			18	- SULE-	Senting grid p	ALALINE ALE	- Diara	THE .	
starts have shown and	100	1	-			Long	-	-	E	Mailely ve	W roll at	-	PETER 2315	m	
cos- burchlenaxy:	15	1	100	201	1 2	10	1	1	- 12	Solution of	In analyzing of	10		111	
Demonyce	1.5	1	100	-	1 1	-	1	1	18	Ephiembed.	namber of points	-	100.00	11	
LANE BOLDINGSTA	1.0			1	-	~	9	3		19 A. A. A.		100 G	12.4	110	
manazy:	1.41	4	-	1	14 J.	-	1	1			100	1	1000	14	
chavel subjects		Sel.		1		-	1	4	L				2517	15	
etomol synaye			-	4		-	1	14	1	101	3,43425*	1291204	NC2021	115	
345, 8159130/7	1.4	1	1	1		100	11	1	5	-	410-12.4	LWHO	11/10/10/10	ET.	
Sys loans	01	and a	200	100	100		100	272	22	1				1.1.1	

Induction energy, $\mathscr{U}_{ind,k}$, resulting from the polarization of the molecule by a charge q_k , located at point \mathbf{r}_k ,

$$\mathscr{U}_{\mathrm{ind},k} = \mathscr{E}_{\mathrm{total},k} - \mathscr{E}^0 - q_k V_k \qquad \forall \ k = 1, \dots, N_p$$

Approximation of the induction energy, introducing α ,

$$\tilde{\mathscr{U}}_{\mathrm{ind},k} = -\frac{1}{2} \sum_{i,j} \sum_{\ell=0}^{N_{\ell}(i)} \sum_{\kappa=-\ell}^{\ell} \sum_{\ell'=0}^{N_{\ell'}(j)} \sum_{\kappa'=-\ell'}^{\ell'} q_k T_{\ell\kappa}^{ki} \alpha_{\ell\kappa,\ell'\kappa'}^{ij} T_{\ell'\kappa'}^{jk} q_k$$

Chipot, C.; Ángyán, J. G. New J. Chem. 2005, 29, 411-420

How to handle induction effects?

The Drude oscillator

Induced dipole moment, $\mu = \frac{q_D^2 \mathbf{E}}{k_D}$

The primary computational cost of simulating classical Drude oscillators is the calculation of the local electrostatic field and the repositioning of the Drude particle at each step, which is done traditionally in a self-consistent fashion. This cost can be reduced by assigning a small mass to each Drude particle, applying a Lagrangian transformation and evolving the simulation in the generalized coordinates.

Main advantage: Simplicity of implementation, cost-effectiveness, charge-charge framework.

Drude, P. Lehrbuch der Optik. 1. Ausgabe. Verlag von S. Hirzel, 1900

Huang, J.; Lopes, P. E. M.; Roux, B.; MacKerell, Jr, A. D. J. Phys. Chem. Lett. 2014, 5, 3144-3150

Towards a simpler representation

Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. J. Phys. Chem. B 2007, 111, 7812-7824

The potential energy function

CLASSICAL MOLECULAR DYNAMICS

fowards a simpler representation

The results of a 1- μ s simulation of a 64million atom assay shows that the HIV capsid acts as an osmotic regulator.

Chloride ions permeate through the hexameric center

If atom types and parameters are missing from a macromolecular force field, one ought to follow verbatim its philosophy to update it. A force field is a very fragile construct — its elementary bricks cannot be swapped without any precaution.

The vast majority of macromolecular force fields are pairwise additive, i.e., they do not account for through-space induction phenomena, nor of charge transfers.

To reduce the computational effort and access longer timescales, the atomic description can be coarse-grained. One should, however, not simplify a model until one understands fully the phenomena at play.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

THE PROPAGATORS OF MOLECULAR DYNAMICS

Early experiments of propagating motion

Taylor expansions at $t + \delta t$ and $t - \delta t$,

$$\mathbf{r}_{i}(t+\delta t) = \mathbf{r}_{i}(t) + \delta t \ \mathbf{v}_{i}(t) + \frac{\delta t^{2}}{2} \ \mathbf{a}_{i}(t) + \mathscr{O}(\delta t^{3})$$
$$\mathbf{r}_{i}(t-\delta t) = \mathbf{r}_{i}(t) - \delta t \ \mathbf{v}_{i}(t) + \frac{\delta t^{2}}{2} \ \mathbf{a}_{i}(t) + \mathscr{O}(\delta t^{3})$$

Verlet, L. Phys. Rev. 1967, 159, 98-103

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Taylor expansions at $t + \delta t$ and $t - \delta t$,

$$\mathbf{r}_i(t+\delta t) = 2\mathbf{r}_i(t) - \mathbf{r}_i(t-\delta t) + \mathbf{a}_i(t) \ \delta t^2 + \mathscr{O}(\delta t^4)$$

$$\mathbf{v}_i(t) = \frac{\mathbf{r}_i(t+\delta t) - \mathbf{r}_i(t-\delta t)}{2 \ \delta t} + \mathscr{O}(\delta t^2)$$

Verlet, L. Phys. Rev. 1967, 159, 98-103

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

CLASSICAL MOLECULAR DYNAMICS

The leap-frog propagator

$$\begin{cases} \mathbf{r}_{i}(t+\delta t) = \mathbf{r}_{i}(t) + \mathbf{v}_{i}\left(t+\frac{\delta t}{2}\right) & \delta t \\ \mathbf{v}_{i}\left(t+\frac{\delta t}{2}\right) = \mathbf{v}_{i}\left(t-\frac{\delta t}{2}\right) + \mathbf{a}_{i}(t) & \delta t \\ \mathbf{v}_{i}(t) = \frac{\mathbf{v}_{i}\left(t+\frac{\delta t}{2}\right) + \mathbf{v}_{i}\left(t-\frac{\delta t}{2}\right)}{2} \end{cases}$$

Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.;Haak, J. R. *J. Chem. Phys.* **1984**, *81*, 3684-3690 Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, **2002**

The velocity Verlet propagator

$$\mathbf{r}_i(t+\delta t) = \mathbf{r}_i(t) + \mathbf{v}_i(t) \ \delta t + \frac{1}{2} \ \mathbf{a}_i(t) \ \delta t^2$$

$$\mathbf{v}_i(t+\delta t) = \mathbf{v}_i(t) + \frac{\mathbf{a}_i(t) + \mathbf{a}_i(t+\delta t)}{2} \,\delta t$$

$$\mathbf{v}_i\left(t+\frac{\delta t}{2}\right) = \mathbf{v}_i(t) + \frac{1}{2} \mathbf{a}_i(t) \ \delta t$$

$$\mathbf{v}_i(t+\delta t) = \mathbf{v}_i\left(t+\frac{\delta t}{2}\right) + \frac{1}{2} \mathbf{a}_i(t+\delta t) \ \delta t$$

This algorithm is time-reversible

Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys., 1982, 76, 637-649 Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, **2002**

The predictor-corrector algorithm

Stage 1: Estimate {
$$\mathbf{r}_i(t + \delta t)$$
, $\mathbf{v}_i(t + \delta t)$, $\mathbf{a}_i(t + \delta t)$, $\mathbf{b}_i(t + \delta t)$ },

$$\mathbf{r}_{i}(t+\delta t)^{\text{pred}} = \mathbf{r}_{i}(t) + \mathbf{v}_{i}(t) \ \delta t + \frac{1}{2} \ \mathbf{a}_{i}(t) \ \delta t^{2} + \frac{1}{6} \ \mathbf{b}_{i}(t) \ \delta t^{3}$$
$$\mathbf{v}_{i}(t+\delta t)^{\text{pred}} = \mathbf{v}_{i}(t) + \mathbf{a}_{i}(t) \ \delta t + \frac{1}{2} \ \mathbf{b}_{i}(t) \ \delta t^{2} + \dots$$
$$\mathbf{a}_{i}(t+\delta t)^{\text{pred}} = \mathbf{a}_{i}(t) + \mathbf{b}_{i}(t) \ \delta t + \dots$$
$$\mathbf{b}_{i}(t+\delta t)^{\text{pred}} = \mathbf{b}_{i}(t) + \dots$$

Stage 2: From the forces evaluated at $t + \delta t$, using $\{\mathbf{r}_i(t + \delta t)_{\text{pred}}\}$, correct the accelerations and supply an estimate of the prediction error,

$$\mathbf{r}_{i}(t+\delta t)^{\text{corr}} = \mathbf{r}_{i}(t+\delta t)^{\text{pred}} + \mathbf{c}_{0} \Delta \mathbf{a}(t+\delta t)$$
$$\mathbf{v}_{i}(t+\delta t)^{\text{corr}} = \mathbf{v}_{i}(t+\delta t)^{\text{pred}} + \mathbf{c}_{1} \Delta \mathbf{a}(t+\delta t)$$
$$\mathbf{a}_{i}(t+\delta t)^{\text{corr}} = \mathbf{a}_{i}(t+\delta t)^{\text{pred}} + \mathbf{c}_{2} \Delta \mathbf{a}(t+\delta t)$$
$$\mathbf{b}_{i}(t+\delta t)^{\text{corr}} = \mathbf{b}_{i}(t+\delta t)^{\text{pred}} + \mathbf{c}_{3} \Delta \mathbf{a}(t+\delta t)$$

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Multiple time-step propagators

The Liouville equation of motion,

$$\frac{\partial \varrho_{NVT}(\mathbf{x}, \mathbf{p}_x, t)}{\partial t} = -i \mathscr{L} \varrho_{NVT}(\mathbf{x}, \mathbf{p}_x, t)$$

 $\mathbf{\Gamma}(t) = \mathrm{e}^{i\mathscr{L}t} \mathbf{\Gamma}(0)$

Trotter factorization,

$$e^{i\mathscr{L}\Delta t} = e^{i\mathscr{L}_1\frac{\Delta t}{2}} \left[e^{i\mathscr{L}_2\frac{\Delta t}{2k}} e^{i\mathscr{L}_3\frac{\Delta t}{k}} e^{i\mathscr{L}_2\frac{\Delta t}{2k}} \right]^k e^{i\mathscr{L}_1\frac{\Delta t}{2}}$$

NAMD ecular Dynamics

timestep	2
nonBondedFreq	1
fullElectFrequency	2

Separation of the short- and long-range contributions,

$$e^{i\mathscr{H}\Delta t} = e^{i\mathscr{V}_{\text{long}}(\mathbf{x})\frac{\Delta t}{2}} \left\{ e^{i\mathscr{V}_{\text{short}}(\mathbf{x})\frac{\Delta t}{2}} \left[e^{i\mathscr{V}_{\text{valence}}(\mathbf{x})\frac{\Delta t}{2}} e^{i\mathscr{T}(\mathbf{p}_{x})\frac{\Delta t}{2}} e^{i\mathscr{V}_{\text{valence}}(\mathbf{x})\frac{\Delta t}{2}} \right]^{2} e^{i\mathscr{V}_{\text{short}}(\mathbf{x})\frac{\Delta t}{2}} \right\}^{2} e^{i\mathscr{V}_{\text{long}}(\mathbf{x})\frac{\Delta t}{2}}$$

Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. J. Phys. Chem. B 1992, 97, 1990-2001

Izaguirre, J. A.; Reich, S.; Skeel, R. D. J. Chem. Phys. 1999, 110, 9853-9864

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS DALIAN INSTITUTE OF CHEMICAL PHYSICS, DALIAN, CHINA, JULY 2018

Integration of the equations of motion generally relies upon a Taylor expansion of the positions — possibly the velocities, at $t + \delta t$ and $t - \delta t$.

While in some algorithms knowledge of the velocities is not mandatory, the latter are required for the determination of the kinetic energy.

The cost of the simulation can be appreciably reduced, turning to a multiple-time step integrator, which exploits the fact different degrees of freedom relax over different time-scales and, thus, can be updated at different frequencies.

Synopsis

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

CLASSICAL MOLECULAR DYNAMICS

The concept of biased molecular dynamics simulation

To push back the limitation of brute-force molecular dynamics and access timescales not amenable to conventional simulation times due to significant free-energy barriers.

Adding additional forces to the conservative forces arising from the force field will result in preferential sampling of slow degrees of freedom ordinarily poorly explored in standard simulations.

Chipot, C.; Pohorille, A. Free energy calculations. Theory and applications in chemistry and biology. Springer Verlag, 2007

Hénin, J.; Tajkhorshid, E.; Schulten, K.; Chipot, C. Biophys. J. 2008, 94, 832-839

CLASSICAL MOLECULAR DYNAMICS

Role of geometrical restraints

Basic idea: Reduce the volume of configurational space to be sampled by means of geometrical, harmonic restraints.

Application: Staging in geometrical free-energy calculations.

Valleau, J. P.; Card, D. N. J. Chem. Phys. 1972, 57, 5457-5462

Role of geometrical restraints

Application: Steered molecular dynamics. The external force is exerted onto the system to force it to drift along the desired direction of Cartesian space.

In constant-force SMD simulations, a constant force on the order of 10^{-12} to 10^{-9} N, is exerted onto a subset of atoms, in addition to the conservative forces of the potential energy function.

Constant-velocity SMD simulations mimic the action of a mobile cantilever acting on a substrate in AFM experiments.

In AFM, the spring constant of the cantilever is 10⁻³ Nm⁻¹, translating to large thermal fluctuations in the position of the attached substrate. SMD utilizes spring constants 10² stiffer, giving sharper spatial resolution and more detailed information about the interactions at play.

Until recently, the time scales explored by SMD were substantially shorter than those of AFM experiments, by a factor of 10³-10⁶.

Izrailev, S. et al. *Computational molecular dynamics: Challenges, methods, ideas* Deuflhard, P. et al. (Ed.), Springer Verlag, **1998**, *4*, 39-65 Rico, F.; Gonzalez, L.; Casuso, I.; Puig-Vidal, M.; Scheuring, S. *Science*, **2013**, *342*, 741-743

Role of geometrical restraints

Application: Molecular dynamics flexible fitting

Basic idea: Fit atomic structures into density maps. The method consists of adding external forces proportional to the gradient of the density map into a molecular dynamics simulation of the atomic structure.

Combination of high-resolution atomic structures with low-resolution cryo-electron microscopy maps results in atomic models representing the conformational state captured by cryo-EM.

Trabuco, L. G.; Villa, E.; Mitra, K.; Frank, J.; Schulten, K. *Structure* **2008**, *16*, 673-683 Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K. *Methods* **2009**, *49*, 174-180

Eliminate the hard degrees of freedom of the system, that correspond to high frequencies of vibration. In other words, constraints \neq restraints.

Application: Increase δt

$$\chi_{ij}(t) = |\mathbf{r}_j(t) - \mathbf{r}_i(t)|^2 - d_{ij}^2$$

$$m_i \frac{\mathrm{d}^2 \mathbf{r}_i(t)}{\mathrm{d}t^2} = \mathbf{f}_i + \mathbf{g}_i$$

Constraint force,
$$\mathbf{g}_i = -\sum_j \lambda_{ij}(t) \nabla_i \chi_{ij}(t) = -2\sum_j \lambda_{ij}(t) \mathbf{r}_{ij}(t)$$

$$\mathbf{r}_i(t+\delta t) = \mathbf{r}_i(t) + \delta t \, \mathbf{v}_i(t) + \frac{\delta t^2}{2m_i} \, \left[\mathbf{f}_i(t) + \mathbf{g}_i(t)\right]$$

d(1,2) and d(1,3) are fixed. $\theta(1,2,3)$ may vary through the intramolecular potential.

Equations of motion,

d(1,2) and d(1,3) are fixed. $\theta(1,2,3)$ may vary through the intramolecular potential.

Equations of motion,

$$\begin{cases} m_1 \mathbf{a}_1 &= \mathbf{f}_1 + \mathbf{g}_1 \\ m_2 \mathbf{a}_2 &= \mathbf{f}_2 + \mathbf{g}_2 \\ m_3 \mathbf{a}_3 &= \mathbf{f}_3 + \mathbf{g}_3 \end{cases}$$

Constraints to be satisfied,

$$\begin{cases} \chi_{12} = r_{12}^2(t) - d_{12} = 0 \\ \chi_{13} = r_{13}^2(t) - d_{13} = 0 \end{cases}$$

d(1,2) and d(1,3) are fixed. $\theta(1,2,3)$ may vary through the intramolecular potential.

Equations of motion,

 $\begin{cases} m_1 \mathbf{a}_1 &= \mathbf{f}_1 + \mathbf{g}_1 \\ m_2 \mathbf{a}_2 &= \mathbf{f}_2 + \mathbf{g}_2 \\ m_3 \mathbf{a}_3 &= \mathbf{f}_3 + \mathbf{g}_3 \end{cases}$

Constraints to be satisfied,

$$\chi_{12} = r_{12}^2(t) - d_{12} = 0$$

$$\chi_{13} = r_{13}^2(t) - d_{13} = 0$$

Introduction of the Lagrange multipliers,

 $\mathbf{g}_{a} = \frac{1}{2} \lambda_{12} \nabla_{(r_{a})} \chi_{12} + \frac{1}{2} \lambda_{13} \nabla_{(r_{a})} \chi_{23}$

The set of constraints ought to be satisfied at *every* time step, $m_a \ \mathbf{a}_a = \mathbf{f}_a + \mathbf{g}_a \simeq \mathbf{f}_a + \mathbf{g}_a^{(r)}$

In the Verlet propagator,

$$\mathbf{r}_a(t+\delta t) = \mathbf{r}'(t+\delta t) + \frac{\delta t^2}{m_a} \mathbf{g}_a^{(r)}(t)$$

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Introduction of $\mathbf{g}_{a}^{(r)}$ into the Verlet propagator,

$$\begin{aligned} \mathbf{g}_{1}^{(r)} &= \lambda_{12} \mathbf{r}_{12} \\ \mathbf{g}_{2}^{(r)} &= \lambda_{23} \mathbf{r}_{23} - \lambda_{12} \mathbf{r}_{12} \\ \mathbf{g}_{3}^{(r)} &= -\lambda_{23} \mathbf{r}_{23} \\ \mathbf{r}_{12}(t+\delta t) &= \mathbf{r}_{12}'(t+\delta t) + \left(\frac{1}{m_{1}} + \frac{1}{m_{2}}\right) \lambda_{12} \, \delta t^{2} \mathbf{r}_{12}(t) - \frac{1}{m_{2}} \, \lambda_{23} \, \delta t^{2} \mathbf{r}_{23}(t) \\ \mathbf{r}_{23}(t+\delta t) &= \mathbf{r}_{23}'(t+\delta t) + \frac{1}{m_{2}} \, \lambda_{12} \, \delta t^{2} \mathbf{r}_{12}(t) - \left(\frac{1}{m_{2}} + \frac{1}{m_{3}}\right) \, \lambda_{23} \, \delta t^{2} \mathbf{r}_{23}(t) \end{aligned}$$

This is a quadratic system of two equations of unknowns, λ_{12} and λ_{13} .

It is possible to rigidify the water molecule *fully* by enforcing an additional constraint on the H—H distance.

The SHAKE algorithm

- Cyclic computation of all constraints, in an iterative fashion until each constraint be satisfied.
- Modification of the Verlet propagator: At each step, \mathbf{g} is approximated in order to satisfy the set of constraints,

$$\begin{cases} \mathbf{r}_{a}(t+\delta t) = \mathbf{r}_{a}'(t+\delta t) + \frac{1}{2} \frac{\delta t}{m_{a}} \mathbf{g}_{a}^{(r)}(t) \\ \mathbf{v}_{a}\left(t+\frac{\delta t}{2}\right) = \mathbf{v}_{a}'\left(t+\frac{\delta t}{2}\right) + \frac{1}{2} \frac{\delta t}{m_{a}} \mathbf{g}_{a}^{(r)}(t) \end{cases}$$

Note: Constraint forces, $\mathbf{g}_{a}^{(r)}(t)$, are collinear with $\mathbf{r}_{ab}(t)$, and so are $\mathbf{g}_{a}^{(r)}(t+\delta t)$.

Next:
$$\mathbf{v}_a(t+\delta t) = \mathbf{v}'_a(t+\delta t) + \frac{1}{2} \frac{\delta t}{m_a} \mathbf{g}_a^{(r)}(t+\delta t)$$

Note: Knowledge of $\mathbf{v}'_a(t+\delta t)$ requires the preliminary evaluation of $\mathbf{f}_a(t+\delta t)$.

The RATTLE algorithm — Iterative computation of the solutions to these equations.

Ryckaert, J.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327-341

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

NAME Molecular Dynamics	
rigidbonds	all

Andersen, H. C. J. Comput. Phys. 1983, 52, 24-34

CLASSICAL MOLECULAR DYNAMICS

Rigid-body molecular dynamics

 $\{e^B\}$: Frame of reference of the rigid body. $\{e^S\}$: Absolute frame of reference: $e^B = S \cdot e^S$

($\cos\phi \ \cos\psi - \sin\phi \ \cos\theta \ \sin\psi$	$\sin\phi \ \cos\psi + \cos\phi \ \cos\theta \ \sin\psi$	$\sin\theta \sin\psi$
	$-\cos\phi \sin\psi - \sin\phi \cos\theta \cos\psi$	$-\sin\phi \sin\psi + \cos\phi \cos\theta \cos\psi$	$\sin\theta\cos\psi$
	$\sin\phi \ \sin heta$	$-\cos\phi \ \sin heta$	$\cos \theta$

 $oldsymbol{ au}_i = \sum_a \left(\mathbf{r}_{ia} - \mathbf{r}_i
ight) imes \mathbf{f}_{ia}$ torque $oldsymbol{ au}^B = \mathbf{S}^a oldsymbol{ au}^S$ $oldsymbol{\omega}^S = \mathbf{S}^{-1} oldsymbol{\omega}^B$ angular velocity

$$\frac{\mathrm{d}\mathbf{L}^{B}}{\mathrm{d}t} + \boldsymbol{\omega}^{B} \times \mathbf{L}^{B} = \boldsymbol{\tau}^{B}$$
 angular momentum

 $\frac{\mathrm{d}\mathbf{e}^{S}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{e}^{B}}{\mathrm{d}t} + \boldsymbol{\omega}^{S} \times \mathbf{e}^{S} = \boldsymbol{\omega}^{S} \times \mathbf{e}^{S} \quad \text{which depends upon}\,(\dot{\phi}, \dot{\theta}, \dot{\psi}), \,\text{function of } 1/\sin\theta.$

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Rigid-body molecular dynamics

Quaternions: Four scalar quantities satisfying $q_1 + q_2 + q_3 + q_4 = 1$

$$q_{0} = \cos \frac{\theta}{2} \cos \frac{\phi + \psi}{2}$$

$$q_{1} = \sin \frac{\theta}{2} \cos \frac{\phi - \psi}{2}$$

$$q_{2} = \sin \frac{\theta}{2} \sin \frac{\phi - \psi}{2}$$

$$S = \begin{pmatrix} q_{0}^{2} + q_{1}^{2} - q_{3}^{2} & 2(q_{1}q_{2} + q_{0}q_{3}) & 2(q_{1}q_{3} - q_{0}q_{2}) \\ 2(q_{1}q_{2} - q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{1}^{2} - q_{3}^{2} & 2(q_{2}q_{3} + q_{0}q_{1}) \\ 2(q_{1}q_{3} + q_{0}q_{2}) & 2(q_{2}q_{3} - q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{1}^{2} + q_{3}^{2} \end{pmatrix}$$

$$q_{3} = \cos \frac{\theta}{2} \sin \frac{\phi + \psi}{2}$$

For each rigid molecule, the quaternions satisfy,

$$\begin{pmatrix} \dot{q_0} \\ \dot{q_1} \\ \dot{q_2} \\ \dot{q_3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_1 & q_0 & -q_3 & q_2 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{pmatrix} \begin{pmatrix} 0 \\ \omega_x^B \\ \omega_y^B \\ \omega_z^B \end{pmatrix}$$

Application: Robust computation of root mean-square deviations.

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Often utilized interchangeably — erroneously so, *restraints* and *constraints* are two different concepts.

Geometric restraints are introduced in a molecular dynamics simulation to restrict sampling to regions of interest of configurational space.

Holonomic constraints are introduced to remove degrees of freedom — to freeze them in the equations of motion. Constrained molecular dynamics implies integrating modified equations of motion featuring constraint forces.

Synopsis

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

Thermodynamic ensembles and conserved properties

Ensemble	Free energy	Conserved Hamiltonian, $\mathscr{H}(\mathbf{x},\mathbf{p}_x)$
(N,V,\mathscr{E})		U
(N, V, T)	A = U - TS	$\sum_{i} \frac{1}{2m_{i}} \ (p_{xi}^{2} + p_{yi}^{2} + p_{zi}^{2}) + \mathscr{V}(\mathbf{x})$
$(N, P_{\perp}, \mathscr{A}, T)$	$A = U - TS + P_{\perp}V$	$\sum_{i} \frac{1}{2m_{i}} (p_{xi}^{2} + p_{yi}^{2} + p_{zi}^{2}) + \mathscr{V}(\mathbf{x}) + P_{\perp}V$
$(N, P_{\parallel}, \mathscr{A}, T)$	$A = U - TS + P_{\parallel}V$	$\sum_{i} \frac{1}{2m_{i}} (p_{xi}^{2} + p_{yi}^{2} + p_{zi}^{2}) + \mathscr{V}(\mathbf{x}) + P_{\parallel}V$
(N, V, γ, T)	$A = U - TS - \gamma \mathscr{A}$	$\sum_{i} \frac{1}{2m_i} \left(p_{xi}^2 + p_{yi}^2 + p_{zi}^2 \right) + \mathscr{V}(\mathbf{x}) - \gamma \mathscr{A}$
$(N, P_{\perp}, \gamma, T)$	$\begin{array}{rcl} A &=& U - TS \\ &+& P_{\perp}V - \gamma \mathscr{A} \end{array}$	$\sum_{i} \frac{1}{2m_i} \left(p_{xi}^2 + p_{yi}^2 + p_{zi}^2 \right) + \mathscr{V}(\mathbf{x}) + P_{\perp}V - \gamma \mathscr{A}$

Velocity rescaling

Central idea: The velocities are rescaled periodically by a factor of $\sqrt{T/T_{\mathscr{T}}}$.

Strictly speaking, this algorithm yields non-Newtonian dynamics.

Constrained equations of motion

$$\begin{cases} \dot{\mathbf{x}}_i = \frac{\mathbf{p}_i}{m_i} \\ \dot{\mathbf{p}}_i = \mathbf{f}_i - \xi(\mathbf{x}; \mathbf{p}_x) \mathbf{p}_x \end{cases}$$

The friction coefficient guarantees that $\dot{T}_{\mathscr{T}} = 0$, and is chosen so that the perturbation of the chemical system is minimal,

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Extended system

Central idea: Introduce an additional degree of freedom, s, thermostat of the system.

$$\begin{cases} \mathscr{V}_s = \frac{f+1}{\beta} \ln s \\ \mathscr{T}_s = \frac{1}{2} \mathscr{Q} \dot{s}^2 \end{cases}$$

Velocity of particle *i*: $\mathbf{v}_i = s \ \dot{\mathbf{r}}_i = \mathbf{p}_i / m_i s$

Extended Lagrangian: $\mathscr{L}_s(\mathbf{x};\mathbf{p}_x) = \mathscr{T}(\mathbf{p}_x) + \mathscr{T}_s(\mathbf{p}_x) - \mathscr{V}(\mathbf{x}) - \mathscr{V}_s(\mathbf{x})$

Poorly chaotic for a limited number of degrees of freedom

$$\begin{cases} \ddot{\mathbf{x}}_{i} = \frac{\mathbf{f}_{i}}{m_{i}s^{2}} - 2 \frac{\dot{s}\dot{\mathbf{x}}}{s} & \begin{array}{c} 1.5\\ 1.0\\ 0.5\\ 0.5\\ \vdots\\ \mathbf{x} = \sum_{i} m_{i}\dot{x}_{i}^{2}s - \frac{f+1}{\beta s} & \begin{array}{c} 0.5\\ \mathbf{x} = 0.5\\ -0.5\\ -1.0\\ -1.5\\ \mathbf{x} = -1 & 0 & 1 & 2 \end{cases}$$

Hoover, W. G. Phys. Rev. 1985, A31, 1695-1697

Martyna, G. J.; Klein, M. L.; Tuckerman, M. E. J. Chem. Phys. 1992, 97, 2635-2645

Extended system

Practical implementation:

$$\begin{cases} p' = \frac{p}{s} \\ s' = s \end{cases}$$

$$\xi = \frac{s' p'_s}{\mathcal{Q}}$$

$$\dot{\mathbf{x}}_{i} = \frac{\mathbf{p}_{x,i}}{m_{i}}$$
$$\dot{\mathbf{p}}_{x,i} = -\frac{\partial \mathscr{V}(\mathbf{x})}{\partial \mathbf{x}_{i}} - \xi \mathbf{p}_{x,i}$$
$$\frac{\sum_{i} \frac{p_{i}^{2}}{m_{i}} - \frac{f+1}{\beta}}{\mathscr{Q}}$$
$$\dot{\xi} = \frac{d \ln s}{dt} = \xi$$

Hoover, W. G. Phys. Rev. 1985, A31, 1695-1697

Frenkel, D.; Smit, B. Understanding molecular simulations: From algorithms to applications, Academic Press, 2002

Weak-coupling algorithm

Central idea: Let the instantaneous kinetic temperature, $T_{\mathscr{T}}(t)$, "relax" towards the desired, reference temperature, T.

$$\frac{\mathrm{d}T_{\mathscr{T}}(t)}{\mathrm{d}t} = \frac{T - T_{\mathscr{T}}(t)}{\tau_T}$$
$$\Delta \mathscr{T} = \frac{1}{2} (\chi^2 - 1) N k_B T_{\mathscr{T}}(t)$$
$$\chi = \left[1 + \frac{\delta t}{\tau_T} \left(\frac{T}{T_{\mathscr{T}}(t)} - 1\right)\right]^{1/2}$$

Strictly speaking, this algorithm does not yield a canonical distribution.

Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684-3690

Morishita, T. J. Chem. Phys. 2000, 113, 2976-2982

Langevin dynamics

Central idea: Add to the conservative forces a frictional force proportional to the velocity. The friction removes the kinetic energy from the system. A random force adds kinetic energy to the system.

$$m_i \ \frac{\mathrm{d}^2 \mathbf{x}_i}{\mathrm{d}t^2} = -\frac{\mathrm{d}\mathscr{V}(\mathbf{x})}{\mathrm{d}x} - \gamma \ m_i \ \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} + f(t)$$

Gaussian white noise of zero mean, $\langle f(t) \rangle = 0$, obeying the fluctuation-dissipation theorem

$$\langle f(t) \ f(t') \rangle = \frac{2 \ m_i \ \gamma}{\beta} \ \delta(t - t')$$

which is precisely the condition to generate a canonical distribution.

Schlick, T. Molecular modeling and simulation Springer, 2002

Langevin dynamics

Central idea: Add to the conservative forces a frictional force proportional to the velocity. The friction removes the kinetic energy from the system. A random force adds kinetic energy to the system.

$$m_i \ \frac{\mathrm{d}^2 \mathbf{x}_i}{\mathrm{d}t^2} = -\frac{\mathrm{d}\mathscr{V}(\mathbf{x})}{\mathrm{d}x} - \gamma \ m_i \ \frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}t} + f(t)$$

Gaussian white noise of zero mean, $\langle f(t) \rangle = 0$, obeying the fluctuation-dissipation theorem

$$\langle f(t) \ f(t') \rangle = \frac{2 \ m_i \ \gamma}{\beta} \ \delta(t - t')$$

which is precisely the condition to generate a canonical distribution.

What should I use for the friction?

Schlick, T. Molecular modeling and simulation Springer, 2002

NAME
langevinon
298.0
1.0

The Lowe-Andersen algorithm

Central idea: Couple the chemical system to a heat bath via stochastic forces that modify the kinetic energy of the atoms or molecules.

The time between collisions — or the number of collisions over a short-time interval, is decided randomly, based on the Poisson distribution, $P(t) = \nu \exp(-\nu t)$.

Between collisions the system evolves at constant energy. During a collision event, the new momentum of the particles is chosen randomly from a Boltzmann distribution at a given temperature. The stochastic collision frequency can adopt any value, albeit there is an optimum choice,

$$\nu = \frac{2a\kappa V^{1/3}}{3k_{\rm B}N}$$

Andersen, H. C. J. Chem. Phys. 1980, 72, 2384-2393

CLASSICAL MOLECULAR DYNAMICS

Instantaneous pressure and the virial theorem

Pair interactions:

a=2

a=1

$$\sum_{i} \mathbf{x}_{i} \cdot \mathbf{f}_{i} = \sum_{i < j} \mathbf{x}_{i} \cdot \mathbf{f}_{ij} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \mathbf{r}_{i} \cdot \mathbf{f}_{ij} + \mathbf{x}_{j} \cdot \mathbf{f}_{ji}$$

$$\xrightarrow{b=2} \quad \text{Third law of Newton, } \mathbf{f}_{ij} = -\mathbf{f}_{ji}$$

$$\sum_{i} \mathbf{x}_{i} \cdot \mathbf{f}_{i} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \mathbf{f}_{ij} \cdot (\mathbf{x}_{i} - \mathbf{x}_{j}) = \sum_{i < j} \mathbf{f}_{ij} \cdot \mathbf{x}_{ij}$$

1

Internal virial:
$$\mathscr{W} = \frac{1}{3} \sum_{i} \mathbf{x}_{i} \cdot \mathbf{f}_{i}^{\text{intermolecular}} = -\frac{1}{3} \sum_{i} \mathbf{x}_{i} \cdot \nabla_{(\mathbf{r}_{i})} \mathscr{V}(\mathbf{x})$$

The external pressure arises from external forces,

$$\frac{1}{3} \left\langle \sum_{i} \mathbf{x}_{i} \cdot \mathbf{f}_{i}^{\text{external}} \right\rangle = -PV = -\left(\frac{N}{\beta} + \left\langle \mathscr{W} \right\rangle\right)$$

Instantaneous pressure,

r_{ij}

$$P_{\mathscr{P}} = \frac{\rho}{\beta} + \frac{\mathscr{W}}{V} = \frac{1}{V} \left(\frac{N}{\beta} - \frac{1}{3} \sum_{i} \mathbf{x}_{i} \cdot \mathbf{f}_{i} \right)$$

Extended system

Central idea: Couple the system to an external, additional variable, V, that could be related to the motion of a piston.

$$\begin{aligned}
 & \mathscr{V}_V = \frac{1}{2} m_P \dot{V}^2 \\
 & \widetilde{\mathscr{T}_V} = P V
 \end{aligned}$$

Rescale: $\mathbf{s} = \mathbf{x}/V^{1/3}$ and $\dot{\mathbf{s}} = \mathbf{v}/V^{1/3}$

Extended Lagrangian, $\mathscr{L}_V(\mathbf{x};\mathbf{p}_x) = \mathscr{T}(\mathbf{p}_x) + \mathscr{T}_V(\mathbf{p}_x) - \mathscr{V}(\mathbf{x}) - \mathscr{V}_V(\mathbf{x})$

Add a frictional term and a stochastic force to eliminate possible resonances between the piston and the chemical system.

$$\ddot{\mathbf{s}}_{i} = \frac{\mathbf{f}_{i}}{m_{i}V^{1/3}} - \frac{2}{3} \frac{\dot{\mathbf{s}}_{i}\dot{V}}{V}$$
$$\ddot{V} = \frac{P\mathscr{P} - P}{m_{P}} - \gamma\dot{V} + R(t)$$

UNIVERSITÉ DE LORRAINE

Andersen, H. C. J. Chem. Phys. 1980, 72, 2384-2393

Feller, S. E.; Zhang, Y. H.; Pastor, R. W.; Brooks, B. R. J. Chem. Phys. 1995, 103, 4613-4621

Extended system

Central idea: Couple the system to an external, additional variable, V, that could be related to the motion of a piston.

 $\cdot 2$

NAME Molecular Dynamics	
langevinpiston	on
langevinpistontarget	1
langevinpistonperiod	100
langevinpistondecay	100
langevinpistontemp	298

Rescale: $\mathbf{s} = \mathbf{x}/V^{1/3}$ and $\dot{\mathbf{s}} = \mathbf{v}/V^{1/3}$

Extended Lagrangian, $\mathscr{L}_V(\mathbf{x};\mathbf{p}_x) = \mathscr{T}(\mathbf{p}_x) + \mathscr{T}_V(\mathbf{p}_x) - \mathscr{V}(\mathbf{x}) - \mathscr{V}_V(\mathbf{x})$

Add a frictional term and a stochastic force to eliminate possible resonances between the piston and the chemical system.

$$\begin{aligned} \ddot{\mathbf{s}}_i &= \frac{\mathbf{f}_i}{m_i V^{1/3}} - \frac{2}{3} \frac{\dot{\mathbf{s}}_i \dot{V}}{V} \\ \ddot{V} &= \frac{P \mathscr{P} - P}{m_P} - \gamma \dot{V} + R(t) \end{aligned}$$

🕕 UNIVERSITÉ De LORRAINE 👖

Andersen, H. C. J. Chem. Phys. 1980, 72, 2384-2393

Feller, S. E.; Zhang, Y. H.; Pastor, R. W.; Brooks, B. R. J. Chem. Phys. 1995, 103, 4613-4621

The weak -coupling algorithm

Central idea: The instantaneous pressure, $P_{\mathscr{P}}(t)$, relaxes towards the reference value, P.

$$\frac{\mathrm{d}P_{\mathscr{P}}(t)}{\mathrm{d}t} = \frac{P - P_{\mathscr{P}}(t)}{\tau_P}$$

The atomic coordinates and the dimensions of the simulation cell are rescaled by a factor ς .

Change in the volume, $\Delta V = (\varsigma^3 - 1) V$, and variation of the pressure:

$$\Delta P = \frac{\Delta V}{\beta_{\mathscr{T}} V}$$

$$\varsigma = \left[1 - \beta_{\mathscr{T}} \,\delta t \,\,\frac{P - P_{\mathscr{P}}(t)}{\tau_P}\right]^{1/3}$$

Strictly speaking, this algorithm does not yield an isobaric distribution.

Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684-3690

 $\mathbf{2}$

Constant-pressure molecular dynamics

Modifying the shape of the cell

Metric transform: $\mathbf{r} = \mathbf{H} \mathbf{s}$, where $\mathbf{H} \equiv (\mathbf{h}_1; \mathbf{h}_2; \mathbf{h}_3)$

Volume of the cell: $V = \|\mathbf{H}\| = \mathbf{h}_1 \cdot \mathbf{h}_2 \times \mathbf{h}_3$

Extended Lagrangian:
$$\begin{cases} \mathscr{V}_V = P \ V \\ \mathscr{T}_V = \frac{1}{2} \ Q \ \sum_{\alpha} \sum_{\beta} \|\dot{\mathbf{H}}_{\alpha\beta}\| \end{cases}$$

$$m\frac{\mathrm{d}^{2}\mathbf{s}}{\mathrm{d}t^{2}} = \frac{1}{\mathbf{H}}\mathbf{f} - \frac{m}{\mathbf{G}}\dot{\mathbf{G}}\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} \quad \text{where} \quad \mathbf{G} = \mathbf{H}^{\mathrm{T}}\mathbf{H}$$
$$Q \ddot{\mathbf{G}} = (\mathbf{P}_{\mathscr{P}} - \mathbf{1}P) V \left(\frac{1}{\mathbf{H}}\right)^{\mathrm{T}}$$
$$P_{\mathscr{P}}^{\alpha\beta} = \frac{1}{V}\left[\sum_{i} m_{i}\left(\mathbf{H}\frac{\mathrm{d}\mathbf{s}_{i}}{\mathrm{d}t}\right)_{\alpha}^{\mathrm{T}} \left(\mathbf{H}\frac{\mathrm{d}\mathbf{s}_{i}}{\mathrm{d}t}\right)_{\beta}^{\mathrm{T}} + \sum_{i}\sum_{j>i} (\mathbf{H}\mathbf{s}_{ij})_{\alpha} (\mathbf{f}_{ij})_{\beta}\right]$$

Parrinello, M.; Rahman, A. J. Chem. Phys. 1982, 76, 2662-2666

How to handle anisotropic chemical systems?

Historically, two conflicting approaches for handling the pressure:

A membrane is a self-assembled system. Consequently, $\gamma = 0$, because:

$$\gamma = \int_{z_1}^{z_2} \mathrm{d}z \ \left[P_{\perp}(z) - P_{\parallel}(z) \right]$$

Since only a small patch of the "real" membrane is simulated, a component of the capillary wave and bending motion spectra is missing. γ is, therefore, finite.

More accurate force fields reconcile the two views.

Feller, S. E.; Pastor, R. W. Biophys. J. 1996, 71, 1350-1355
Feller, S. E.; Pastor, R. W. Biophys. J. 1999, 111, 1281-1287
Klauda, J. B.et al. J. Phys. Chem. B 2010, 114, 7830-7843

Berger, O.; Edholm, O.; Jähnig, F. Biophys. J. 1997, 72, 2002-2013

Molecular dynamics simulations can be carried out in a variety of ensembles.

- The choice of the thermodynamic ensemble is dictated by the conditions in which the experiment was performed and the nature of the molecular assembly.
- Several algorithms are available to maintain the temperature and the pressure constant. Only a few of them supply the correct distribution.
- The parameters of the thermostat and of the barostat have a direct impact on the behavior of the simulation and the convergence properties thereof.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

CLASSICAL MOLECULAR DYNAMICS

Why should we turn to lattice sums?

Central idea: For an electrically neutral system, replace the conditionally convergent,

Ewald, P. Ann. Phys. 1921, 64, 253-287

Why should we turn to lattice sums?

$$\sum_{\mathbf{n}} \frac{1}{|\mathbf{n}|} \mathscr{F}(\mathbf{n}) + \sum_{\mathbf{m}} \frac{1}{|\mathbf{m}|} [1 - \mathscr{F}(\mathbf{m})]$$

The interactions of charges are screened by the charge distribution, limiting their contribution to a short-range term. Convergence of the sum of charges and their images in the direct space is fast.

In the reciprocal space, a Fourier transform is used for solving $\nabla^2 \mathscr{V}_i(\mathbf{r}) = -4\pi \varrho_i(\mathbf{r})$. The transform decreases rapidly and the sum converges equally so.

$$\begin{aligned} \mathscr{Y}_{\text{Ewald}}(\mathbf{r}) &= \left[\frac{1}{2V\epsilon_0} \sum_{\mathbf{k}\neq \mathbf{0}} \frac{\exp(-k^2/4\alpha^2)}{k^2} \left[\sum_j q_j \exp(-i\mathbf{k} \cdot \mathbf{r}_j) \right] \left[\sum_j q_j \exp(i\mathbf{k} \cdot \mathbf{r}_j) \right] \right] \\ &+ \left[\frac{1}{4\pi\epsilon_0} \sum_i \sum_{j>i} \frac{q_i q_j}{r_{ij} \operatorname{erfc}(\alpha r_{ij})} - \frac{\alpha}{4\pi^{3/2}\epsilon_0} \sum_i q_i^2 \right] \\ &+ \left[\frac{1}{4\pi\epsilon_0} \sum_i \sum_{j>i} \sum_{j>i} \frac{q_i q_j}{r_{ij}} \right] \end{aligned}$$

Ewald, P. Ann. Phys. 1921, 64, 253-287

Why should we turn to lattice sums?

Define a grid filling the simulation Cartesian space. Interpolate the charges on the grid and evaluate the charge distribution, $\rho(\mathbf{r})$;

Fourier transform to obtain $\hat{\varrho}(\mathbf{k})$ and estimate of $\hat{\mathscr{V}}_{long}(\mathbf{k})$; Inverse transform to get $\mathscr{V}_{long}(\mathbf{r})$;

Numerical evaluation of the forces from the potential;

Interpolation of the electric field towards the position of the particles.

Toukmaji, A. Y. & Board Jr., J. A. Comput. Phys. Comm. 1996, 95, 73-92

Analytical: O(N^{3/2}) at best Discretized: O(N In N)

PME	yes
PMETolerance	10e-6
PMEInterpOrder	4
PMEGridSpacing	1

Why should we turn to lattice sums?

Access to dielectric permittivity.

Barker, J. A.; Watts, R. O. Mol. Phys. 1973, 26, 789-792

Rozanska, X.; Chipot, C. J. Chem. Phys. 2000, 112, 9691-9694

Long-range electrostatics cannot be properly handled by a mere spherical truncation.

Lattice-sum algorithms address the long-range nature of electrostatic interactions and the conditional convergence of the Coulomb sum by splitting the latter into a real-space and a Fourier-space contribution.

Contrary to traditional Ewald sum, particle-mesh approaches handle the Fourier-space part of the Coulomb sum on grids over which the position of the atoms is interpolated.

The usual $N \ln N \operatorname{cost}$ of particle-mesh algorithms can be modulated by using a coarser discretization of space at the expense of accuracy.

Alternate schemes, e.g., the fast multipole method, are available, but have proven effective so far only for large arrays of particles.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

Data replication

The particles are scattered onto the different processors.

Mertz, J. E.; Tobias, D. J.; Brooks III, C. L.; Singh, U. C. J. Comput. Chem. 1991, 12, 1270-1277

Force-loop splitting

The intermolecular forces are scattered onto the different processors

Super linear behavior for a small number of cores, but rapid collapse of performance.

Couturier, R.; Chipot, C. Comp. Phys. Comm. 2000, 124, 49-59

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS 🐪 🐼 Dalian Institute of Chemical Physics, Dalian, China, July 2018

PARALLEL DO PRIVATE(i,k,j) I\$OMP !\$OMP+ SHARED(A, B, C) DO i=1,n k=A(i)DO j=1,k B(i)=k*B(i)+C(i)ENDDO ENDDO **!**SOMP END PARALLEL DO

Spatial decomposition

The simulation cell is broken into subcells, scattered onto the different processors, optimizing communication

Crucial role of load balancing for optimal performance.

Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. Comput. Phys. Comm. 1993, 74, 67-80

Kalé, L. et al. J. Comput. Phys. 1999, 151, 283-312

UNIVERSITÉ De lorraine

CLASSICAL MOLECULAR DYNAMICS

Towards ergodic sampling — parallel tempering

Swendsen, R. H.; Wang, J. S. Phys. Rev. Lett. 1986, 57, 2607-2609

Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314, 141-151

Molecular dynamics is parallelizable in nature. Domain-decomposition strategies currently offer the best performance on multipurpose parallel computer architectures.

GPU acceleration offers a cost-effective alternative to conventional CPU-based machines. Further increase of the performance implies design of specific, dedicated processors.

Efficient parallelization on massively parallel architectures dilates the size scale more than it dilates the time scale.

Replica-exchange based algorithms enhance ergodic sampling by making high-temperature configurations available to low-temperature simulations.

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

Appropriate questions that ought to be asked —

- The model used for this application is unadapted
- The force field is inadequate
- The simulation has not converged
- The program contains undocumented bugs
- The program has been misused

- Detailed description of the models?
- Detailed description of the force field?
- Time series?
- Checkup of the code?
- Detailed description of simulation setup?

van Gunsteren, W. F.; Mark, A. E. J. Chem. Phys. 1998, 108, 6109-6116

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS DALIAN INSTITUTE OF CHEMICAL PHYSICS, DALIAN, CHINA, JULY 2018

Appropriate questions that ought to be asked —

Why is it of paramount importance to thermalize the molecular assembly prior to accrue data for analysis?

First, because evolution of the temperature and the pressure ought to reflect the proper thermodynamic ensemble.

Second, because large fluctuations in the volume of the simulation cell may reflect suboptimal packing.

van Gunsteren, W. F.; Mark, A. E. J. Chem. Phys. 1998, 108, 6109-6116

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018

Poorly thermalized assays may result in artifactual observations due, for instance, to spurious conformational changes.

Molecular dynamics simulations are a source of numerous errors of different nature.

Insufficient thermalization is at the origin of spurious behaviors, often difficult to discern.

Thermalization ought to be performed in a stepwise fashion, confining the position of the different components of the molecular assay prior to unrestrained sampling.

Other factors can impact the outcome of the simulation. A clear understanding of the different parameters at play and their respective effects is highly desirable.

Guidelines

- 1. Introduction
- 2. Periodic boundary conditions
- 3. Synopsis of a molecular dynamics simulation
- 4. The potential energy function
- 5. The propagators of molecular dynamics
- 6. Restraints versus constraints
- 7. In which ensemble should the simulation be performed?
- 8. Lattice sums: The Ewald–Kornfeld approach
- 9. Molecular dynamics on parallel architectures
- 10. Guidelines
- 11. Properties accessible from the trajectories

CLASSICAL MOLECULAR DYNAMICS

Radial distribution functions

The pair correlation function,

$$g(\mathbf{x}_1; \mathbf{x}_2) = \frac{N(N-1)}{\rho^2 \int e^{-\beta \mathscr{V}(\mathbf{x}_1, \dots, \mathbf{x}_N)} d\mathbf{x}_1 \dots d\mathbf{x}_N} \int e^{-\beta \mathscr{V}(\mathbf{x}_1, \dots, \mathbf{x}_N)} d\mathbf{x}_3 \dots d\mathbf{x}_N$$

can be restated as an ensemble average,

$$g(r) = \frac{V}{N^2} \left\langle \sum_{i} \sum_{j \neq i} \delta(\mathbf{x} - \mathbf{x}_{ij}) \right\rangle$$

which after normalization reads,

$$g_{ij}(r) = \frac{\langle n_j(r; r + \delta r) \rangle}{4\pi \rho_j r^2 \mathrm{d}r}$$

Chandler, D. Introduction to modern statistical mechanics, Oxford University Press, 1987

Autocorrelation functions

Correlation coefficient of observable \mathcal{B} ,

$$c_{\mathscr{B}\mathscr{B}'} = \frac{\langle \delta\mathscr{B} \ \delta\mathscr{B}' \rangle}{\sigma(\mathscr{B}) \ \sigma(\mathscr{B}')}$$

with $\delta \mathscr{B} = \mathscr{B} - \langle \mathscr{B} \rangle$

$$c_{\mathscr{BB'}}(t) = \frac{\langle \delta \mathscr{B}(t) \ \delta \mathscr{B'}(0) \rangle}{\sigma(\mathscr{B}) \ \sigma(\mathscr{B'})}$$

$$c_{\mathscr{BB}}(t) = \frac{\langle \delta \mathscr{B}(t) \ \delta \mathscr{B}(0) \rangle}{\langle \delta \mathscr{B}(0) \ \delta \mathscr{B}(0) \rangle}$$

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Diffusion coefficients

From autocorrelation functions,

$$\gamma = \int_0^\infty \left\langle \dot{\mathscr{B}}(t) \dot{\mathscr{B}}(0) \right\rangle \mathrm{d}t$$

$$2t\gamma = \left\langle \left(\dot{\mathscr{B}}(t) - \dot{\mathscr{B}}(0) \right)^2 \right\rangle$$

$$D = \frac{1}{3} \int_0^\infty \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle$$

which, over long times, coincides with,

$$2tD = \frac{1}{3} \left\langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \right\rangle$$

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press, 1987

Douliez, J. P.; Léonard, A.; Dufourc, E. J. Biophys. J. 1995, 68, 1727-1739

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS DALIAN INSTITUTE OF CHEMICAL PHYSICS, DALIAN, CHINA, JULY 2018

Chandler, D. Introduction to modern statistical mechanics, Oxford University Press, 1987

Chandler, D. Introduction to modern statistical mechanics, Oxford University Press, 1987

Time series of the distance root mean-square deviation with some reference structure,

Find the optimal rotation, S, which minimizes,

$$\operatorname{RMSD}(\{\mathbf{x}_{i}(t)\}, \{\mathbf{x}_{i}^{\operatorname{ref}}\}) = \left(\frac{1}{N}\sum_{i}\left|S[\mathbf{x}_{i}(t) - \mathbf{x}_{\operatorname{COM}}(t)] - (\mathbf{x}_{i}^{\operatorname{ref}} - \mathbf{x}_{\operatorname{COM}}^{\operatorname{ref}})\right|^{2}\right)^{1/2}$$

Leach, A. R. Molecular modeling. Longman, 1996

Time series of the radius of gyration,
$$R_0^k = \sqrt{\frac{I^k}{M}}$$

$$\mathbf{I} = \sum_{i} m_{i} \left[(\mathbf{r}_{i} \cdot \mathbf{r}_{i}) \mathbf{e} - \mathbf{r}_{i} \times \mathbf{r}_{i} \right]$$

Asymmetry, $A_{3} = \frac{\sum_{i>j} \left\langle \left(R_{0}^{i2} - R_{0}^{j2} \right)^{2} \right\rangle}{2 \left\langle \left(\sum_{i} R_{0}^{i2} \right)^{2} \right\rangle}$

Simplified expressions -

$$R_{\rm g}^2 := \frac{1}{N} \sum_i (\mathbf{r}_i - \overline{\mathbf{r}})^2$$

Goldstein, H. Classical mechanics. Addison-Wesley, 1980

Rudnick, J.; Gaspari, G. Science 1987, 237, 384-389

Folding dynamics of villin headpiece unveiled in molecular dynamics simulations exploring key folding transitions never seen hitherto.

Freddolino, P. L.; L., F.; Gruebele, M.; Schulten, K. Biophys. J. 2008, 94, L75-L77

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS 🐨 Dalian Institute of Chemical Physics, Dalian, China, July 2018

Freddolino, P. L.; Schulten, K. Biophys. J. 2009, 97, 2338-2347

Structure refinements

The shape of the chromatophore is determined by LH1-RC The curvature of LH1-RC was inferred by MDFF

The radius of curvature consistent with experiment; The membrane curvature exhibits both anisotropy and twist.

Sener, M. et al. Chem. Phys., 2009, 357, 188-197

Structure refinements

Structure determined from experimental data through modeling and simulation.

Sener, M. K.; Olsen, J. D.; Hunter, C. N.; Schulten, K. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15723-15728 Cartron, M. L. et al. Biochim. Biophys. Acta 2014, 1837, 1769-1780

Free energies and other thermodynamic properties

(1) Methods based on histograms

(2) Non-equilibrium work simulations

$$\Delta A(\xi) = -\frac{1}{\beta} \ln P(\xi) + \Delta A_0$$

$$\exp(-\beta\Delta A) = \langle \exp(-\beta w) \rangle$$

$$\exp(-\beta\Delta A) = \langle \exp(-\beta\Delta U) \rangle_0$$

(3) Perturbation theory

(4) Integration of the gradient

Torrie, G. M.; Valleau, J. P. Chem. Phys. Lett. 1974, 28, 578-581
Widom, B. J. Chem. Phys. 1963, 39, 2808-2812
Isralewitz, B.; Gao, M.; Schulten, K. Curr. Opin. Struct. Biol. 2001, 11, 224-230
Jarzynski, C. Phys. Rev. Lett. 1997, 78, 2690-2693

HANDS-ON WORKSHOP ON COMPUTATIONAL BIOPHYSICS Dalian Institute of Chemical Physics, Dalian, China, July 2018 Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426 Pohorille, A.; Jarzynski, C.; Chipot, C. J. Phys. Chem. B 2010, 114, 10235-10253 Kirkwood, J. G. J. Chem. Phys. 1935, 3, 300-313 Carter, E. et al. Chem. Phys. Lett. 1989, 156, 472-477

A variety of properties, structural, thermodynamic or dynamic, can be inferred from molecular dynamics simulations.

Because analysis of these properties is ordinarily performed post facto, it is recommended to store configurations as frequently as possible.

Convergence of the calculation of these properties may vary appreciably — a free energy versus a diffusivity.

Many properties can be readily compared to experiment. Accurate reproduction of the latter is subservient to the reliability of the force field and finite-length effects. Estimation of the associated error is strongly recommended.

CONCLUDING REMARKS

The computational microscope — In recent years, molecular dynamics simulations have become an important tool to complement experiment, offering unprecedented resolution and access to valuable dynamic information.

The inherent parallelizable nature of molecular dynamics makes it an ideal candidate for harnessing the constantly growing capacity of novel computer architectures, dilating both the size- and timescale tackled by simulations.

Molecular dynamics rests on the equations of classical mechanics and the use of empirical potential energy functions, the construction of which relies on stringent assumptions and approximations.

As macromolecular force fields become more sophisticated — and, thus, less tractable, accounting for induction and charge-transfer phenomena, one must choose between longer simulations with a more approximate description and shorter, more accurate simulations.

