Molecular Dynamics of Proteins
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Myoglobin



Equilibrium Properties of Proteins
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Thermal Motion of Ubiquitin from MD
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Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

Bragg’s law \4- i
2d sinf = A \%\/ﬁ,—.

structure factor »

fj eXp [_ 18 - rro]] The diffraction signal is the sum of the

structure factors of all atoms in the crystal.

But the atom carries out thermal vibrations around equilibrium
position &

rj(t) = T + ()
Accordingly:

(fjexp|—is-Tj]) = fjexp[—is - &}] (exp|—i5- U;])



Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:

(exp|—is-u;]) = 1 — 1 (5 ;) —% (5-u5)°) +
=0
Spatial average:  ((§"- ﬂ’j)2> — %32@?)

One can carry out the expansion further and show

(exp|—15 - U,]) = exp [—182«113)]

Using for the thermal amplitude of the harmonic oscillator

1 2,2 —_ 9
SIW™ U, = kT’

one obtains Debye-Waller factor

(fiexp|—is- 1) = f; exp|—s°kpT/2mw-] exp[—i5 - T



Equilibrium Properties of Proteins

Energies: kinetic and potential

‘)

3

— (S ) = §Vhat
\ Kinetic energy (quadratic)
f'i” = Zﬁ.‘l 'rI — 1 { Z#’ l"r}—l':'lll]gf
i, ’
Z k(1 + cos ( d;)]
lilvedral s

Potentialc energy (not all quadratic)



Energy [kcal/mol]

1x10°

Equilibrium Properties of Proteins

Energies: kinetic and potential
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Maxwell Distribution of Atomic Velocities
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Mean Kinetic Energy

Exercise in Statistics
(gm?) = [ dv (%va) p(v)

m 1 2 | mu?
kil e dv (3mu?) exp { QkBT}

= kpT \/7 / T dv I 'T) exp {—;f;T}
kT \/; [ dyy*exp —y°]

Use formula below: (%mv2) — %kBT
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Maxwell Kinetic EnergyDistribution

Second Exercise in Statistics

One-dimensional kinetic energy: €. = %m’U(Zj

pler) = p(vg)‘;zz —  pler) = /1/7kpT\/1/e; exp|—er/kpT]

(factor 2 from restriction of integration to positive values)

Digtribution of velosities ot T=X78 K

For the total kinetic energy + D Simubation
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(in three dimensions)
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AnalySIS Of Ekin? 1 (free dynamics)
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The atomic
velocity
thermometer
is inaccurate
due to the

finite size of a

protein!
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Temperatur Fluctuations
Maxwell distnbution
dP(v,) ¢ expl-m :, [2kuT) du,, (7)

Individual kinetic energy ¢, = mu /2

dPle,) (7Toen) " oxpl =, [kpTy) de., (%)
One can denve
\n) To/2 ()
() = 3T5/4 (10)
(3) = () = T3/2 (1)
The distnbution of the total Kinetic energy £, r _i,m J:';'. according to the

central limit theorem, is approximately Gaussin

~(Evin — (Euin))?
P Ein) C exp | . \ L (12)
2( INE; T ]
" The distribution function for the temperature (1 25500 /38 4) fuctuations
AT = T - T, isthen
PIAT) « coexp|l=(AT) /207, o w 2T%3N (13)

ForT, = 100K and N = 557, this gives o0 = 3.6.
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Normal Distribution of Temperatures

e NVE Simulation (N=11000)
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Show BPTI trajectory
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Specific Heat of a Protein

Total energy of ubiquitin (NVE ensemble)
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Myoglobin

Myoglobin is a small, bright red protein. It is very common in muscle cells, and gives
meat much of its red color. lts job is to store oxygen, for use when muscles are hard at
work. If you look at John Kendrew's PDB file, you will notice that the myoglobin that he
used was taken from sperm whale muscles. As you can imagine, marine whales and
dolphins have a great need for myoglobin, so that they can store extra oxygen for use
in their deep dives undersea.

PDB Molecule of the Month: Myoglobin




Oxygen Bound to Myoglobin

This structure of myoglobin, with the accession code 1mbo,
shows the location of oxygen. The iron atom at the center of
the heme group holds the oxygen molecule tightly. Compare
the two pictures. The first shows only a set of thin tubes to
represent the protein chain, and the oxygen is easily seen.
But when all of the atoms in the protein are shown in the
second picture, the oxygen disappears, buried inside the
protein.So how does the oxygen get in and out, if it is totally
surrounded by protein? In reality, myoglobin (and all other
proteins) are constantly in motion, performing small flexing
and breathing motions. Temporary openings constantly
appear and disappear, allowing oxygen in and out. The
structure in the PDB is merely one snapshot of the protein,
caught when it is in a tightly-closed form. Looking at the
static structure held in the PDB, we must imagine the
dynamic structure that actually exists in nature.The two
pictures above were created with RASMOL. You can create
similar pictures by accessing the PDB file 1mbo, and then
clicking on "View Structure." Try switching between the two
types of pictures shown above, to prove to yourself that the
oxygen is buried in this structure!

PDB Molecule of the Month: Myoglobin




Myogobin, the first protein with known structure

John Cowdery Kendrew
Nobel Prize in Chemistry

Jointly with Max Perutz Struture model at 6 A resolution

Higher resolution
Model:

1) Construct
electron density
map

2)  Build model




Myoglobin with heme group

 Myoglobin from PDB
structure 1A6M

e X-ray crystal structure
at 1.00 A resolution.

e Steps seen in RMSD
are due primarily to
tilting of the helix to
the upper right of the
heme 1in the picture...




Myoglobin Dynamics to Probe Motion of F'e




Setup and
Equilibration

Remove oxygen liganded to Fe
Minimize 1000 steps, fixing the
C, atoms.

Heat for 5 ps with Langevin
dynamics at 300 K, fixed C
atoms.

Simulate in NVT ensemble for
19 ns, saving coordinates every

ps.

short




Obtain “f”” from position distribution

e Best fit “by eye” 1s ) _
o=0.528 A | Fit6=0.528 A

e However: standard
deviation gives
0=0.36 (f=kT/ c”2)
= 319 pN/A; this is
what we use below.

probability (a.u.)
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Obtain diffusion coefficient from
position autocorrelation function

Once we know the - |
restoring force, the | R e

diffusion coefficient ; ¢

can be obtained from = *'

the position % 005

autocorrelation B ” Wi i S

function: ., e
time/ 10 fs

(@(0)2(0) = FFexpl=Dft/keT] o o o

D =0.0042 A?%/10 fs
=0.42 A? /ps.

Compare: D =0.24 A? /ps

water



Position autocorrelation:
underdamped case

The Langevin equation governing underdampad
maotion is

3+ bk 4 wix = nlt)

The position Cormelation Tunction I5 given Dy

(x(t)x(0)) = (2(0)%)e " [cos Qt) + 25 sin Q(t)]
Using ) = \/w2 +b2/4

= [/ ._.,. [from F = ma)

~ = mh
o ﬂ.',-;T_"'
gTiy=
Job
we can solve far D,

Iy = k



Diffusion coefficient from underdamped oscillator
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Fitting parameters: Q = 0.0426; b =0.0811; w’=
Q2 +b? /4 = 34.59/ps%. D = 0.556 A? /ps.



Mossbauer line shape function

The lineshape f{w) we are trying to calculate
15 givien by

{w) = "”'_J" dte =g (1)
where Gk, f) is given by

Gik, 1) = J,Ir i J|" droe ® T =T nir tire, 0)polre)
(2]

Motice that Gk, f) s just the autocorrelation
function of expl—ik - r).



Moessbauer Line Shape Function - Sampled
and Matched to Analytical Formula

I(w) using D and t from position correlation

Positioss sampled overy 10 (s tor 100 ps
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