Sequence and Structure Alignment

- Illustrated for the Water Channel Aquaporin

Physical Bioinformatics - A Case Study

Sequence and structure information are the bedrock on which an understanding of cellular functions and the underlying physical mechanisms can be built. This lecture illustrates how the two sources of information are combined to investigate by means of the program VMD function and mechanism of the aquaporin family of membrane channels that transport water and certain small solutes across cell walls. Introducing first the key architectural features of a single aquaporin, structures and sequences of four aquaporins are aligned and common features recognized. The shared and distinct features are examined closely and used as guideposts leading quickly to key questions regarding the mechanism underlying aquaporin's efficient conduction and selection.

The Aquaporin Superfamily

Heymann and Engel News Physiol. Sci. 14, 187 (1999)

Aquaporin Function and Human Aquaporins


```
AQPO HUMAN ---LNTLHPAVSVGQATTVEIFLTLQFVLCIFATYDE-RRNGQLGSVALAVGFSLALGHLFGMYYTGAGM
                                                                                     183
AQP1 HUMAN ---RNDLADGVNSGQGLGIEIIGTLQLVLCVLATTDR-RRDLGGSAPLAIGLSVALGHLLAIDYTGCGI
                                                                                     191
AQP2 HUMAN ---VNALSNSTTAGOAVTVELFLTLOLVLCIFASTDE-RRGENPGTPALSIGFSVALGHLLGIHYTGCSM
                                                                                     183
                                                                                     214
AQP3 HUMAN GIFATYPSGHLDMINGFFDOFIGTASLIVCVLAIVDPYNNPVPRGLEAFTVGLVVLVIGTSMGFNSGYAV
AOP4 HUMAN ---VTMVHCNLTAGHCLLVELIITFOLVFTIFASCDS-KRTDVTCSIALAICFSVAICHLFAINYTCASM
                                                                                     212
           ---VNALNNNTTOGOAMVVELILTFOLALCIFASTDS-RRTSPVGSPALSIGLSVTLGHLVGIYFTGCSM
                                                                                     184
AOP6 HUMAN ---INVVRNSVSTGOAVAVELLLTLOLVLCVFASTDS-ROTS--GSPATMIGISWALGHLIGILFTGCSM
                                                                                     195
AQP7 HUMAN GIFATYLPDHMTLWRGFLNEAWLTGMLQLCLFAITDQENNPALPGTEALVIGILVVIIGVSLGMNTGYAI
                                                                                     225
AQP8 HUMAN -AAFVTVQEQGQVAGALVAEIILTTLLALAVCMGAIN--EKTKGPLAPFSIGFAVTVDILAGGPVSGGCM
                                                                                     209
AQP9 HUMAN HIFATYPAPYLSLANAFADQVVATMILLIIVFAIFDSRNLGAPRGLEPIAIGLLIIVIASSLGLNSGCAM
                                                                                     215
GLPF ECOLI GTFSTYPNPHINFVQAFAVEMVITAILMGLILALTDDGNGVPRGPLAPLLIGLLIAVIGASMGPLTGFAM
                                                                                     202
     ruler ...180......190......200......210......220.......230.......240....
```

Water and Glycerol Channels in the Human Body

Aquaporin-0	Eye: lens fiber cells	Fluid balance of the lens
Aquaporin-1	Red blood cells	Osmotic protection
	Kidney: proximal tubules	Concentration of urine
	Eye: ciliary epithelium	Aqueous humor
	Brain: choriod plexus	Production of CSF
	Lung: alveolar epithelial cells	Alveolar hydration
Aquaporin-2	Kidney: collecting ducts	ADH hormone activity
Aquaporin-3	Kidney: collecting ducts	Reabsorption of water
	Trachea: epithelial cells	Secretion of water
Aquaporin-4	Kidney: collecting ducts	Reabsorption of water
	Brain: ependymal cells	CSF fluid balance
	Brain: hypothalamus	Osmosensing function?
	Lung: bronchial epithelium	Bronchial fluid secretion
Aquaporin-5	Salivary glands	Production of saliva
	Lacrimal glands	Production of tears
Aquaporin-6	Kidney	Very low water permeability!
Aquaporin-7	Testis and sperm	
Aquaporin-8	Testis, pancreas, liver	
Aquaporin-9	Leukocytes	
Aquaporin-10	Intestines members are sust	rected to exist

Water and Glycerol Channels in the Human Body

Aquaporin-0	Eye: lens fiber cells	Fluid balance of the lens
Aquaporin-1	Red blood cells	Osmotic protection
	Kidney: proximal tubules	Concentration of urine
	Eye: ciliary epithelium	Aqueous humor
	Brain: choriod plexus	Production of CSF
	Lung: alveolar epithelial cells	Alveolar hydration
Aquaporin-2	Kidney: collecting ducts	ADH hormone activity
Aquaporin-3	Kidney: collecting ducts	Reabsorption of water
	Trachea: epithelial cells	Secretion of water
Aquaporin-4	Kidney: collecting ducts	Reabsorption of water
	Brain: ependymal cells	CSF fluid balance
	Brain: hypothalamus	Osmosensing function?
	Lung: bronchial epithelium	Bronchial fluid secretion
Aquaporin-5	Salivary glands	Production of saliva
	Lacrimal glands	Production of tears
Aquaporin-6	Kidney	Very low water permeability!
Aquaporin-7	Testis and sperm	
Aquaporin-8	Testis, pancreas, liver	
Additional Interribers are suspected to exist.		

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:

GlpF – E. coli glycerol channel (aquaglyceroporin)

- Fu, et al., Science (2000)

AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

AQP1 - Bovine - Murata et al, Nature (2000)

AQPZ - E. coli water channel - Savage et al, PLOS Biol (2003)

N — E NPA

E NPAF

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:

GlpF – E. coli glycerol channel (aquaglyceroporin)

- Fu, et al., Science (2000)

AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

AQP1 - Bovine - Murata et al, Nature (2000)

AQPZ - E. coli water channel - Savage et al, PLOS Biol (2003)

N—E NPA

r **NPA**R

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:

GlpF – E. coli glycerol channel (aquaglyceroporin)

- Fu, et al., Science (2000)

AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

AQP1 - Bovine - Murata et al, Nature (2000)

AQPZ - E. coli water channel - Savage et al, PLOS Biol (2003)

~100% conserved -NPA- signature sequence

N — <u>E</u> NPA

NPAR

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:

GlpF – E. coli glycerol channel (aquaglyceroporin)

- Fu, et al., Science (2000)

AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

AQP1 - Bovine - Murata et al, Nature (2000)

AQPZ - E. coli water channel - Savage et al, PLOS Biol (2003)

N—E NPA

E NPAF

Load Aquaporin 1J4N into VMD

Load Aquaporins 1j4n, 1fqy, 1lda, 1rc2 into VMD

Aligning Structures and Sequences

Comparing Structures by Similarity - Q Value

Comparing Structures by Similarity - Q Value

Exhibiting Sequence Identity - Side View

Exhibiting Sequence Identity - Top View

Showing Conserved Residues - Monomer

Showing Conserved Residues - Tetramer

Water Transport in Aquaporins

100,000 atoms

Simulation:

Apply constant force on bulk water molecules

Osmotic permeability of water channels

 p_f : 7.0 ± 0.9 × 10⁻¹⁴ cm³/s

Exp: $5.4 - 11.7 \times 10^{-14} \text{ cm}^3/\text{s}$

F. Zhu, E.Tajkhorshid, K. Schulten, *Biophys. J.* 86: 50-57 (2004) F. Zhu, E.Tajkhorshid, K. Schulten, *Phys. Rev. Lett.* 93: 224501 (2004)

Dynamics of Protein, Lipid, Water System

M. Jensen, E. Tajkhorshid, K. Schulten, Structure 9, 1083-1092 (2001)

Glycerol Conduction

University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute

Aquaporins

Case study, see at http://www.ks.uiuc.edu/Training/CaseStudies/

VMD Developers:

John Stone

Dan Wright

John Eargle

Fatemeh Khalili

Elizabeth Villa

Emad Tajkhorshid

Brijeet Dhaliwal

Zan Luthey-Schulten