Sequence and Structure Alignment
- Illustrated for the Water Channel Aquaporin
Sequence and structure information are the bedrock on which an understanding of cellular functions and the underlying physical mechanisms can be built. This lecture illustrates how the two sources of information are combined to investigate by means of the program VMD function and mechanism of the aquaporin family of membrane channels that transport water and certain small solutes across cell walls. Introducing first the key architectural features of a single aquaporin, structures and sequences of four aquaporins are aligned and common features recognized. The shared and distinct features are examined closely and used as guideposts leading quickly to key questions regarding the mechanism underlying aquaporin's efficient conduction and selection.
The Aquaporin Superfamily

Aquaporins are also functioning as gas conductors

Aquaporin Function and Human Aquaporins

AQP cluster

GLP cluster
Water and Glycerol Channels in the Human Body

<table>
<thead>
<tr>
<th>Aquaporin</th>
<th>Location</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquaporin-0</td>
<td>Eye: lens fiber cells</td>
<td>Fluid balance of the lens</td>
</tr>
<tr>
<td>Aquaporin-1</td>
<td>Kidney: proximal tubules, Eye: ciliary epithelium, Brain: choroid plexus, Lung: alveolar epithelial cells</td>
<td>Osmotic protection, Concentration of urine, Aqueous humor, Production of CSF, Alveolar hydration</td>
</tr>
<tr>
<td>Aquaporin-2</td>
<td>Kidney: collecting ducts</td>
<td>ADH hormone activity</td>
</tr>
<tr>
<td>Aquaporin-3</td>
<td>Kidney: collecting ducts, Trachea: epithelial cells</td>
<td>Reabsorption of water, Secretion of water</td>
</tr>
<tr>
<td>Aquaporin-5</td>
<td>Salivary glands, Lacrimal glands</td>
<td>Production of saliva, Production of tears</td>
</tr>
<tr>
<td>Aquaporin-6</td>
<td>Kidney</td>
<td>Very low water permeability!</td>
</tr>
<tr>
<td>Aquaporin-7</td>
<td>Testis and sperm</td>
<td></td>
</tr>
<tr>
<td>Aquaporin-8</td>
<td>Testis, pancreas, liver</td>
<td></td>
</tr>
<tr>
<td>Aquaporin-9</td>
<td>Leukocytes</td>
<td></td>
</tr>
<tr>
<td>Aquaporin-10</td>
<td>Intestines</td>
<td></td>
</tr>
</tbody>
</table>

Additional members are suspected to exist.
Water and **Glycerol** Channels in the Human Body

<table>
<thead>
<tr>
<th>Aquaporin-0</th>
<th>Eye: lens fiber cells</th>
<th>Fluid balance of the lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquaporin-1</td>
<td>Red blood cells</td>
<td>Osmotic protection</td>
</tr>
<tr>
<td></td>
<td>Kidney: proximal tubules</td>
<td>Concentration of urine</td>
</tr>
<tr>
<td></td>
<td>Eye: ciliary epithelium</td>
<td>Aqueous humor</td>
</tr>
<tr>
<td></td>
<td>Brain: choroid plexus</td>
<td>Production of CSF</td>
</tr>
<tr>
<td></td>
<td>Lung: alveolar epithelial cells</td>
<td>Alveolar hydration</td>
</tr>
<tr>
<td>Aquaporin-2</td>
<td>Kidney: collecting ducts</td>
<td>ADH hormone activity</td>
</tr>
<tr>
<td>Aquaporin-3</td>
<td>Kidney: collecting ducts</td>
<td>Reabsorption of water</td>
</tr>
<tr>
<td></td>
<td>Trachea: epithelial cells</td>
<td>Secretion of water</td>
</tr>
<tr>
<td>Aquaporin-4</td>
<td>Kidney: collecting ducts</td>
<td>Reabsorption of water</td>
</tr>
<tr>
<td></td>
<td>Brain: ependymal cells</td>
<td>CSF fluid balance</td>
</tr>
<tr>
<td></td>
<td>Brain: hypothalamus</td>
<td>Osmosensing function?</td>
</tr>
<tr>
<td></td>
<td>Lung: bronchial epithelium</td>
<td>Bronchial fluid secretion</td>
</tr>
<tr>
<td>Aquaporin-5</td>
<td>Salivary glands</td>
<td>Production of saliva</td>
</tr>
<tr>
<td></td>
<td>Lacrimal glands</td>
<td>Production of tears</td>
</tr>
<tr>
<td>Aquaporin-6</td>
<td>Kidney</td>
<td>Very low water permeability!</td>
</tr>
<tr>
<td>Aquaporin-7</td>
<td>Testis and sperm</td>
<td></td>
</tr>
<tr>
<td>Aquaporin-8</td>
<td>Testis, pancreas, liver</td>
<td></td>
</tr>
<tr>
<td>Aquaporin-9</td>
<td>Leukocytes</td>
<td></td>
</tr>
</tbody>
</table>

Additional members are suspected to exist.
Functionally Important Features of Aquaporins

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:
- AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

~100% conserved -NPA- signature sequence
Functionally Important Features of Aquaporins

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:
- AQP1 – Mammalian aquaporin-1 (pure water channel) - Sui et al, Nature (2001)

~100% conserved -NPA- signature sequence
Functionally Important Features of Aquaporins

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:
- AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

~100% conserved -NPA- signature sequence
Functionally Important Features of Aquaporins

- Water, gas, and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

Aquaporins of known structure:
- AQP1 – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

~100% conserved -NPA- signature sequence
Load Aquaporin 1J4N into VMD
Load Aquaporins 1j4n, 1fqy, 1lda, 1rc2 into VMD
Aligning Structures and Sequences
Comparing Structures by Similarity - Q Value
Comparing Structures by Similarity - Q Value
Exhibiting Sequence Identity - Side View
Exhibiting Sequence Identity - Top View
Showing Conserved Residues - Monomer
Showing Conserved Residues - Tetramer
Water Transport in Aquaporins

Simulation:
Apply constant force on bulk water molecules

100,000 atoms
Osmotic permeability of water channels

\[p_f: 7.0 \pm 0.9 \times 10^{-14} \text{ cm}^3/\text{s} \]

Exp: \[5.4 - 11.7 \times 10^{-14} \text{ cm}^3/\text{s} \]

Aquaporin-1

Dynamics of Protein, Lipid, Water System

Glycerol Conduction

Inverted helices guide glycerol

Aquaporins

Case study, see at http://www.ks.uiuc.edu/Training/CaseStudies/

VMD Developers:
John Stone
Dan Wright
John Eargle

Fatemeh Khalili
Elizabeth Villa
Emad Tajkhorshid
Brijeeet Dhalwal
Zan Luthey-Schulten