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Db1     E---GARDFLV-PYRHE-----------PGLFYALPQS
Db2     -E--GARDYLV-PSRVH-----------KGKFYALPQS
Fb      ---DMWDTFWLT-GE--GFRLEGPLGEEVEGRLLLRTH

Protein Homology in Structure and Sequence

3 homologous structures;
2 closely related (Db1, Db2),
1 more distant (Fb).

Db1 Db1, Db2 Db1, Db2, Fb

Db1, Db2, Fb
backbone only



What can be learned from AARSs?

  “The aminoacyl-tRNA synthetases, perhaps
better than any other molecules in the
cell, eptiomize the current situation
and help to understandard (the effects)
of Horizontal Gene Transfer (HGT).”

                         Carl Woese (PNAS, 2000; MMBR 2000)



Aminoacyl-tRNA synthetases

Universal Tree of Life

Woese PNAS 1990, 2002.



1. Important for homology modeling.
     Better profiles improve database searches and give better alignments of distant homologs. 
     Allows mixing of sequence and structure information systematically.

2.  Learn how evolutionary dynamics changed protein shape.

Why study the evolution of protein structure?

13% sequence id
in the core (blue)

3. Impact on protein structure prediction, folding, and function.
    Evolutionary profiles increase the signal to noise ratio - Evolution is the
     foundation of bioinformatics.

Mapping a protein of unknown structure onto a homologous protein of known structure
  is equivalent to defining the evolutionary pathway connecting the two proteins



Outline
1. Summarize evolutionary theory of the universal phylogenetic tree.

Methods

2. Introduce a structure-based metric which accounts for gaps,
    and show that evolutionary information is encoded in protein structure.

3. Introduce multidimensional QR factorization for computing
    non-redundant representative multiple alignments in sequence or structure.

Applications

4. Non-redundant multiple alignments which well represent the evolutionary history
    of a protein group provide better profiles for database searching.

5. Depict the evolution of structure and function in Aspartyl-tRNA synthetase.

Eliminate bias inherited from structure or sequence databases.  

Important for bioinformatic analysis (substitution matrices, knowledge based potentials structure pred.,
genome annotation) and evolutionary analysis.



Universal Phylogenetic Tree
three domains of life

for review see Woese PNAS 2000

Archaea
Eucarya

Bacteria

Leucyl-tRNA synthetase displays the 
full canonical phylogenetic distribution.

Woese, Olsen, Ibba, Soll MMBR 2000



After W. Doolittle, modified by G. Olsen 
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increasing inter-domain of life Horizontal Gene Transfer

Phylogenetic Distributions

“HGT erodes the historical trace, but does not 
completely erase it….” G. Olsen



QH Structural Homology
fraction of native contacts for aligned residues +
presence and perturbation of gaps

Protein Structure Similarity Measure
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Structural Similarity Measure
the effect of insertions

“Gaps should count as a character but not dominate” C. Woese



Protein structure encodes evolutionary information



Protein structure reveals distant evolutionary events
Class II AARSsClass I AARSs



Sequences define more recent evolutionary events

QH = 0.80
Sequence identity = 1.00 

QH = 0.89
Sequence identity = 0.69

ThrRS
T-AMP analog, 1.55 A.
T, 2.00 A.

ProRS
M. jannaschii, 2.55 A.
M. thermoautotrophicus, 3.20 A.

Conformational changes 
in the same protein.

Structures for two
 different species.



Eucarya

Archaea

Bacteria

Using structure to correct sequence alignments

archaeal S8 (S8a) bacterial S8 (S8b) 

archaeal
helix

bacterial
insertion

overlap of  S8a and S8b 



Conformational versus evolutionary change



Towards a unified phylogenetic framework in
sequence and structure

Structure-based tree

Sequence-based tree



Towards a unified phylogenetic framework in
sequence and structure

Combined sequence-structure tree

Structure is used to infer distant evolutionary events, i.e., 
the development of basic structures and functions.

Sequences supplement the missing structure data, and define 
more recent evolutionary events, i.e., speciation.



Multidimensional QR 
factorization

of alignment matrix, A.

Non-redundant representative sets

P. O’Donoghue and Z. Luthey-Schulten (2003) MMBR 67:550-571.

P. O’Donoghue and Z. Luthey-Schulten (2004) J. Mol. Biol., in press.

Too much information
129 Structures

Economy of information
16 representatives

QR computes a set of minimal linearly dependent structures.

~



Numerical Encoding of Proteins in a Multiple Alignment

Sequence Space
Orthogonal Encoding = 24-space

23 amino acids  (20 + B, X, Z) + gap

A = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
B = (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
C = (0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
…
GAP = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

Aligned position

Gapped position

Gap Scaling 

Encoding Structure
Rotated Cartesian + Gap = 4-space

A=

d=1
d=2

d=3

d=N

encoded residue 
space

n proteins

m aligned 
positions

Alignment Matrix

adjustable
parameter



P. O’Donoghue and Z. Luthey-Schulten (2003) MMBR. 67:550-571.

L. Heck, J. Olkin, and K. Nagshineh (1998) J. Vibration Acoustics 120:663.

A multiple alignment is a matrix with linearly dependent columns
redundancy is equivalent to linear dependence

QR factorization
Re-orders the columns of A, segregating the linearly independent
columns from the dependent ones without scrambling the
information in A. SVD not an option.

QT – orthogonal matrix of product of Householder transformations.
P – permutation matrix encodes column pivoting which
        exchanges columns of A and puts the redundant or
        similar proteins to the right hand side.

Multidimensional QR 

N simultaneous QR factorizations, 
one for each d-dimension.

A minimal linearly dependent subset can be determined with 
respect to a threshold, e.g., similarity measure threshold.



The QR establishes an order of linear dependence
by applying Householder transformations and permutations

The transformation reveals that
b is more linearly dependent on a,
so the permutation swaps b’ with c’.

Given a, c adds more information to
the system than b.

Householder,  J. Assoc. Comput. Mach., 1958.

originaltransformed

adjustable
parameter

Multiply aligned proteins exist 
in a higher dimensional space, so
this magnitude is computed 
with a matrix p-norm:

Three  1-D (2 residue) proteins a b c.  

a is our measuring stick, reference frame.



What are the constraints on the parameters?
Represent the evolutionary history of the protein group

with a spanning set of structures.

This rule is used to determine the value of 
two adjustable parameters in our implementation of the QR.



γ (normalized)

ordering
p-norm

γ (normalized)

Parameters Define the Measure of Linear Dependence
AARS class I, Rossman fold AARS class II, Novel fold

gap scale

ordering norm

forbidden

allowed



 Class I AARSs
evolutionary events

5 Subclasses

Specificity – 11 Amino acids

Domain of life A, B, E 



 Profile of the ILMV Subclass

How many sequences are needed to 
represent the Subclass ILMV?

If each of ILMV was full canonical, 
then we would need 4x3=12 sequences.

Since M and V are basal, we need
at least 2x3 + 2x2 = 10 sequences.

We have 6 structures.



Evolutionary Profiles for Homology Recognition
AARS Subclass ILMV

A. Sethi, P. O’Donoghue, Z. Luthey-Schulten (2004) Nucl. Acids Res, submitted.

The composition of the profile matters.
Choosing the right 10 sequence makes all the difference.

false positives



The Economy of Information 
How many sequence are needed for profiles?

A single profile 
for class I AARSs

PFAM profile of 113 sequences finds 3 additional
sequence fragments compared to the

non-redundant profile of 28 sequences.



Economy of Information 
How many sequences are needed for profiles?

If the sequences well represent the
evolutionary history of the protein family,
a factor of 10 to 100 less information is required.



QR factorization of an ensemble of NMR structures

The QR algorithm can be applied to conformational, evolutionary ensembles or
both simultaneously.



R. Amaro and Z. Schulten, MD Simulations of Substrate Channeling, Chemical Physics 
Special Issue, 2004 (in press). FE Landscapes of Ammonia Channeling, PNAS 2003

Evolutionary Structure/Sequence Profiles 
        Suggest Reaction Pathway



bacterial type aspartyl-tRNA synthetase
E. coli, homodimer

anticodon 
binding domain

catalytic 
domain

“accessory”
domain

catalytic domains
class II AARSs

Domain Structure in AspRS



Evolution of Structure and Function in AspRS

i) class II

ii) subclass IIB

iii) AspRS iv) bacterial
     AspRS

v) E. coli 
   AspRS

bacterial insert
domain

anticodon 
binding (ACB) 

domain



Summary
Evolutionary information is encoded in protein structure.

Protein structure allows investigation of evolutionary events that pre-date the origin of species.

Accounting for gaps is critical for comparing homologous structures.

Sequence and structure can be combined to give a unified phylogenetic framework.

The QR factorization provides evolutionary profiles (EPs).

By spanning the evolutionary space with a small number of representative sequences
EPs outperform traditional profiles.

   Structure databases are limited, but multiple structural alignments
   provide accurate alignments, especially in the case of distant homologies.

   Supplement the structures with an appropriate number and type of
   sequences (in accord with the phylogenetic topology) to produce
   minimal representative profiles.

The QR algorithm can be applied to conformational, evolutionary ensembles
or both simultaneously.



Multiseq in VMD: Merging the sequence and structure worlds

Brijeet Dhaliwal, John Eargle, John Stone, Dan Wright
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