

The Computational Microscope

Klaus Schulten Dept. Physics / Beckman Institute, U. Illinois NIH., October 2007

Main funding:

National Center for Research Resources

processors

Computational Microscope views the Cell

photosynthetic chromatophore (10^8 atoms)

Computational Microscope 2002-2010

photosynthetic chromatophore (10^8 atoms)

Mechanical Strength of a Blood Clot

Collaborator: Bernard C. Lim (Mayo Clinic College of Medicine)

20ns SMD Simulation of <u>fibrinogen</u>, <u>1.06 million atoms</u>, 1.2 ns/day with pencil decomposition, 15 days on PSC XT3 Cray (1024 processors)

A Blood Clot Red blood cells within a network of fibrin fibers, composed of polymerized fibrinogen molecules.

processors

Computational Microscope 2002-2010

photosynthetic chromatophore (10^8 atoms)

lipoprotein (1x10⁵ atoms)

lipoprotein (10^5 atoms)

bacterial flagellum (10⁹ atoms)

Coarse Grained Molecular Dynamics of Lipid Nanodiscs

Simple scaffold protein

Computationally fast dynamics reaches to 10 µs

Computationally slow dynamics reaches to 100 ns

Full atom representation

A. Shih, A. Arkhipov, P. Freddolino, and K. Schulten. J. Phys. Chem. B, 110:3674–3684, 2006; A. Shih, P. Freddolino, A. Arkhipov, and K. Schulten. J. Struct. Biol., 157:579–592,2007; A. Shih, A. Arkhipov, P. Freddolino, S. Sligar, and K. Schulten. Journal of Physical Chemistry B, 111: 11095 - 11104, 2007; A. Shih, P. Freddolino, S. Sligar, and K. Schulten. Nano Letters, 7:1692-1696, 2007.

Nanodisc Assembly CG MD Simulation

- 10 µs simulation
- Assembly proceeds in two steps:
 - Aggregation of proteins and lipids driven by the hydrophobic effect
 - Optimization of the protein structure driven by increasingly specific protein-protein interactions
- Formation of the generally accepted double-belt model for discoidal

HDL

Fully hydrated

0.0 us

A. Shih, A. Arkhipov, P. Freddolino, and K. Schulten. J. Phys. Chem. B, 110:3674–3684, 2006; A. Shih, P. Freddolino, A. Arkhipov, and K. Schulten. J. Struct. Biol., 157:579–592,2007; A. Shih, A. Arkhipov, P. Freddolino, S. Sligar, and K. Schulten. Journal of Physical Chemistry B, 111: 11095 - 11104, 2007; A. Shih, P. Freddolino, S. Sligar, and K. Schulten. Nano Letters, 7:1692-1696, 2007.

Formation of Nanodiscs Monitored by SAXS and Simulation

Computational Microscope 2002-2010

photosynthetic chromatophore (10^8 atoms)

Modeling and Simulating the Flagellar Hook of a Bacterium

Elements of the Bacterial Flagellum

Protein structure prediction adds D0 domain and fits full structure into cryo-EM map

Simulated with all-atom and CG molecular dynamics

Construction of a Shape-Based Coarse-Grain Model Crystal structure of hook missing interior domain

Modeling and Simulating the Flagellar Hook of a Bacterium

Elements of the Bacterial Flagellum

Protein structure prediction adds D0 domain and fits full structure into cryo-EM map

Simulated with all-atom and CG molecular dynamics

Construction of a Shape-Based Coarse-Grain Model Section 1

Crystal structure of hook missing interior domain

Solving the Structure of the Flagellar Hook Through Crystallography, Electron Microscopy, and Computational Modeling

Cryo-EM map of the hook was obtained at 9.0Å resolution.

Missing D0 domain modeled

Modeling and Simulating the Flagellar Hook of a Bacterium

Elements of the Bacterial Flagellum

Protein structure prediction adds D0 domain and fits full structure into cryo-EM map

Simulated with all-atom and CG molecular dynamics, needs to stretch to 10 ms

Construction of a Shape-Based Coarse-Grain Model A.A.A.

Crystal structure of hook missing interior domain

Computational Microscope 2002-2010

photosynthetic chromatophore (10^8 atoms)

Photosynthetic Chromatophore

Elucidate assembly and function (Docking, Molefacture, Paratool, Psfgen, Solvate, Membrane Builder, QM Tools)

Summary: Knowing the Atomic Level Structure

of the chromatophore one can systematically describe its physcal mechanism

M. Sener, J. Olsen, N. Hunter, and K. Schulten. *PNAS*, **10** 15723-15728, 2007

Studying the Morphogenesis of a Cellular Organelle

. Sener, J. Olsen, N. Hunter, and K. Schulten. PNAS, 104: 15723-15728, 2007

Rhodobacter sphaeroides RC-LH1-PufX dimer

Protein Packing Induces Membrane Curvature

Seven *Rb. sphaeroides* peripheral light harvesting (LH2) complexes in mixed POPE/POPG membrane patch

909830 atoms

- ~10 ns full equilibration
- ~ 1.2 ns/day on 32 Abe nodes

NPT equilibration, Charmm force field

positive curvature

Protein Packing Induces Membrane Curvature

How does membrane curvature develop?

Theoretical and Computational Biophysics Group

• focus on systems biology

- theoretical biophysics
- focus on quantum biology computational biophysics
- develops renewable energy
- guides bionanotechnology