Computational Structural Biology and Molecular Simulation

Introduction to VMD Molecular Visualization and Analysis

Emad Tajkhorshid Department of Biochemistry, Beckman Institute, Center for Computational Biology and Biophysics University of Illinois at Urbana-Champaign Email: emad@life.uiuc.edu Why do we need to look at proteins in atomic detail?

How can we look at them best and use the information?

Torque is transmitted between the motors via the central stalk.

Assembling ATP Synthase F_1

- Start with PDB code 1E79, water, ions, and nucleotides were added (327,000 atoms)
- 1.2 ns equilibration + 10.5 ns torgue application

Torque application to ${\sf F}_1$

Torque is applied to the central stalk atoms at the F_1 - F_o interface to constrain their rotation to constant angular velocity ω = 24 deg/ns.

0.0 to 5.0 ns (0 to 120 deg) of torqued F_1 rotation, ω = 24 deg/ns.

Rotation Produces Synthesis-like events

Around 3.0 - 3.5 ns (72 - 84 deg) of rotation, we observe:

- slowed torque transmission along central stalk
- opening and closing motions as expected

 $\beta_{\scriptscriptstyle E}$ closes

At 3.5 ns (84° rotation)

 $\beta_{\mbox{\tiny DP}}$ does neither

Rotation Produces Synthesis-like Events

Consistent with unbinding of ATP from the $\,\beta_{\text{TP}}$ catalytic site

0 ns: active site closed

3 ns: active site open

Reaction Mechanism of ATP Hydrolysis

Molecular Dynamics Simulations

Protein: ~ Lipids (POPE): ~ Water: ~ Total: ~

- 15,000 atoms
 40,000 atoms
- · 51,000 atoms
- ~ 106,000 atoms

NAMD, CHARMM27, PME NpT ensemble at 310 K 5 ns run of wild-type protein 2 days /ns - 48-proc Linux cluster 0.35 days /ns - 64 CPUs @ NCSA

Complete description of the conduction pathway

Water Permeation in Aquaporins

Download the movie from the Nobel Prize web site or from www.ks.uiuc.edu/Research/aquaporins

VMD - www.ks.uiuc.edu/Research/vmd

- Platforms:
 - Unix (16 builds)
 - Windows
 - MacOS X
- Display of large biomolecules and simulation trajectories
- Sequence browsing and structure highlighting
- Multiple sequence structure analysis
- User-extensible scripting interfaces for analysis and customization

The program is used very frequently for preparation and analysis of simulations

Examples to use with VMD: Ubiquitin Bovine Pancreatic Trypsin Inhibitor (BPTI)

Ubiquitin

- 76 amino acids
- Highly conserved
- Covalently attaches to proteins and tags them for degradation

Polymerization at different Lysines results in different signals (7 conserved Lys residues)

Basics of VMD

Loading a Molecule

	0	00	VMD				i)			
	F	ile Molecule	Graphics	Display	Mouse	Extensions	Help			
Now Molecule		<mark>ew Molecule</mark> oad Data Into N	/lolecule	Atoms			nes			
new molecule	(a) <u>S</u>	ave Coordinate	:S							
	S	ave State								
	R	ender								
	<u> </u> Q	luit					<u> </u>			
	•	📕 zoom 🔶	Loop 📖	step 🖣 1	speed			N	Molecule	
	0	00	Mo	lecule File	Browser		0		×1 1	
		Load files for:	New Molecu	ule 🗖				I	file browser	r
	I	Filename:				Brov	vse	(c)	Browse	
		Determine file t Automatically	ype:			Loa	d	(d)	Load	
		Frames:		Volumetr	ic Dataset	ts				
		First: Last O Load in ba O Load all at	: Stride: ckground once							

Basics of VMD

Basics of VMD Change rendering style

CPK

cartoon

Basics of VMD

000	VMD TkCon	0		
<u>F</u> ile <u>C</u> onsole	<u>E</u> dit <u>I</u> nterp <u>P</u> refs <u>H</u> istory	<u>H</u> elp		
>Main< (tutoria Welcome to TkCom >Main< (tutoria	1) 57 % puts "Welcome to TkCon!" n! 1) 58 % expr -3 * 10			
-30 >Main< (tutoria -30	1) 59 % set x [expr -3 * 10]			
>Main< (tutoria -30	1) 60 % puts \$ <mark>x</mark>			
>Main< (tutoria	1) 61 %			

VMD Scripting

Left: Initial and final states of ubiquitin after spatial alignment Right (top): Color coding of deviation between initial and final

The Color Controls window showing the Color Scale tab.

<u>Structure of a PDB file</u>

index	resname			resid	V	V 7	seaname				
	name			chai	in			Y Z		Jegi	
				1							
ATOM	22	N	ALA	. В	3	-4.073	-7.587	-2.708	1.00	0.00	BH
ATOM	23	HN	ALA	. В	3	-3.813	-6.675	-3.125	1.00	0.00	BH
ATOM	24	CA	ALA	. В	3	-4.615	-7.557	-1.309	1.00	0.00	BH
ATOM	25	HA	ALA	. В	3	-4.323	-8.453	-0.704	1.00	0.00	BH
ATOM	26	СВ	ALA	. В	3	-4.137	-6.277	-0.676	1.00	0.00	BH
ATOM	27	HB1	ALA	. В	3	-3.128	-5.950	-0.907	1.00	0.00	BH
ATOM	28	HB2	ALA	. В	3	-4.724	-5.439	-1.015	1.00	0.00	BH
ATOM	29	HB3	ALA	. В	3	-4.360	-6.338	0.393	1.00	0.00	BH
ATOM	30	С	ALA	. В	3	-6.187	-7.538	-1.357	1.00	0.00	BH
ATOM	31	0	ALA	. В	3	-6.854	-6.553	-1.264	1.00	0.00	BH
ATOM	32	Ν	ALA	. В	4	-6.697	-8.715	-1.643	1.00	0.00	BH
ATOM	33	HN	ALA	. В	4	-6.023	-9.463	-1.751	1.00	0.00	BH
ATOM	34	CA	ALA	. В	4	-8.105	-9.096	-1.934	1.00	0.00	BH
ATOM	35	HA	ALA	. В	4	-8.287	-8.878	-3.003	1.00	0.00	BH
ATOM	36	СВ	ALA	. В	4	-8.214	-10.604	-1.704	1.00	0.00	BH
ATOM	37	HB1	ALA	. В	4	-7.493	-11.205	-2.379	1.00	0.00	BH
ATOM	38	HB2	ALA	. В	4	-8.016	-10.861	-0.665	1.00	0.00	BH
ATOM	39	HB3	ALA	. В	4	-9.245	-10.914	-1.986	1.00	0.00	BH
ATOM	40	С	ALA	. В	4	-9.226	-8.438	-1.091	1.00	0.00	BH
ATOM	41	0	ALA	. В	4	-10.207	-7.958	-1.667	1.00	0.00	BH
000000000000000000000000000000000000000											
	10		20			30	40	50		60	70

>>> It is an ascii, fixed-format file <<<

"No connectivity information"

protein and resname LYS ARG GLU ASP

water and within 5 of (protein and resid 62 and name CA)

water and within 3 of (protein and name 0 and z < 10)

Protein Data Bank

Format of a PDB file

Inspect ubiquitin with VMD

List of VMD Features

Tcl scripts - example

Structure of a PDB File

Trajectory analysis

Making movies

Making paper quality figures

Autopsf/solvate/ionize

Changing colors

Membrane builder

Atomselect command webPDB VMD save state View master Trajectories, multiple frame drawing moving/rotating/saving new pdb

getting command synthax from logfile

RMSD/alignment