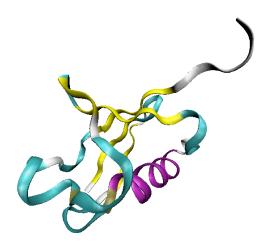
Statistical Mechanics of Proteins



Ubiquitin

Equilibrium Properties of Proteins

Energies: kinetic and potential

?

temperature dependence

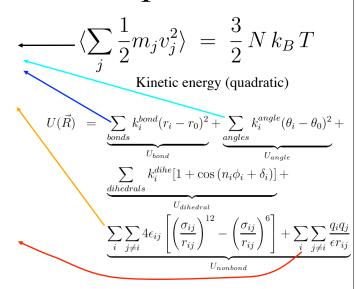
$$\begin{aligned} & \underbrace{\left\langle \sum_{j} \frac{1}{2} m_{j} v_{j}^{2} \right\rangle}_{\text{Kinetic energy (quadratic)}} \\ & U(\vec{R}) = \underbrace{\sum_{bonds} k_{i}^{bond} (r_{i} - r_{0})^{2} + \sum_{angles} k_{i}^{angle} (\theta_{i} - \theta_{0})^{2} + \sum_{U_{angle}} k_{i}^{dihe} [1 + \cos\left(n_{i}\phi_{i} + \delta_{i}\right)] + \\ & \underbrace{\sum_{i} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6}\right] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\epsilon r_{ij}}}_{U_{nonbond}} \end{aligned}$$

Potentialc energy (not all quadratic)

Equilibrium Properties of Proteins

Energies: kinetic and potential

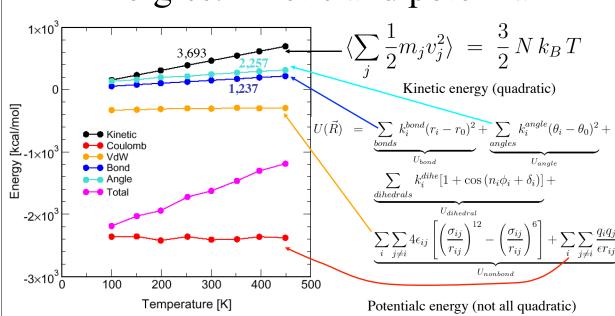
temperature dependence

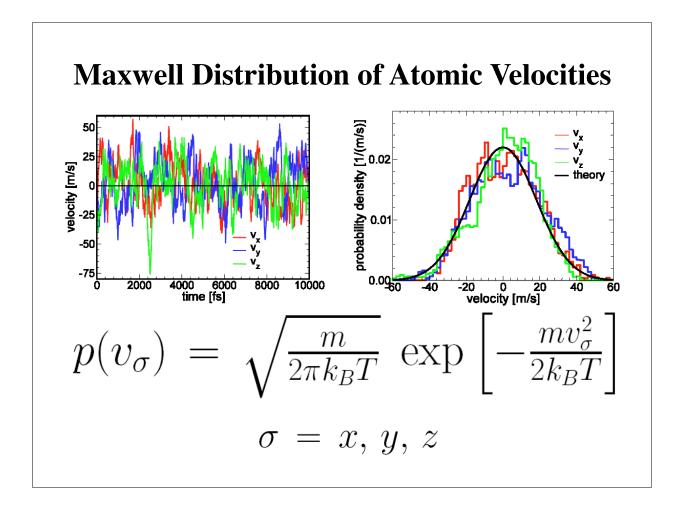


Potentialc energy (not all quadratic)

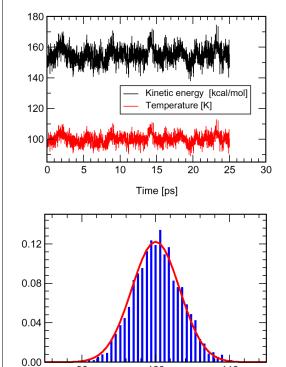
Equilibrium Properties of Proteins

Energies: kinetic and potential





Analysis of E_{kin} , T (free dynamics)



Temperature [K]

Definition of Temperature

$$\langle \sum_{j} \frac{1}{2} m_j v_j^2 \rangle = \frac{3}{2} N k_B T$$

$$T = \frac{2}{3N k_B} \left\langle \sum_j \frac{1}{2} m_j v_j^2 \right\rangle$$

The atomic velocities of a protein establish a thermometer, but is it accurate? Apparently not! Why!

Temperatur Fluctuations

Maxwell distribution

The atomic velocity thermometer is inaccurate

is inaccurate due to the finite size of a

protein!

$$dP(v_n) = c \exp(-m v_n^2 / 2k_B T) dv_n \tag{7}$$

Individual kinetic energy $\epsilon_n = mv_n^2/2$

$$dP(\epsilon_n) = (\pi T_0 \epsilon_n)^{-1/2} \exp(-\epsilon_n/k_B T_0) d\epsilon_n$$
 (8)

One can derive

$$\langle \epsilon_n \rangle = T_0/2 \tag{9}$$

$$\langle \epsilon_n^2 \rangle = 3 T_0^2 / 4 \tag{10}$$

$$\langle \epsilon_n^2 \rangle - \langle \epsilon_n \rangle^2 = T_0^2 / 2 \tag{11}$$

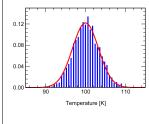
The distribution of the total kinetic energy $E_{kin} = \sum_j \frac{1}{2} m_j v_j^2$, according to the central limit theorem, is approximately Gaussian

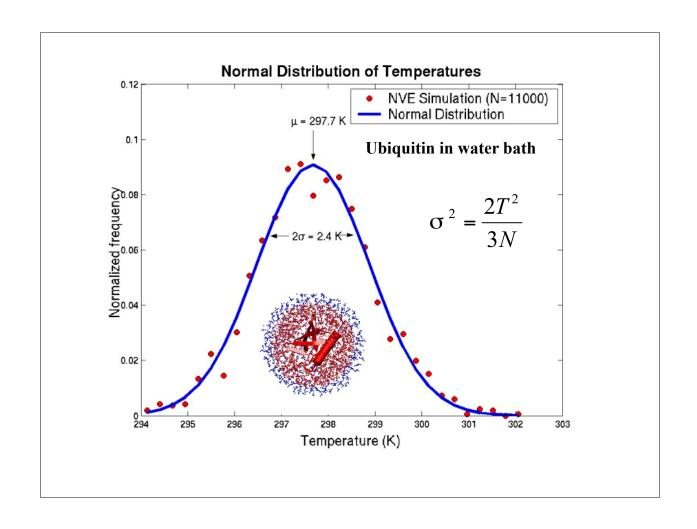
$$P(E_{kin}) = c \exp\left(\frac{-(E_{kin} - \langle E_{kin} \rangle)^2}{2\left(\frac{3Nk_B^2 T_0^2}{2}\right)}\right)$$
(12)

The distribution function for the temperature ($T=2E_{kin}/3k_B$) fluctuations $\Delta T=T-T_0$ is then

$$P(\Delta T) = c \exp[-(\Delta T)^2/2\sigma^2], \qquad \sigma^2 = 2T^2/3N$$
 (13)

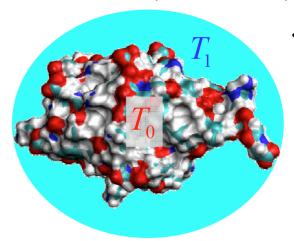
For $T_0 = 100 \mathrm{K}$ and N = 557, this gives $\sigma = 3.6$.





Simulated Cooling of Ubiquitin

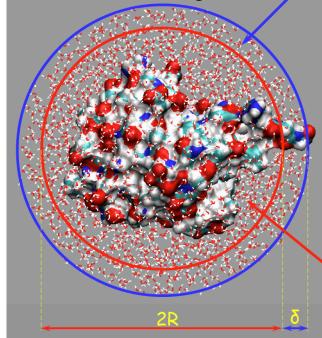
- Proteins function in a narrow (physiological) temperature range. What happens to them when the temperature of their surrounding changes significantly (temperature gradient)?
- Can the heating/cooling process of a protein be simulated by molecular dynamics? If yes, then how?



What can we learn from the simulated cooling/heating of a protein?

How to simulate cooling?

Heat transfer through mechanical coupling between atoms in the two regions



coolant layer of atoms

motion of atoms is subject to stochastic Langevin dynamics

$$m\ddot{\mathbf{r}} = \mathbf{F}_{FF} + \mathbf{F}_{H} + \mathbf{F}_{f} + \mathbf{F}_{L}$$

 $F_{\scriptscriptstyle FF}\! o\!{}$ force field

 $ec{F_{H}}$ ightarrow harmonic restrain

 $\vec{F_f} \rightarrow \mathsf{friction}$

 $\vec{F}_L
ightarrow ext{Langevin force}$

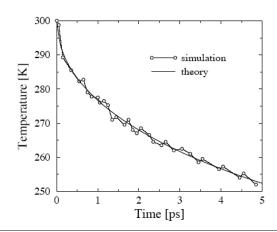
atoms in the inner region follow Newtonian dynamics

$$m\ddot{r} = F_{FF}$$

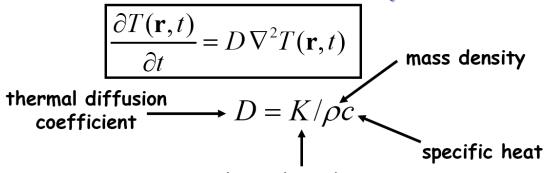
Simulated Cooling - Result

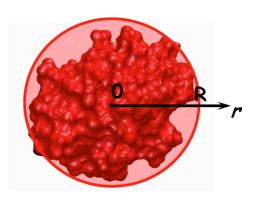
t	$\langle T_{sim} \rangle$						
0.05	298.75	1.05	276.00	1.95	267.00	3.25	261.00
0.15	289.25	1.15	276.50	2.05	268.50	3.45	258.50
0.35	285.50	1.25	275.25	2.25	266.50	3.55	259.50
0.55	282.25	1.35	271.00	2.35	264.50	3.95	256.50
0.65	282.75	1.45	271.75	2.55	263.50	4.05	257.25
0.75	279.00	1.65	269.50	2.65	264.50	4.45	254.00
0.85	277.75	1.75	271.00	2.85	262.00	4.55	255.25
1.00	277.50	1.85	268.00	3.05	262.50	4.85	252.00

Table 1: Mean temperature $\langle T_{sim} \rangle$ [K] of the protein as a function of time t [ps].



Result from simulation that cools a protein, initially at T = 300 K, from the edge down to 200 K. Only first 5 ps are shown in which short time interval T drops to 250 K.





- approximate the protein with a homogeneous sphere of radius R~20 Å
- calculate T(r,t) assuming initial and boundary conditions:

$$T(r,0) = T_0 \text{ for } r < R$$

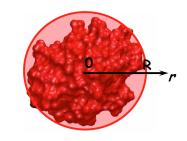
$$T(R,t) = T_{bath}$$

Solution of the Heat Equation

$$\frac{\partial T(\mathbf{r},t)}{\partial t} = D \nabla^2 T(\mathbf{r},t) ,$$

$$D = K/\rho c ,$$

Initial condition



$$T(\mathbf{r}, 0) = \langle T_{sim} \rangle(0)$$
 for $r < R$,

Boundary condition

$$T(R,t) = T_{bath}$$
.

Solution of the Heat Equation

 $\begin{array}{ll} \text{Spherical} & \frac{\partial T(r,t)}{\partial t} \ = \ D \, \frac{1}{r} \partial_r^2 r \, T(r,t) \end{array}$

 T_{bath}

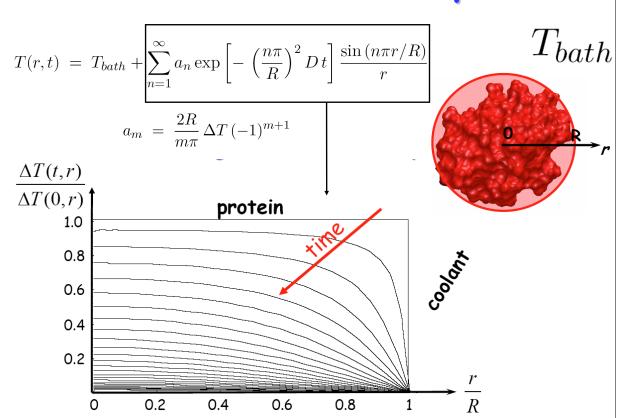
We assume

$$T(r,t) = T_{bath} + \sum_{n=1}^{\infty} a_n e^{\lambda_n t} u_n(r)$$
difference from bath

Here u_n are the eigenfunctions of the spherical diffusion operator $L \equiv \frac{D}{r} \frac{d^2}{dr^2} r$

$$\frac{D}{r}\frac{d^2}{dr^2}ru_n(r) = \lambda_n u_n(r) , u_n(0) = \text{finite}, u_n(R) = 0$$

Solution of the Heat Equation



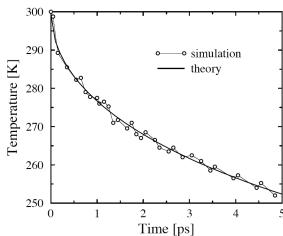
Solution of the Heat Equation

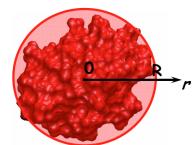
Temperature averaged over volume

$$\langle T \rangle (t) = \left(\frac{4\pi R^3}{3} \right)^{-1} \int d^3 \mathbf{r} \, T(\mathbf{r}, t) = \frac{3}{R^3} \int_0^R r^2 dr \, T(r, t)$$

$$= T_{bath} + \sum_{n=1}^\infty a_n \exp\left[-\left(\frac{n\pi}{R}\right)^2 D \, t \right] \frac{3}{R^3} \int_0^R r dr \sin\left(\frac{n\pi r}{R}\right)$$

$$= T_{bath} + 6 \frac{\Delta T}{\pi^2} \sum_{n=1}^\infty \frac{1}{n^2} \exp\left[-\left(\frac{n\pi}{R}\right)^2 D \, t \right]$$





 $D \approx 0.38 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$

water $1.4 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$