Part II - Applications of MultiSeq: Network Analysis of Dynamical Recognition in RNA:Protein Complexes

Zaida (Zan) Luthey-Schulten Dept. Chemistry, Physics, Beckman Institute, Biophysics, Institute of Genomics Biology

NIH Center Macromolecular Modeling and Bioinformatics Berkeley Workshop 2015

Protein: RNA Complexes in Translation Evolutionary Analysis & Dynamics

"Capture & Selection of ATP" JACS 2013

r-Proteins/r-RNA "Signatures ribosomal evolution"

"Signatures ribosomal evolution" PNAS 2008, BMC 2009, BJ 2010 "Motion L1 Stalk:tRNA" JMB 2010, "Ribosome Biogenesis" JPC 2012,3 "Whole cell simulations on GPUs" IEEE 2009,Plos CB 2011,PRL2011,

⁹" Recognition & tRNA Dynamics" JCC 2013, PNAS 2013,
JMB 2008, FEBS 2010, RNA 2012 PRL 2013, CSB 2013
Network Viewer, Bioinf., JCTC 2012 Nature 2014, BJ 2015

MD Simulations of RNA:Proteins Complexes¹

MD performed with NAMD2 (2) - System Setup

Simulation Parameters

Minimization: 290,000 steps Production run: 108 ns Forcefields: CHARMM27 (3), AMBER (4) Time step: 1 fs VdW frequency: 2 fs VdW cutoff: 12 Å Switching distance: 10 Å Pair list distance: 14 Å Particle Mesh Ewald Full electrostatic update: 4 fs Ensemble: NPT Langevin temperature: 298.15 K Langevin pressure: 1 atm Periodic boundary conditions

Contents of System(5) GluRS Glu-tRNA^{Glu} EF-Tu GTP Ions: Mg²⁺, K⁺ H₂O: ~27,000 molecules System: ~130,000 atoms

System Perturbations

Deprotonation/protonation of reactants (aa,NTs) Changing rotamer states of residues (6) involved in long-lived salt bridges

- (1) Eargle J and ZLS,"Simulating Dynamics of RNA:Protein Complexes" RNA 3D (ed. Westhof, Springer, 2012),
- (2) Phillips, J.C. et al. J. Comput Chem, (2005);
- (3) MacKerell, A. et al. Biopolymers (2001); (4) Case, D. et al. J. Comput. Chem. (2005);
- (5) Eargle, J. et al. JMB 2010, FEBS Let. 2010; (6) Dunbrack Jr. and Cohen. Protein Sci. (1997)

Charging tRNA through allosteric signaling

How to Construct a Network?

Nodes - defined at C_a (protein) and P (nucleotide) atoms

How to Construct a Network?

Edges - connect nodes that are within a contact distance threshold for more than 75% of an MD trajectory

Path length = 10 (*unweighted*)

Information transfer? Weight contacts/links by correlations !

Correlations (C_{ij}) define signaling pathways in GluRS:tRNA

- C_{ii} values calculated over a 16-ns window

Nodes Cluster Together in Modules called Communities

Nodes Cluster Together in Modules called Communities

Communities are subnetworks with many intracommunity edges but few intercommunity edges. (Girvan-Newman Algorithm)

Reaction Mechanism for the Transfer of Glu to tRNA^{Glu}

Perona JJ, Rould MA, Steitz TA Biochemistry 1993

Black A, Eargle J, Sethi A, Luthey-Schulten Z. *JMB* 2010 100s ns MD simulations

community containing amino acid moiety

community containing AMP moiety

Communities Partition the Interaction Network Hierarchically

Communities Partition the Interaction Network Hierarchically

Dynamical Networks, Conservation, and Betweeness

Optimal signal pathways: U13, U35 to A76 Critical(conserved) nodes connecting communities

Betweeness routes - highest density pair optimal paths

VMD/MultiSeq Tutorials

- 1. Evolution of Translation: AARS: tRNA
- 2. Evolution of Translation: EF-Tu:tRNA
- 3. Evolution of Translation: Ribosome
- 4. Dynamical Network Analysis

Acknowledgements

- Joe Peterson
- Mike Hallock
- Elijah Roberts
- John Eargle
- Jonathan Lai
- Ke Chen

Kirby Vandivort John Stone

