
NAMD 3.0 Features, Performance, and Capabilities
David J. Hardy

Senior Research Programmer
University Of Illinois at Urbana-Champaign

1

NAMD: Scalable Molecular Dynamics
• Popular parallel MD code capable of

scaling to tens of thousands of CPU cores
and thousands of GPUs

• Developed and trusted by scientists since
the mid '90s

• Written in C++ with CUDA and using
Charm++ parallel objects

• Full-featured MD application with many
advanced features:

- Free energy methods

- Enhanced sampling methods

- Built-in collective variables (Colvars) module

- Customizable user scripting with Tcl and Python

2

Investigations of coronavirus (SARS-CoV-2) spike dynamics.
Credit: Tianle Chen, Karanpal Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.

Phillips, et al. J. Comput. Chem. 26, 1781-1802 (2005)
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

MD Simulation and Parallel Scaling
• Strong scaling: Single simulation scaled across multiple computational resources

- CPU-based — 2-10k atoms per core

- GPU-based — 20-100k atoms per device

• Weak scaling: Multi-copy / replica-exchange simulation in which the total number of
simulations scales with the computational resources

- Determine most efficient use of resources for your simulation  
(e.g., one copy per node or per GPU device)

- Scale your total number of copies accordingly 
(up to whatever makes sense for your scientific investigation and resource allocation)

3

NAMD force field and modeling support
• CHARMM force field

• AMBER (file and force field support)

• GROMACS (some file support)

• Drude polarizable force field

• Water models: TIP3P, TIP4P, SWM4-NDP (Drude)

• MARTINI residue-based coarse-grained (limited support)

• File support:

- PDB files (reads ATOM records)

- PSF files (CHARMM and X-PLOR formats)

- Force field files (CHARMM19, 22, 27, etc.)

- DCD trajectory files

- NAMD binary files

4

NAMD standard features (equilibrium simulation)

• Constant energy

• Temperature control

- Langevin thermostat

- Stochastic velocity rescaling

- Berendsen heat bath (tCouple)

• Pressure control

- Langevin piston

- Berendsen pressure bath

• Periodic boundary conditions

• Non-periodic with spherical or
cylindrical BCs

5

• Long-range electrostatics

- Particle-mesh Ewald (for PBCs)

- Multilevel summation method  
(for non-periodic or semi-periodic BCs)

• Rigid bond constraints for hydrogen

• Multiple time stepping

• Conserve momentum while still
conserving energy (zeroMomentum)

• Energy minimization

- Conjugate gradient and velocity quenching

Features less common or distinctive among MD codes denoted by

NAMD advanced features (non-equilibrium simulation)
• Enhanced sampling methods

- Apply external forces:

‣ Harmonic restraints, fixed atoms, external electric field, steered MD, interactive MD, grid forces

- Boost or modify interaction potentials to flatten the energy landscape:

‣ Accelerated MD, Gaussian-accelerated MD, solute scaling and REST2, replica-exchange MD

• Collective variables (Colvars) module

• Alchemical free energy methods

- Free energy perturbation (FEP)

- Thermodynamic integration (TI)

• Constant pH simulation

• Hybrid QM/MM simulation

• Tcl (and Python) scripting interface accessed through the NAMD configuration file

6

NAMD 3.0 beta released
• New GPU-resident mode for very fast dynamics:

• Achieves 2x or more speedup on single GPU versus GPU-offload simulation

• Efficient single-node multi-GPU scaling for tightly coupled GPU architectures (e.g. DGX)

• Supports both NVIDIA and AMD GPUs

• GPU support for alchemical free energy methods (FEP and TI)

• GPU-resident provides some advanced feature support:

• harmonic restraints, external electric field, steered MD, REST2, replica-exchange MD

• Monte Carlo barostat

• group position restraints

• New CPU vectorization mode supporting AVX-512 instructions (Intel Xeon and AMD Zen4)

7

available only for GPU-resident mode

NAMD hardware and feature support
• CPU-based (x86, ARM, Power, KNL, ...)

- AVX-512 accelerated — implements non-bonded tiles optimization from CUDA

• GPU-accelerated (download builds -CUDA for NVIDIA and -HIP for AMD)

- GPU-offload — force calculation offloaded to GPU device

- GPU-resident — (almost) all calculation performed by GPU device, atom data resides on device
between time steps

‣ Available in multicore-CUDA and netlrts-smp-CUDA

‣ Enable mode with config file keyword: CUDASOAintegrate on

• Advanced feature support is limited for accelerated modes

- Greater acceleration provides less feature support

8

9

Molecular Dynamics Simulation
Integrate Newton’s equations of motion:

Most computationally intensive part

Integrate for millions of time steps

Parallelism for MD simulation limited to each time step

10

Computational workflow of MD:

initialize particle

positions

particle

forces

force

calculation

about 99% of
computational work

update

 positions

about 1% of
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional

output

aLoop millions
of time steps

Decomposition of data and compute objects

• Decompose atoms into equal volume patches

• Calculate pairwise forces between atoms, treat as
interactions between neighboring patches

• Decompose patch-patch interaction compute objects

• Moving atoms: update spatial decomposition by
migrating atoms between adjacent patches

• Load balancing: update work decomposition by
migrating compute objects to keep processors
consistently occupied

11

Spatial decomposition of
atoms into patches

Work decomposition of
patch-patch interactions

into migratable compute objects

Using GPU-offload approach for multi-node simulation

12

Charge spreading

Force interpolation

Offload force compute to GPU

Must aggregate positions

Patches

Patches

Compute forces
for next time step

New GPU-resident approach

Move integrator to GPU and maintain data between time steps

13

Calculate forces

Integrate atom
positions

Aggregate
position data,
copy to GPU

Integrate atom
positions

Calculate forces

Aggregate
position data,
copy to GPU

Stream
forces back

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force
to SOA form

Integrate atom
positions

GPU-resident
(manages GPU kernels)

New GPU-resident approach

Profiling shows new approach fully utilizes GPU, no more CPU bottleneck

14

Forces
Integration

Forces
Integration

Forces

Integration

Forces

Integration

Before (GPU-offload):

After (GPU-resident):

Adapting parallel scaling to GPU-resident approach

Apply similar decomposition of data and work among GPUs

15

• Take a conceptually similar approach,
except we must have SoA (structure-
of-arrays) data layout for performance

• Each CPU thread binds to a particular
GPU

• Aggregate compute and patch data
per thread to launch integration and
force kernels

• Exploit tightly coupled (peered) GPUs
(NVLink, PCIe, …)

Adapting parallel scaling to GPU-resident approach

Some communication required: multicasts and reductions

16

• Update atom positions in each patch
during integration

• Perform position multicast into compute
objects

• Compute new forces

• Perform force reduction back to patches

• GPUs need load-store memory access
between different devices within every
time step, with data sizes on the order of
8KB per access

Integration

Integration

Position Multicast

Force Eval

Force Reduction

See past NVIDIA GTC talks for more details:
s31529, s41378, s51693

Pe
rfo

rm
an

ce
 (n

s/
da

y)

1

10

100

Number of GPUs

1 2 4 8

16.6
12.1

6.9

3.9

106.3

59.6

32.1

17.3

GPU-resident
GPU-offload

STMV
1.06M atoms

DGX-A100

efficiency 77%

efficiency 53%

GPU-resident compared to GPU-offload

Improving performance for smaller systems

• Perform atom migration on GPU

- Removes the biggest remaining CPU bottleneck

• Exploit "two-away" patch splitting option

- Create more finer-grained work units

- Provides more work to schedule across SMs (streaming multiprocessors) of each GPU

• Use MPS (Multi-Process Server) to co-schedule multiple jobs per GPU
when running multiple simulations for ensemble sampling

- Maximizes overall throughput by keeping GPUs fully occupied

18

Atom migration introduces overhead
• Earlier profiling showed the

excessive cost of atom migration

19

20 MD Steps
Approx. 32 ms 1 migration step

Approx. 77 ms

Time for atom migration is equal to 48 MD steps
NAMD’s default is 20 steps per migration

ApoA1 (92k atoms) profiling on single GPU

Mitigating cost of atom migration

• Extend default patch margins to
permit more steps between migration

• Monitor atom movements to perform
migration only when needed

• Utilize multiple CPU cores per device
to decrease migration cost

20

Porting atom migration to GPU
• Requires extra data structures on GPU

- Topology data to update bonded terms

- Extra buffer space to receive atoms from other GPUs

- Maintain copy of full atom data in AoS (array-of-structures) form

• Implementation in two main stages

- Refactor the device buffers and data structures

- Introduce kernels for performing migration

• Benefits all GPU-resident simulation, especially for
smaller systems

- Having less computational work available to smaller systems exposes a
greater penalty from CPU migration

21

22

Single GPU performance improvements
Simulation details:
Spike ACE-2: NPT, 1 bar, 310 K, CHARMM force field, cutoff distance 12 Å, MTS with 2 fs time step and 4 fs PME, rigid bond constraints.
STMV, ApoA1: NVE, CHARMM force field, cutoff distance 12 Å, MTS with 2fs time step and 4 fs PME, rigid bond constraints.
Spike, STMV, ApoA1: Performance tuning parameter “margin” set to 8 Å for older versions, 4 for new version.
DHFR: NVE, CHARMM force field, cutoff distance 9 Å, HMR with 4 fs time step, PME, rigid bond constraints, “margin” 2 Å, two-away-Z.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

Optimized version
(Mar 2022) ns/day

GPU atom migration
(Mar 2023) ns/day % improvement

Spike ACE-2 (8.56M) 1.72 1.81 4.9%

STMV (1.06M) 15.87 17.20 8.4%

ApoA1 (92.2k) 182.0 190.7 4.8%

DHFR (23.6k) 903.1 1102.0 22%

A100

https://www.ks.uiuc.edu/Research/namd/benchmarks/

ns/day

1

10

100

Number of GPUs

1 2 4 8

7.0

4.3

2.5

1.4

10.1

5.9

3.2

1.7

12.6

6.6

3.4

1.8

NAMD 3.0beta with DeviceMigration (Mar 2023)
NAMD 3.0alpha10 (Mar 2022)
NAMD 3.0alpha9 (Mar 2021)

efficiency 87%

efficiency 63%

GPU-resident multi-GPU scaling of COVID-19 spike protein

Simulation details:
NPT, 1 bar, 310 K, CHARMM force field, cutoff distance 12 Å,
MTS with 2 fs time step and 4 fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 8 Å for older
versions, 4 for new version. PME PEs set to 8, 7, 5, 1 for
numbers of GPUs 1, 2, 4, and 8, respectively, for all.

NVIDIA
DGX-A100

Spike-ACE2
8.56M atoms

GPU-resident multi-GPU scaling of STMV
ns/day

10

100

1000

Number of GPUs

1 2 4 8

60.4
41.1

24.0

13.7

92.1

54.4

29.5

15.9

106.1

59.4

32.0

17.2

NAMD 3.0beta with DeviceMigration (Mar 2023)
NAMD 3.0alpha10 (Mar 2022)
NAMD 3.0alpha9 (Mar 2021)

STMV
1.06M atoms

Simulation details:
NVE, CHARMM force field, cutoff distance 12 Å,
MTS with 2 fs time step and 4 fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 8 Å for older
versions, 4 Å for new version. PME PEs set to 8, 7, 5, 1 for
numbers of GPUs 1, 2, 4, and 8, respectively, for all.

DGX-A100

efficiency 77%

efficiency 55%

GPU-resident multi-GPU scaling of ApoA1

ns/day

100

1000

Number of GPUs

1 2 4 8

339.5
306.0

257.4

182.0

361.8341.3

272.7

190.7

437.6
389.4

273.6

184.5

NAMD 3.0beta with DeviceMigration and twoAwayZ (Mar 2023)
NAMD 3.0beta with DeviceMigration (Mar 2023)
NAMD 3.0alpha10 (Mar 2022)

Simulation details:
NVE, CHARMM force field, cutoff distance 12 Å,
MTS with 2 fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4 Å for 2022
version with 1 GPU and 0 Å for 2, 4, and 8 GPUs; set to 2 Å
for 2023 version. PME PEs set to 8, 7, 5, 1 for numbers of
GPUs 1, 2, 4, and 8, respectively for both versions.

DGX-A100

ApoA1
92.2k atoms

efficiency 30%
efficiency 53%

efficiency 74%

GPU-resident multi-GPU scaling of DHFR

26

Simulation details:
NVE, CHARMM force field, cutoff distance 9 Å,
HMR with 4 fs time step, PME, rigid bond constraints.
Performance tuning parameter “margin” set to 2 Å.
*GPU atom migration uses two-away-Z for 1 and 2 GPUs,
two-away-YZ for 4 GPUs, and two-away-XYZ for 8 GPUs.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

DGX-A100

DHFR
23.6k atoms

ns/day

100

1000

10000

number of GPUs

1 2 4 8

891.8955.5924.6903.1

990.31,133.51,139.31,102.0

NAMD 3.0beta with DeviceMigration and twoAway* (Mar 2023)
NAMD 3.0alpha10 (Mar 2022)

https://www.ks.uiuc.edu/Research/namd/benchmarks/

Improving throughput for ensemble sampling
• Time sampling (single sequential simulation of phase space) offers

limited parallelization — especially for smaller systems

• Ensemble sampling (many independent simulations of phase space)
can provide better statistics with less overall computational cost

- Good approach: running one simulation per GPU

- Possibly better approach: using MPS (Multi-Process Service) to run multiple
simulations per GPU

‣ Keep SMs on all GPUs fully occupied

‣ Although no single simulation finishes as fast as running one simulation per GPU, the
aggregate ns/day achieved by all simulations is higher

27

DHFR ensemble sampling

28

Simulations per GPU Total time steps Total run time (sec) Aggregate ns/day Per GPU ns/day

1 4,000,000 197.7 6,993 874*

2 8,000,000 297.2 9,302 1,163

4 16,000,000 539.2 10,256 1,282

8 32,000,000 1,063.8 10,396 1,299

DGX-A100
DHFR

23.6K atoms

Simulation details:
Same as before for version 2023 on 1 GPU.
Each simulation is 500,000 steps total
NVE, CHARMM force field, cutoff distance 9 Å,
HMR with 4 fs time step, PME, rigid bond constraints.

*Note: single simulation per GPU is lower than before due to including full execution time, including startup and ending file I/O

SdrG ensemble sampling

29

Simulations
per GPU Total jobs Aggregate ns/day Per GPU ns/day

1 8 734.23 91.78

2 16 781.30 97.66

3 24 754.04 94.26

4 32 764.00 95.50

DGX-A100

Simulation details:
NPT, 1 bar, 300 K, CHARMM force field,  
cutoff distance 11 Å, HMR, MTS with 4 fs time
step and 8 fs PME, rigid bond constraints.
Production runs in paper used SMD.

Melo, Gomes, Bernardi. J. Am. Chem. Soc. 145, 1, 70-77 (2023)

• Staphylococcus epidermidis is major cause of infection in medical implants

• SdrG adhesin protein binds to human fibrinogen during infection

• Understand molecular origins of stabilizing forces underlying strong bindings

SdrG
240k atoms

• Begin launch script with the following:

export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps  
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log  
nvidia-cuda-mps-control -d

• Launch NAMD jobs in the background (using '&') and wait on the job PIDs

• Caveat: superuser access is required to run "nvidia-cuda-mps-control" but
should work if computing center whitelists command or when using containers

See: https://docs.nvidia.com/deploy/mps/index.html

Using MPS with NAMD

30

https://docs.nvidia.com/deploy/mps/index.html

Advanced features supported by GPU-resident
• Replica-exchange MD

• Alchemical free energy methods:  
FEP (free energy perturbation) and TI (thermodynamic integration)

• REST2 (replica-exchange solute scaling)

• Harmonic restraints

• External electric field

• SMD (steered MD)

• Monte Carlo barostat (faster than Langevin piston)

• Group position restraints (replaces Colvars common use case)

31

✓

✓

✓

Alchemical free energy methods

• Calculate free energy differences moving between two different chemical states

• E.g., predict protein-ligand binding affinity, determine solvation free energies

• Accelerates process of drug discovery

• First version of NAMD to have GPU-accelerated FEP and TI

• Supports both GPU-offload and GPU-resident, up to 30x speedup over CPU-only

• Compatible with multi-GPU scaling

32

Chen, et al. J. Chem. Inf. Model. 60, 5301-5307 (2020)

Monte Carlo barostat
• Rescales periodic cell at fixed step

intervals, accept or reject based on
MC acceptance of new energy

• Faster than Langevin piston due to
avoiding virial calculations

• Rescaling is performed on geometric
centers of molecules

• Only for GPU-resident, would require
extra communication for multi-node

33

ApoA1 (92k atoms) simulated on A100

ns
/d

ay

NVE

NVT (Langevin)
Langevin piston
MC (freq = 20)
MC (freq = 50)
MC (freq = 100)

164.4160.7
150.9

139.2

168.6
189.8

<latexit sha1_base64="o28I7IS4PhzFdsx1R6KIsyaxjSc=">AAAClHicbVFda9swFJW9ry77aLrBXvYiFgYJLMEeZd3DBmnLYE8lgzktxGmQlWtXVJaNdL0tCP+i/pu+9d9MTjI2t7sgOPfcc66ke5NSCoNBcOP59+4/ePho53HnydNnz3e7ey+mpqg0h4gXstBnCTMghYIIBUo4KzWwPJFwmlweN/XTH6CNKNR3XJUwz1mmRCo4Q0ctulflwsYIv9Ayzuv6c5wLFR+JLJOxDd81SPbjVDNup3+ECn7Wdf03L+TS5Y1UD85PKJzbYZwAsn7UcgyjlmFANyo66bc7D9uNB+vOmY7rzqLbC0bBOuhdEG5Bj2xjsuhex8uCVzko5JIZMwuDEueWaRRcQt2JKwMl45csg5mDiuVg5nY91Jq+dcySpoV2RyFds/86LMuNWeWJU+YML8ztWkP+rzarMP04t0KVFYLim4vSSlIsaLMhuhQaOMqVA4xr4d5K+QVzK0C3x2YI4e0v3wXT96Pww2j/235vfLQdxw55Td6QPgnJARmTr2RCIsK9Pe/AG3uH/iv/k3/sf9lIfW/reUla4Z/8BobEzXs=</latexit>

pacc = min

(
1,
⇣Vnew

Vold

⌘N
e��(Unew�Uold)��P (Vnew�Vold)

)

Faller, de Pablo. J. Chem. Phys. 116, 55 (2002)

Colvars Module for NAMD

34

Showing tilt and spin angle  
orientations of a molecule

• Modular framework for expressing and manipulating collective variables that reduce
the large number of degrees of freedom for a molecular system down to its essentials

- Monitor statistics in situ during simulation

- Apply biasing forces for enhanced sampling

• Provides flexible and deep interface for specifying user-defined potentials assembled
from atom position and force data

• Is the most requested feature missing from GPU-resident mode

• Externally developed library that is CPU-based, with deep object hierarchy, single-
threaded (but with some OpenMP directives), making it difficult to port to GPU

• Initial testing to incorporate Colvars Module together with GPU-resident code path
slows down performance to almost same as GPU-offload

• GPU port will require co-development with Colvars developers, streamlining atom
data movement into Colvars and perhaps porting essential compute routines to GPU

https://colvars.github.io/Fiorin, Klein, Hénin. Mol. Phys. 111, 3345-3362 (2013)

https://colvars.github.io/

Colvars host-device data transfer bottleneck

35

Multiple time stepping showing a non-PME step

Copy forces from

device to host

Copy positions

from device to host

Initialize force and

calculate GlobalMaster force

Copy new forces  
from host to device

Colvars overlapping host-device data transfer

36

Multiple time stepping showing a PME step

Copy forces from

device to host

Copy positions

from device to host

Initialize force and

calculate GlobalMaster force

Copy new forces  
from host to device

Restrained Atoms: 1408

Restrained Atoms: 1408

37

Initial results interfacing Colvars to GPU-resident

37

Benchmark: NVT POPC Equilibration Total Atoms: 132k
Total Restrained Atoms: 2816

CPU: 32 cores AMD 3975WX 3.50GHz

GPU: 1 RTX A6000 GPU
Timestep: 2 fs

fullElectFreq: 2,4 fs

Simulation
(ns/day)

%Performance
Lost

NAMD Version Without
colvars

With
colvars

(WO-W)/WO
Restraints

NAMD 3 77 58.3 25%

NAMD 3 MTS 89.7 58.9 34%

Group position restraints

38

𝐸 = 𝑘(𝜉 − 𝜉0)𝑛

𝜉 = ⃑𝑟COM
2 − ⃑𝑟COM

1

𝜉0 = ⃑𝑟center
restraint

Group 2

Group 1

Group 2

Reference

position

group1List
group1File
group1RefPos

group2List
group2File

𝜉 𝜉 𝜉0

groupResUseMagnitude 𝜉 = ⃑𝑟COM
2 − ⃑𝑟COM

1

𝜉0 = ⃑𝑟center
restraint

38

• User-defined groups of atoms,
with centers of mass
connected by harmonic
restraints

• Provides native support for a
common collective variable use
case with Colvars Module

• Only for GPU-resident, would
require extra communication
for multi-node

Group position restraints validation

39

Benchmark: NVT POPC Equilibration Total Atoms: 132k
Total Restrained Atoms: 2816Restraint force: 2.5 (kcal/mol/Å)

Restraint distance: 19 Å

Timestep: 1 fs

fullElectFreq: 1 fs

39

Restrained Atoms: 1408

Restrained Atoms: 1408

Group position restraints performance

40

Benchmark: NVT POPC Equilibration

CPU: 16 cores Intel Xeon E5-2650 v2 @ 2.60GHz

GPU: 1 TITAN V GPU
Timestep: 2 fs

fullElectFreq: 4 fs

Simulation
(ns/day)

%Performance
Lost

NAMD Version Without
Restraints

With
Restraints

(WO-W)/WO
Restraints

NAMD 2.14 25.2 23.5 6.75%
NAMD 3 69.0 67.6 2.03%
Speedup 2.74 2.88

Restrained Atoms: 1408

Restrained Atoms: 1408

40

Total Atoms: 132k
Total Restrained Atoms: 2816

Leveraging Grace Hopper architecture
• Enables fast, low-latency

communication between CPU
and GPU via NVLink

• Provides memory coherency
between host and device

• Has much higher CPU memory
bandwidth per GPU than x86

• Expected to greatly reduce
CPU-side bottlenecks, such as
using Colvars with GPU-resident
simulation

41

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/

STMV NVE on DGX-2

Overcome Scaling Bottleneck From
PME Long-Range Electrostatics

42

• PME (particle-mesh Ewald)
requires calculating FFT

- 3D FFTs for PME can be too small
to parallelize effectively on GPUs

- Too much latency is introduced
with slab or pencil decomposition

• Assign PME to a single
device

- But over assignment can cause
load imbalance

PME Evaluation

Idl
e D

ev
ice

s!

Must make sure that PME device is not overloaded!

43

• Exploit task-based
parallelism

- Use one device for PME

- Reduce other force calculation
on that device by restricting
number of CPU cores
assigned to it

‣ Utilize NAMD's existing patch and

compute object distribution across
CPU cores

- Much better to underload one
GPU than to overload one GPU!

Overcome Scaling Bottleneck From
PME Long-Range Electrostatics

Nsight Systems profile
shows algorithmic phases:

‣ Integration
‣ Non-PME force step
‣ Integration
‣ PME force step

8.56M atom Spike-ACE2 on DGX-A100
‣ 1 CPU core for PME device
‣ 8 CPU cores for other 7 devices

Work-starved  

on non-PME step

First GPU is PME device; 
fully utilized on PME step 
without creating bottleneck  
for the other GPUs

Expand second GPU to  
understand compute details; 
remaining GPUs are similar

44

• Optimal number of CPU cores assigned
to PME device depends on how many
GPUs we are scaling across

- Need to determine for good load balancing

• Alternative approach under investigation

- Parallelize the scalable parts of PME (charge
spreading and force gathering) across all GPUs

- Use task-based parallelism for just the FFTs ⏤
much smaller serial bottleneck than entire PME

- Problem: overall bandwidth requirements double
for sending grid points versus sending atoms

Overcome Scaling Bottleneck From
PME Long-Range Electrostatics

Determine optimal number of CPU cores
for PME device for each number of GPUs

STMV NVE on DGX-A100
all optimizations enabled

1 2 4 8

1 12.5% 18.4501 48.5648 92.0631

2 25.0% 20.4685 50.3603 91.2143

3 37.5% 22.4732 52.7799 87.9946

4 50.0% 24.4936 54.2095 86.5377

5 62.5% 26.6304 54.3703 82.6978

6 75.0% 28.6954 53.4331 79.9226

7 87.5% 29.5140 51.9185 77.8757

8 100.0% 15.8655 29.4101 50.6227 76.6106

PME
cores

GPUsPME 
device work

45

• Website: https://www.ks.uiuc.edu/Research/namd/

• On the "Software Download" page, choose "Version 3.0b3" (or later)

• GPU-resident mode is support by multicore-CUDA and netlrts-smp-CUDA builds

• Source code is available as tar ball, access through GitLab repository available by request: 
https://www.ks.uiuc.edu/Research/namd/development.html

• Config file parameter to enable GPU-resident mode: CUDASOAintegrate on

• Run NAMD from a terminal command line; restrict PME cores as follows (DGX-A100, 8-GPU): 
 
./namd3 +p57 +pmepes 1 +setcpuaffinity +devices 0,1,2,3,4,5,6,7 myconf.namd  
 
"+p" needs to be total number of PEs (CPU-threads) set to: 7*8 + {#pmepes} 
 
"myconf.namd" refers to the NAMD config file

Obtaining and Running GPU-Resident NAMD

https://www.ks.uiuc.edu/Research/namd/
https://www.ks.uiuc.edu/Research/namd/development.html

Acknowledgments

46

• Haochuan Chen (UIUC), Antti-Pekka Hynninen (NVIDIA, ORNL), Julio Maia (AMD, UIUC),  
Jim Phillips (UIUC), Mohammad Soroush Barhaghi (Schrödinger, UIUC),  
John Stone (NVIDIA, UIUC), Peng Wang (NVIDIA)

• NIH grants P41-GM104601 and R24-GM145965

NIH Center for Macromolecular Modeling and Bioinformatics (2019)
Beckman Institute, University of Illinois at Urbana-Champaign

