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Introduction to Cell Simulations

. . . e Jac Genetic Switch
e Cell Simulation at Different

Scales « Ribosome Biogenesis
o Stochastic Simulations e Continuum Simulations
 Theory  E. coliColony

* Lattice Microbes * Multi-species Communities

 Probabilistic Simulations ° On-going Research



Biological Modeling at Different Scales

Atoms Subcellular structure Single ceIIs Multicellular organisms & populations
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Molecules to Macromolecular assemblies

Whole Cells and Colonies




Cell Simulation Techniques

| * Probability Based
e Particle Based

» Reaction-Diffusion Master Equation

* Molecular Dynamics (RDME)

 Brownian Dynamics e Chemical Master Equation (CME)
 Green’s Function Reaction Dynamics e Cellular Potts Modeling

e Smoluchowski Dynamics o Lattice Gas

e Dissipative Particle Dynamics e Continuum Based

« Advection-Reaction-Diffusion
Equations

 Flux-Balance Analysis



Cell Simulation Techniques

« @Green’s Function Reaction Dynamics / b \
o

http://gfrd.org/algorithm



Cell Simulation Techniques

o Smoluchowski Dynamics

https://www.youtube.com/watch?v=CvETkk1HRJ8



Cell Simulation Techniques

» Reaction-Diffusion Master Equation
(RDME)




Cell Simulation Techniques

o Cellular Potts Modeling

hitps://www.youtube.comjwatch?v=EPmorX7TGms https://www.youtube.com/watch?v=bArxFoCLGPE



Cell Simulation Techniques
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https://www.youtube.com/watch?v=1WIh1zV4tgE



Cell Simulation Techniques

e Dissipative Particle Dynamics

https://www.youtube.com/watch?v=0hibGZi8TWs



Cell Simulation Techniques

* Probability Based

» Reaction-Diffusion Master Equation
(RDME)

e Chemical Master Equation (CME)

e Continuum Based

« Advection-Reaction-Diffusion
Equations

 Flux-Balance Analysis



Cell Simulation Techniques

* Probability Based

Reaction-Diffusion Master Equation
(RDME)

Chemical Master Equation (CME)

e Continuum Based

« Advection-Reaction-Diffusion
Equations

 Flux-Balance Analysis



Propabllistic
Simulations



Stochasticity in Biology
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e Stochasticity (i.e. randomness)
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e Cellular events appear to be
stochastic ( A

* Gives rise to Noise in
populations

* Directly measurable

* Important at low copy numbers

Elowitz, Levine, Siggia, Swain. (2002) Science. 297(5584):1183-6.



Stochastic Simulations

Chemical Master Equation (CME)

Master Equation (ME) A= R& o Sropensity
R = / 11 . 1’”’\ OA%/CX]%
dP(s,t) — AP(3,1) \aﬂ;,l . amn) rate ngstant
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A(t) = A(0) Reaction-Diffusion Master Equation (RDME)
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| attice Microbes: A HPC Stochastic
Simulator

Reaction/Diffusion Benchmark
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http://www.scs.illinois.edu/schulten/lm/

lac Genetic Switch

Uninduced State
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E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011
J.R. Peterson, M.J. Hallock, J.A. Cole, Z. Luthey-Schulten, (2013) PyHPC '13: Proceedings of the 3rd Workshop on Python for
High-Performance and Scientific Computing.
P. Choi, L. Cai, K. Frieda, X.S. Xie. (2008) Science 322:442-446.



ac Genetic Switch Reactions

environment

repressor

Lac inducer-repressor interactions
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E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011



lac Genetic Switch

Simulate

on GPUs

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011



Switching Behavior Depends on Inducer
Concentration

| }
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E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011




Switching Behavior Depends on Cell
Structure

1e-3

0
0 1000 2000 3000
Time (s)

E. Roberts, A. Magis, J.O. Ortiz, W.
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Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011



3 rRNA

~00 Proteins g ' \ What are the timescales

of assembly (of the SSU)?
LSU

How are assembly
Intermediates localized In
cells?

T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhlman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35



RIbosome Assembly Process

16S rRNA + 20 SSU proteins = 2?9 states Nomura Hierarchical Map >>> 1612 states
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T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhlman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35



In vivo model - 1330 reactions, 251 species

Reaction Data source

40°C model, no

Assembly SX + lj — livs modifications
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In silico Ribosome Biogenesis
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T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhiman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35



Continuum
Simulations



Flux Balance Analysis

Growth as a Cell’s Objective
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Metabolic flow through energy-generating pathways
Metabolic flow to synthesize biomass precursors
Unused reactions and pathways
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Method

1) Encode Metabolic Network as Matrix

N = i
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B+2C—>D Reaction 2
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J.D. Orth, I. Thiele, B.O. Palsson. Nat. Biotech. 2010 28:245-248.



Heterogenelty In E. coli Population

Enzyme Catalysis

""""""" Gene expression is Noisy:

O : :
What population arises from
Vioax = Kear- | E Ipra difference in protein counts
among cells?

\

BRENDA database Protein Copy
number

P. Labhsetwar, J.A. Cole, E. Roberts, N.D. Price, Z. Luthey-Schulten. Proc. Nat. Acad. Sci., 110(34):14006-11, 2013



Sample Protein Counts

Start with a Metabolic Model for E. coli that has
~2000 reactions famhtatego ~1300 genes

Fluorescence Microscopy Protein mber Distrib
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P. Labhsetwar, J.A. Cole, E. Roberts, N.D. Price, Z. Luthey-Schulten. Proc. Nat. Acad. Sci., 110(34):14006-11, 2013



Growth Rates are Broadly Distributed

Uncorrelated sampling Ty
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3D dynamic Flux Balance Analysis

Coupling Stochastic Modeling  with  Metabolic Modeling
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J. Cole, Z. Luthey-Schulten. Isr. J. Chem., 2014, 54(8-9): 1219--1229
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3D Hybrid RD - FBA Method for Cell Colonies*

B Diffusion C Substrate Uptake
7-point stencil
finite difference a. By e Passive Uptake
e = Umax (X, 1 .:' .;.-.‘ |'I-A."

@-® Active Uptake, Crowded Diffusion
Y Keat@ext(X,1)
Il R+ Pext (X.1)

' — nf \ E
Umax = PIX, t) V.

L

F Regulation ‘ Air "“”"‘

First-order kinetics Agar | Iterative Steady-State Fluxes
Rates depend on local substrate Sdedeeboeod g
concentrations M9, trace me'fa|53[') |.';mi;:e 2.5 gl*glucose D Flux Balance & Growth R
A Analysis
Glucose (@)

TCA Cycle

| 4 y i L%
I‘Tl _~,2((.'r)n) ’ (pl' )

@ @ :,I]‘ruvate

\__/

k2 31(00, Op)

E Growth

& Expansion *Cole, et al. BMC Syst. Biol. (2015)

Time steps milliseconds Exponential growth law
Cell volume moves from "over-filled" sites to
for 30-40 hour grOWth neighboring sites with lower cell density



Colony Growth — Simulations & Experiments
B & I’f
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J. A. Cole, L. Kohler L, J. Hedhli, Z. Luthey-Schulten. BMC Syst Biol, 2015, 9(15)



Substrate Gradients Drive Metabolic Differentiation
Prediction & Measurement of Acetate Cross Feeding
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J. A. Cole, L. Kohler L, J. Hedhli, Z. Luthey-Schulten. BMC Syst Biol, 2015, 9(15)
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Substrate Gradients Drive Metabolic Differentiation

Optical Sectioning: Near colony Experimental Metabolic Behavior
top, glucose-starved cells

consume acetate.
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J. A. Cole, L. Kohler L, J. Hedhli, Z. Luthey-Schulten. BMC Syst Biol, 2015, 9(15)
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Substrate Gradients Drive Metabolic Differentiation

Fluorescence microscope with a structured
illumination device- IGB Core Facilities

Near base, oxygen-starved cells Experimental Metabolic Behavior
consume glucose and produce

acetate — See sideview!
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J. A. Cole, L. Kohler L, J. Hedhli, Z. Luthey-Schulten. BMC Syst Biol, 2015, 9(15)
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