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Introduction to Cell Simulations

• Cell Simulation at Different 
Scales 

• Stochastic Simulations 

• Theory 

• Lattice Microbes 

• Probabilistic Simulations 

• lac Genetic Switch 

• Ribosome Biogenesis 

• Continuum Simulations 

• E. coli Colony 

• Multi-species Communities 

• On-going Research



Biological Modeling at Different Scales
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Cell Simulation Techniques
• Particle Based 

• Molecular Dynamics 

• Brownian Dynamics 

• Green’s Function Reaction Dynamics 

• Smoluchowski Dynamics 

• Dissipative Particle Dynamics 

• Probability Based 

• Reaction-Diffusion Master Equation 
(RDME) 

• Chemical Master Equation (CME) 

• Cellular Potts Modeling 

• Lattice Gas 

• Continuum Based 

• Advection-Reaction-Diffusion 
Equations 

• Flux-Balance Analysis
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Probabilistic 
Simulations



Stochasticity in Biology

• Stochasticity (i.e. randomness) 

• Cellular events appear to be 
stochastic 

• Gives rise to Noise in 
populations 

• Directly measurable 

• Important at low copy numbers

�2 / 1

N

Elowitz, Levine, Siggia, Swain. (2002) Science. 297(5584):1183-6.



Stochastic Simulations
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Lattice Microbes: A HPC Stochastic 
Simulator

• GPU-accelerated RDME and CME implementations 

• Stochastic simulations of “well-stirred” and 
“spatially-resolved” biological systems 

• Python bindings for setting up cell simulations (pyLM) 

• Available from: 

• The Luthey-Schulten Website: http://www.scs.illinois.edu/schulten/lm/ 

• NIH Center for Macromolecular Modeling and Bioinformatics at 
Beckman Institute  0.1
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lac Genetic Switch
• An inducible 

genetic switch 

• Presence of 
lactose “turns on” 
expression of its 
own transporter 

• Gives rise to 
heterogeneity in 
populations

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011 
J.R. Peterson, M.J. Hallock, J.A. Cole, Z. Luthey-Schulten, (2013) PyHPC '13: Proceedings of the 3rd Workshop on Python for 

High-Performance and Scientific Computing. 
P. Choi, L. Cai, K. Frieda, X.S. Xie. (2008) Science 322:442-446.
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lac Genetic Switch Reactions

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011

Kinetic Model of lac Genetic Switch 
K – in vitro kinetic experiment

S – single molecule experiment

M – model parameter fit to
       single-molecule distributions

Roberts,)…ZLS,)PloS)CompBio)2011)
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lac Genetic Switch

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011

Simulate  
on GPUs



Switching Behavior Depends on Inducer 
Concentration

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011
Experimental data from Choi, Cai, Frieda, Xie (2008) Science               Simulations from Roberts, Magis, Ortiz, Baumeister, ZLS
                                                                                                                 PloS Comp. Biol. 2011

Induced 
State

Uninduced 
State



Switching Behavior Depends on Cell 
Structure

E. Roberts, A. Magis, J.O. Ortiz, W. Baumeister, and Z. Luthey-Schulten PLoS. Comput. Biol., 7(3):e1002010, 2011

Fast 
Growing

Slow 
Growing



Ribosome Biogenesis

T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhlman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751 
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35

3 rRNA 
~50 Proteins What are the timescales 

of assembly (of the SSU)?

SSU

LSU

How are assembly 
intermediates localized in 

cells?



Ribosome Assembly Process

T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhlman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751 
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35

From%in"vitro"Assembly%Model%to%Biogenesis%%
%%%%%%%%%%%%%%%%%16S%rRNA%+%20%SSU%proteins%=%220%states%

7%copies%rRNA%gene% %Baumeister%&%OrDz,%Xie,%Kuhlman%

%%

LaKce%Microbe%RDME%

Nomura%Hierarchical%Map%>>>%1612%%states%

rRND%gene%



Reaction Data source

Assembly Sx + Ii ⟶ Ii+1
40ºC model, no 
modifications

Degradation mRNA ⟶ ∅ From expt. half life

Transcription
DNA ⟶ DNA + mRNA 
DNA ⟶ DNA + rRNA

Chosen to match 
relative protein 
abundance

Translation 30S + mRNA + 50S ⟶ 30S + 

mRNA + 50S + n Protein
From transcript lengths

Diffusion Xi(x) ⟶Xi(x+δj)
Estimated or from SM 
experiments (Elf)

In vivo model  - 1330 reactions, 251 species
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T.M. Earnest, J.A. Cole, J.R. Peterson, T.E. Kuhlman, Z. Luthey-Schulten. Biopolymers, 2016, Jul 22, 105(10): 735-751 
T. M. Earnest, J. Lai, K. Chen, M. J. Hallock, J. R. Williamson, and Z. Luthey-Schulten. Biophysical Journal, 2015, Sep 15, 109(6): 1117-35



Continuum 
Simulations



Flux Balance Analysis

J.D. Orth, I. Thiele, B.O. Palsson. Nat. Biotech. 2010 28:245-248.

Growth as a Cell’s Objective
1) Encode Metabolic Network as Matrix

2) Assume Cell is at Steady State

Method

3) Maximize Biomass Production 
S · ~v = 0

maximize (v
biomass

)



Heterogeneity in E. coli Population

P. Labhsetwar, J.A. Cole, E. Roberts, N.D. Price, Z. Luthey-Schulten. Proc. Nat. Acad. Sci., 110(34):14006-11, 2013

Gene expression is Noisy: 

What population arises from 
difference in protein counts 

among cells? 
max .[ ]cat TotalV k E=

Protein	Copy	
number

BRENDA	database

Enzyme	Catalysis



Sample Protein Counts

P. Labhsetwar, J.A. Cole, E. Roberts, N.D. Price, Z. Luthey-Schulten. Proc. Nat. Acad. Sci., 110(34):14006-11, 2013
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Start with a Metabolic Model for E. coli that has  
~2000 reactions facilitated by ~1300 genes



Growth Rates are Broadly Distributed

P. Labhsetwar, J.A. Cole, E. Roberts, N.D. Price, Z. Luthey-Schulten. Proc. Nat. Acad. Sci., 110(34):14006-11, 2013
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3D dynamic Flux Balance Analysis

J. Cole, Z. Luthey-Schulten. Isr. J. Chem., 2014, 54(8-9): 1219--1229

Coupling Stochastic Modeling     with     Metabolic Modeling

Oxygen
Glucose

Glucose 
Transporters



Heterogeneous Microenvironment in E. coli

J. Cole, Z. Luthey-Schulten. Isr. J. Chem., 2014, 54(8-9): 1219--1229

a. b.

Oxygen
Glucose

Anoxic region  
arises inside colony

Glucose 
Transporters



3D#Hybrid#RD#+#FBA#Method##for#Cell#Colonies*#

*Cole,#et#al.##BMC#Syst.#Biol.#(2015)#

IteraEve#Steady+State#Fluxes#
#################################&#Growth#R#
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Colony&Growth&–&Simula2ons&&&Experiments&

10 hours

15 hours

20 hours

25 hours

30 hours

35 hours

1.0 mm

G
ro

w
th

ra
te

(h
r-1

)
Expansion
Rate = 0.011 µm s-1

50

100

150

200

250

12 hours

13 hours

14 hours

400 µm

50 µm

O
2

C
on

ce
nt

ra
tio

n
(µ

M
)

0

0.5

1

1.5

2

2.5

14 hours

15 hours

16 hours

680 µm

G
lu

co
se

C
on

ce
nt

ra
tio

n
(g

l-1
)

A B

C

0

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

Colony Diameter (µm)

C
ol

on
y

H
ei

gh
t(
µm

)

24 hr

48 hr

36 hr

aceB

gapA
acs

40 hr

�max = 0.50

�max = 0.80

�max = 0.65

John&Cole,&et&al.&BMC&Sys.&Bio&(2015)&
&

Thanks, Uri Alon (W,I)&
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