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LIGAND HOMOLOGY MODELING AS A
NEW COMPUTATIONAL PLATFORM TO
SUPPORT MODERN DRUG DEVELOPMENT




LIGAND HOMOLOGY MODELING: INTRO

Structure-based virtual screening in drug discovery

Target structure <:
Binding site detection

¥
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Compound docking
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4 X-Ray / NMR A

Protein models

\close / remote homology/

Screening library

Ranked library




LIGAND HOMOLOGY MODELING: INTRO

Requirements for ligand docking/scoring approaches:

(@ Accurate ligand binding pose prediction
@ Reliable compound ranking in virtual
screening




LIGAND HOMOLOGY MODELING: CHALLENGES

Most ligand docking algorithms are inapplicable to protein models

AUTODOCKS
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LIGAND HOMOLOGY MODELING: OVERVIEW

Template-based
protein structure
prediction

Structure templates

Initial protein model

Low-resolution refinement
TASSER

Final protein model

(meta) Threading

PROSPECTOR,
SP3, Sparks

Specific
potentials &
restraints

Template-based
protein-ligand modeling

Ligand templates

Binding site prediction
FINDSITE

v

Initial binding pose
FINDSITELHM

v

Low-resolution refinement
Q-DocktiM

v

Final binding pose




LIGAND HOMOLOGY MODELING: TECHNOLOGY & APPLICATION

FINDSITE-"M Q-Dock-HM

FINDSITE

Ligand binding site

prediction

Similarity-based Low-resolution ligand

ligand docking docking/refinement

KINOME-HM

Virtual screening
of the human
Kinome

X-ReactKIN

In silico drug
profiling




LIGAND HOMOLOGY MODELING: FINDSITE

FINDSITE

Ligand binding site
prediction




LIGAND HOMOLOGY MODELING: FINDSITE

Target sequence [g Structure modeling -
Three key components:

Protein threading Predicted structure > Evolutionary relationships
» Structure similarity

K> Common location

N\

Ligand-bound Structure
templates alignments

Clustering
Ranking

v v v v ¥
Confidence Molecular Ligand Binding Binding
index function templates residues sites




LIGAND HOMOLOGY MODELING: FINDSITE

Benchmarks carried out for a set of 901 proteins:
o Crystal structures

FINDSITE is compared to LIGSITE®>¢

Crystal structures
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LIGAND HOMOLOGY MODELING: FINDSITE

Performance of FINDSITE in CASPS8

T0422 BLIND T0483
PREDICTION

Correct (TP)

Missed (FN)

10494




LIGAND HOMOLOGY MODELING: FINDSITEM

Why does FINDSITE WORK?




LIGAND HOMOLOGY MODELING: FINDSITEHM

FINDSITE-"M

Similarity-based
ligand docking




LIGAND HOMOLOGY MODELING: FINDSITEM

Anchor Variable

part

Anchor |
CHES Variable

Required for Accounts for residues
binding the specificity

» Can an anchor be identified in ligands bound to evolutionarily
related proteins?

* What is the sequence/structure conservation of the anchor and
variable regions?

 Can the consensus binding mode be used for ligand docking into the
predicted pockets?
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LIGAND HOMOLOGY MODELING: FINDSITEHM
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LIGAND HOMOLOGY MODELING: FINDSITEHM

Glutathione S-transferase from E. Coli complexed with
glutathionesulfonic acid (PDB-ID: 1a0f)

Variable parts (extracted from remote templates)




LIGAND HOMOLOGY MODELING: FINDSITEHM

Glutathione S-transferase from E. Coli complexed with
glutathionesulfonic acid (PDB-ID: 1a0f)

Conserved substructure — white, Variable region — black

&+

Sequence entropy Experimental B-factors
(red — low, green — high) (red — low, green — high)




LIGAND HOMOLOGY MODELING: FINDSITEHM

FINDSITE-"™

o A fast, similarity-based docking approach
» Uses conserved common ligand substructures

Variable

pocketl pocket3

regions

ligandl %

ligand2 ligandl

(. ligand3

v, ligandl
pocket2 ' ligand2
Max common

substructure




LIGAND HOMOLOGY MODELING: FINDSITEHM
Glutathione S-transferase from E. Coli (PDB-ID: 1a0f)

Similarity-based docking by FINDSITEMHM
FINDSITELHM

Crystal: thin
Predicted: refinement
thick

>

 —
Conserved RMSD = 3.67 A

substructure

(anchor)
AUTODOCK3 LIGIN

RMSD=2.73A RMSD=6.25A RMSD=5.51A




LIGAND HOMOLOGY MODELING: Q-Dock-M

O-DocktHM

Low-resolution ligand
docking/refinement




LIGAND HOMOLOGY MODELING: Q-Dock-M

Q-Dock-HM:
Low-resolution modeling

[ RECEPTOR: Ca and side chain centers of ]

Mass

LIGANDS: quasichemical building blocks
(functional groups)

carbox
y ~ amide
e /|
aromatic
rings
— y
aliphatic
chain

e

carbox
thioether ™ y

Description

Symbol/formula

Aromatic rings

mono-, heterocyclic

Ether

—C-0-C-

Thioether

—C-S-C-

Carbonyl

>C=0

Thiocarbonyl

>C=S

Halogene

—Cl; —Br; —F; -l

Guanidine

~NHC(NH,)NH

Amide

—CONH-

Carboxyl

—COOH

Amine (1°,2°,3°)

—NH,; >NH; >N—

Phosphate

Sulphate

Nitro group

WIS IS

Hydroxyl group

Thiol group

Aliphatic chain




LIGAND HOMOLOGY MODELING: Q-Dock-M

Q-Dock™"™™ 5 combined knowledge-based potentials:

Docking » Generic energy terms (derived from PDB)
accuracy » Harmonic restraints on conserved ligand groups
 Pocket specific contact potential

Ligand ranking « Optimized weight factors

» Replica Exchange Monte Carlo sampling
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LIGAND HOMOLOGY MODELING: Q-Dock-M

204 pharmacologically relevant targets from CCDC/Astex dataset
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LIGAND HOMOLOGY MODELING: Q-Dock-M

204 pharmacologically relevant targets from CCDC/Astex dataset
Crystal structures Ca-RMSD: 3.8
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LIGAND HOMOLOGY MODELING: Q-Dock-M

Docking times on 2.0 GHz AMD Opteron processor
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LHM Is more
accurate and
much faster

For AMMOS,
AutoDock3 and
LIGIN, the default sets
of parameters were
used and the docking
protocols have not
been optimized with
respect to the
accuracy and
simulation time.




LIGAND HOMOLOGY MODELING: KINOMEHM

KINOME-HM

Virtual screening
of the human
Kinome




LIGAND HOMOLOGY MODELING: KINOMEHM

Availability of high-resolution crystal structures for
the human kinome
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Kinase inhibitor
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LIGAND HOMOLOGY MODELING: KINOME!M

Human Kinome:
‘_7 Protocol
PROSPECTOR_3:
Threading templates

e

TASSER:
Modeled kinase structures
/ Screening library

Structural
characterization

—

FINDSITE:

Binding residues, ligand templates \_
| Ligand-based VS

FINDSITE'HM:;

Initial binding poses \_
2 DockiM: -~
Optimized binding poses \.

Functional
characterization




LIGAND HOMOLOGY MODELING: KINOMEM
2,095,759
A _” ZINC7 compounds
kinase structures - P
http://zinc.docking.org
‘_7

108,141,164

fingerprint scores for kinase-drug pairs

5,134,483

predicted ligand binding poses, structure-based scores

Simulation time
150-200 years on a single core




LIGAND HOMOLOGY MODELING: KINOMEHM

Structure modeling of kinase domains




LIGAND HOMOLOGY MODELING: KINOMEHM
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LIGAND HOMOLOGY MODELING: KINOMEHM

Docking accuracy for kinase inhibitors
Non-specific contacts

!

Low-resolution refinement by Q-DockLH'V'T
improves binding poses over FINDSITELAM




LIGAND HOMOLOGY MODELING: KINOMEHM

Virtual screening benchmarks using 362 kinase inhibitors
from BindingDB (http://www.bindingdb.org)
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LIGAND HOMOLOGY MODELING: KINOMEHM

Virtual screening against 7 protein kinases from DUD

average

SRC
PDGFRb
p38a
KDR
FGFR1
EGFR
CDK2

DOCKG6
Crystal structures

Protein models

average

SRC
PDGFRb
p38a
KDR
FGFR1
EGFR
CDK2

DUD: Huang et al. (2006) J Med Chem 49, 6789-6801

DOCKG6 LHM

Protein models

average




LIGAND HOMOLOGY MODELING: X-ReacTXIN

X-ReactKIN

In silico drug
profiling




LIGAND HOMOLOGY MODELING: X-ReacTXIN

Screening library

Protein target 1 e Protein target 2

Ranking 1 Ranking 2

pockets pockets
chemically dissimilar chemically similar

1 L 1 1 I g L 1 1 1
20x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10° 1.2x10" 20x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10"

Protein target 1 Protein target 1




LIGAND HOMOLOGY MODELING: X-ReacTXIN

Sequence-based Structure-based Ligand-based

o

Pocket SID Geometric hashing Chemical correlation

Human X-ReactKIN Bioassay

Kinome-" Machine learning data
-GG




LIGAND HOMOLOGY MODELING: X-ReacTXIN

Prediction of inhibitor cross-reactivity for the human kinome

21 (#1), 112 (#2), 275 (#3) kinases Dasatinib
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LIGAND HOMOLOGY MODELING: X-ReacTXIN

Comparison to experimental SAR profiles

577 cmps

203 kinases

similarity

Bamborough et al. (2008) J Med Chem 51, 7898-7914

X-ReactKIN

similarity

X-ReactKIN

04 06 08 1.0
SAR similarity

Number of kinases

l(l -0.8 04 02 00 02 04 06 08 1.0

CC (SAR/X ReactXIN)




LIGAND HOMOLOGY MODELING: SUMMARY OF FINDSITE

FINDSITE is a powerful threading based approach for the
prediction of protein function, binding site location and
ligand screening.

Based on the insight that across evolution the location of the
binding site is conserved as well as common features of the
bound ligands.

Method does not require a crystal structure, but also works

for low resolution predicted models; tolerates inaccuracies
up to a global RMSD of 8-10A because the binding site is
often < 2 A.

For approximate models, predicts the binding site within 4 A
for 67% of target proteins.

Have also demonstrated promising results for GO-based
functional inference. Average MCC=0.64




LIGAND HOMOLOGY MODELING: SUMMARY OF FINDSITE-M

Have developed FINDSITE'HM an automated approach to the
prediction of the ligand anchor and variable regions, ligand
binding pose and virtual ligand screening that is applicable to
experimental structures and lower resolution predicted
models.

Has significant implications as to how protein function
evolves. Have conserved anchor region and variable region
that imparts specificity.

For binding pose prediction, method works acceptably for
protein models with a RMSD from native of 4-5 A.

Encouraging results shown for the use of low resolution
models in virtual ligand screening.

Ligand ranking is not simply correlated with its molecular
weight. Unfortunately, many ligand docking algorithms give
results that are strongly correlated with molecular weight.




LIGAND HOMOLOGY MODELING: SUMMARY KiNoME'"M/X-REACTN

Have provided structure predictions for the entire human
kinome

For each KINASE, have screened ZINC7 library of

~2 million compounds. Have ranking and binding pose
predictions for each compound.

Can exploit these screening results to prioritize ligands that
might be specific or general kinase inhibitors.

Have predicted the structure and cross-reactivity of all
proteins in the Human Kinome, results are strongly
correlated with experimental SAR results.

A database of all predictions of the entire human kinome is at
Kinome'HM is at http://cssb.biology.gatech.edu/kinomelhm.




LIGAND HOMOLOGY MODELING: PUBLICATIONS

FINDSITE

Brylinski M, Skolnick J (2008) PNAS 105:129
Skolnick J, Brylinski M (2009) Brief Bioinform 10:378
Brylinski M, Skolnick J (2010) Proteins 78:118

FINDSITE'HM
Brylinski M, Skolnick J (2009) PLoS Comput Biol 5:e405

Evaluated by Rainer Merkl & Reinhard Sterner

Q-Dock'HM
Brylinski M, Skolnick J (2008) J Comput Chem 29:1574
Brylinski M, Skolnick J (2010) J Comput Chem 31:1093

Kinome'HM / X-ReactKN

Brylinski M, Skolnick J (2010) J Chem Inf Model 50:1839
Brylinski M, Skolnick J (2010) Mol Pharm 7:2324

KinomelHM
October 2010




LIGAND HOMOLOGY MODELING: AVAILABILITY

http://cssb.biology.gatech.edu

User-friendly Software & Manuals &
webservers databases documentation
SERVICES SOFTWARE MANUALS

FINDSITE-metal

FINDSITE'HM




CROWDING AND HYDRODYNAMIC INTERACTIONS LIKELY DOMINATE
IN VIVO
MACROMOLECULAR MOTION




INTRODUCTION

The total concentration of macromolecules inside an E. coli cell is in
the range of 300-400 mg/ml. This crowding greatly affects both the
kinetics and equilibria of biochemical reactions in living systems.

Motion of a
tagged RNA
inside an E. coli
_—_—

cell (Golding and

| U ™ Cox, 2006)

(Hlustrated by D. Goodsell)

To improve our understanding of a living cell, development of
computational methods that can provide reliable predictions of
crowding effects on biological reactions is necessary.

Need to develop and apply simulation methods, e.g. Brownian Dynamics




OVERVIEW OF TALK

What are the features dominating

Macromao

Crowding a

ecular diffusion within an E. coli cell?

onhe?

How important is macromolecular shape?
Are hydrodynamic interactions important?
What are the differences in dynamic behavior

when HI or

attractive interactions dominate?

What is needed to reproduce experiment?




PRELIMINARY PROTOCELL STUDY

The “crowded environment” inside a cell can alter and modify the
overall behavior of biological systems.

Modeling the crowded cellular environment is an important first
step toward whole cell simulation.

We have developed a Brownian dynamics method for simulating
the motion of molecules in a cell that can include HI .




PROPERTIES OF AN E. COLI CELL

Description
Cell total volume 1fL
Cytoplasm volume 0.67 fL

Nucleoid (DNA + protein) 0.16 fL
volume

(R. H. Garrett and C. M. Grisham,

# of cytoplasmic proteins 1,000,000 (3 mM)’ Biochemistry, 1999)
(excluding ribosomal
proteins):

# of ribosomes 18,000 (58 uM) *
# of tRNAs 200,000 (650 uM) *
# of mMRNAs 4,000 (13 uMm) *

Volume occupancy of ~30% (300 — 400 mg/mL)
macromolecules

(From the

CybercCell
"The value of [(Cytoplasmic volume) — (Nucleoid volume)] was used as database CCDB)

the volume for the denominator of the concentration calculation.




15 TYPES OF MACROMOLECULES IN VIRTUAL CELL




VIRTUAL CYTOPLASMIC SYSTEM

Proteins are represented by
. For nucleic acids,
were used to describe
each nucleotide.

Box size is 100 nm x 50 nm x 50
nm ( 1.25 x 104 fL).

This  system contains 29
ribosomes, 528 glycolytic
enzymes, 299 tRNA’s, and 113
GFP’s. Total concentration is

The macromolecules were placed
within the box by random
translation and rotation without
any steric clashes.




STOKES-EINSTEIN RELATIONSHIPS

e Stokes-Einstein relationships for spherical
particles:

where n is the viscosity of the solvent and a is
the Stokes radius of the sphere.




FOR NONSPHERICAL PARTICLES,

An arbitrarily shaped object undergoing Brownian
motion is expressed by a 6 x 6 diffusion tensor, D,
which is related to a resistance tensor, , through the
generalized Einstein relationship . The translational

diffusion tensor D,, is related to the translational
diffusion coefficient, D, by




For a system with hydrodynamic interactions, the
hydrodynamic interaction tensor is calculated using the Rotne,
Prager, Yamakawa formalism:

With n the viscosity of the solvent and r; is the distance vector
between beads i and j. Note that the radius of bead is the
only parameter to be optimized to reproduce
hydrodynamic properties in dilute conditions.




Now, consider a 3N x 3N supermatrix, B, consisting of N
x N B; blocks at an arbitrary origin O

Here, 6, is the Kronecker delta function. This
supermatrlx is then inverted to obtain a 3N x 3N

supermatrix, C,

and




For N particles system in a Newtonian fluid and in
absence of an external shear flow, the hydrodynamic forces
acting on particles, F, are related to the particle velocities,
U, through the Stokes equation

where R is the resistance matrix and is the inverse of the
mobility matrix, M.

When torque-angular velocity is not considered, the so-
called “F version” in Ref. (11), F and U are 3N x 1 vectors
and R and M are 3N x 3N matrices. Then, the diffusion
matrix of the system is simply given by




The resistance tensor R, which contains both near-
field lubrication effects and far-field many-body
interactions, is calculated as

R=(M") +R, - R;

2B

*"(M>=)1, represents the contribution of many-body, far-field
interactions.

"R,; represents the exact two-body HI, which includes both
near-field and far-field interactions.

= is the resistance tensor that represents two-body far-
field interactions. The far-field part has already been included
on (M=)1. Thus, in order not to count these interactions
twice, we must subtract off the two-body interactions. This is
the standard method to correct for the lubrication effects in
the resistance tensor.




BROWNIAN DYNAMICS (BD) OF ARBITRARILY SHAPED OBJECTS WITHOUT HI

where At is the time step and x; is the vector describing

the position of the center of diffusion and orientation
of the i-th object. FP is a generalized force and G/(At) is
a 6 x 1 random displacement vector during time step At
due to the Brownian noise, which satisfies

(G, (at))=0,(G, (at)G, (At)) = 2D At5,




BD WITH HYDRODYNAMIC INTERACTIONS:
MIDPOINT ALGORITHM

When HIl are considered, the diffusion tensor depends
in principle on the configuration of the entire system.
The propagation eq is

.EP

r=r0+(V-D)At+[i(_llf At+G(At)

B
=04k T (V-I\/I)At+(M-Fp)At+G(At)

Where r is the particle’s position vector and G(At) is the
random displacement due to Brownian motion, which

has the following properties

(G(at)) =0,(G(At)G (At )) = 2k, T MAL




In contrast to a BD algorithm with constant diffusion tensors, we
need to evaluate the spatial gradient of the mobility tensor in
the BD simulation with HI, in which the explicit computation of
is a O(N3) task. To avoid this, we used a method introduced by
Banchio and Brady, based on Fixman’s idea, the so-called “mid-
point scheme”.

(F*)=0,(F°(0)F® (t)) = 2K, TR/t

Here, FB is the Brownian force, obtained by the Cholesky
decomposition method. The procedure is the following:

(1) Compute the velocity U° using an initial configuration r°




(2) Move the particles to intermediate positions r’ by a small
fraction of a time step, At/m

where m is 100.

(3) Calculate a new velocity U’ at the intermediate positions
using the forces evaluated at r°

(4) Calculate the drift velocity, U,

(5) Finally, update the positions of the particles for time step At.




DIFFUSION CONSTANT CALCULATION

For short times, the mean square displacement is linear and
the short time diffusion constant is defined as

N.is the number of type i particles in the system and D** is the 3
x 3 matrix of the self part of the diffusion tensor.

Similarly, the long time diffusion constant is given by

. ”m<\r(t> - r(0>\2>4

[ =o'




SIMULATION CONDITIONS

Periodic boundary conditions were used.

Simulation temperature was 298 K.

Generated ten different random configurations of the system.

30 independent simulations were done.

For BD simulations of repulsive and non-specific, attractive binding

models without HI, 30 and 50 ps simulations were performed with
a time step of 0.5 and 0.1 ps, respectively.

For BD simulations with HI, we ran 15 ps simulations with a time
step of 2 ps.

The first 5, 30, and 5 ps of simulations of repulsive, non-specific
binding models, and HI models were ignored entirely. To estimate
the long-time diffusion coefficients, MSD values after a relative
time interval of 5 ps was used.




RESULTS

See: T. Ando and J. Skolnick. Crowding and hydrodynamic
interactions likely dominate in vivo macromolecular motion.
Proc Natl Acad Science 2010:107: 18457-18462.




ESTIMATION OF INFINITE DILUTION MACROMOLECULAR
DIFFUSION CONSTANT FROM ATOMIC STRUCTURE

Fit to infinite dilution diffusion
constant of a representative
set of proteins and t-RNA using

Translational —=—

the rigid-particle formalism Rotational —o— 4

(see Garcia De La Torre J, Huertas
ML, & Carrasco B (2000) Biophys J

78(2):719-730). Fit the data with
a bead radius of 6.1 A

. 5.5 6.0 6.5
Gives GFP diffusion constant of Radius (&)

8.9 A2 vs experiment of 8.7 A2.




EFFECT OF MOLECULAR SHAPE IN DIFFUSION OF DENSE HARD SPHERE SYSTEMS

Molecular-shaped (left) and sphere (right)
systems at 300 mg/ml.

Macromolecules are represented in different
colors.




DIFFUSION CONSTANTS IN DENSE SYSTEMS OF MOLECULES
AND EQUIVALENT SPHERE SYSTEMS

Long time diffusion constant ratio as a function of macromolecule radius in the sphere
(open symbols) and molecular-shaped systems (filled syReduction in diffusion constant
of GFP measured in vivo of DH5a, BL21(DE3), and K-12 E. coli. are shown by plus,
cross, and asterisk, respectively. Green line is GFP’s radius.mbols).




SPHERE VERSUS ACTUAL SHAPE RESULTS:

Below 350 mg/ml, the results of explicit shape
and equivalent sphere systems are very close.

At 350 mg/ml, D, is somewhat smaller for the
sphere systems.

So we can use the equivalent sphere
approximation to explore the role of Hl.

But for both representations, crowding cannot
explain the for GFP. For
example, at 300 mg/ml, simulated D, /D,

Something is missing!




COMPARISON OF SPHERICAL SYSTEM WITH
HYDRODYNAMIC INTERACTIONS VS JUST REPULSIVE INTERACTIONS

; T
o AAA A AN AA A

250 mg/ml

/L

Reduction in diffusivity as a function
of radius at three different
concentrations. Triangles and circles
represent D°/D, and DY/D,. Open
(filled) symbols are values in the
. sphere model with repulsive (HlI)
KaddalX ‘AN interactions. Plus, cross, and asterisk
[ symbols exp. Green line is GFP’s
radius.
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COMPARISON OF HARD SPHERE AND HI SIMULATIONS:




HI RESULTS

e HIl greatly reduces the short time diffusion
constant, D> from the infinite dilution value,
D.. In contrast, D>=D_, when HI are ignored.

For GFP, without adjustable parameters,
simulations reproduce the experimental
reduction in D,.

Implies that crowding and HI are major factors
responsible for the slow down in diffusion in
intracellular environments.




EFFECT ON NONSPECIFIC ATTRACTIVE INTERACTIONS ON DIFFUSION

e Consider each macromolecule to be a rough
sphere filled with van der Waals particles with a 3
A diameter.

Surface roughness is estimated as the difference
between the Stokes radius and the radius of
gyration of the macromolecule.

lgnore HI and adjust the strength of the van der
Waals attraction to give the experimentally
observed reduction in GFP’s diffusion constant.




COMPARISON OF D, /D IN NONSPECIFIC ATTRACTION MODEL WITH HI MODEL

Radius A)

At 300 mg/ml, long-time diffusion constant ratio, D~/D,, as a
function of radius in the non-specific, van der Waals interaction (HI)

model is represented by squares (filled circles). Green line is GFP’s
radius.




IMPLICATIONS

If non specific attractions dominate in vivo
diffusion, then reduction in diffusion constant
is very strongly dependent on molecular
radius.

In contrast, if Hl dominate, reduction in
diffusion constant is much less sensitive to
molecular radius.



LONG DISTANCE AND LONG TIME INTERMOLECULAR CORRELATIONS

e Calculate normalized pair correlation function
between molecules i andj:

Where d, is a specified the surface distance between particlesiandj, and tis
the time interval. 6(d, — d;) is the Dirac delta function. d; is the surface
distance between particles i and j at time t.




NORMALIZED PAIR CORRELATION FUNCTION AVERAGED OVER PAIRS OF
GFP AND RNA POLYMERASE MOLECULES FOR THE THREE DIFFERENT
SIMULATION MODELS AT 300 MG/ML.




DIFFERENCES OF THE THREE MODELS

Hard sphere model

Little spatial or
temporal
correlation.

C;<0.1even at
short times.

True for all size
pairs of molecules.

Hl model

For both small pairs
and large pairs, see
significant, but
weak, C; <0.3,

intermolecular
correlation that
persists up to quite
long times (>100
ns) and distances
(at least 10 A).

Non specific binding

model
For large
molecules, see
positive correlation
for distances<5 A
that are long lived
in time. See long
lived clusters.

For small
molecules, this
effect is greatly
reduced.




CONCLUSIONS

 Equivalent sphere model is a good description
of the motion of macromolecules in
intracellular environments.

HI dynamics likely exert a significant effect on

intercellular dynamics.

Crowding and HI can quantitatively reproduce
the experimentally observed diffusion
constant of GFP without any adjustable

parameters.




HOW TO EXPERIMENTALLY DIFFERENTIATE BETWEEN HI AND NON SPECIFIC

BINDING MODELS:

If HI dominate:

Decay like 1/r; lubrication forces give
repulsion on approach and attraction
as pairs of move apart.

Short time diffusion constant, D, is
significantly reduced from D

D./D, depends on molecule radius.

Long time diffusion constant D, has
much weaker dependence on particle
radius.

Have significant spatial and temporal
correlations for all size
macromolecules.

If nonspecific binding dominates:

Decay like 1/r? for spherical
macromolecules filled with small van
der Waal spheres.

Short time diffusion constant is the
same as in infinite dilution, D

D./D,is independent of molecule
radius.

D, is strongly size dependent, with
long lived clusters formed with larger
macromolecules.

Significant, radius independent
spatial and temporal correlations are
absent.




OTHER FACTORS THAT COULD AFFECT INTRACELLULAR DIFFUSION:

e Flectrostatics- but inclusion in simulations
only slightly reduces GFP diffusion constant.

e Viscosity of the cytoplasm- In vivo viscosity is

essentially the same as bulk water; < 2CP.

e GFP dimerization- GFP dimerizes at <100nm
lonic strength.

But we expect these factors to be small.




OUTLOOK

 Have a useful model to elucidate some
general futures of intracellular dynamics at
the molecular level.

Exploring differences in metabolic fluxes in
vivo from that at infinite dilution.

Have generalized this class of models to
include a schematic membrane. Using this to
examine very simple models of cellular
division.
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CORRELATION BETWEEN STOKES RADIUS AND THE AVERAGE VALUE OF RG AND Ry;ax

Stokes radlus Rg (A) R.ax Average of Rg
and R__ (A)

Ribonuclease 14.2 22.4 18.3
GFP 24.7 17.0 27.6 22.3
Phe-tRNA 28.8 22.3 45.9 34.1

Ovoalbumin 31 21.7 38.5 30.1
Hemoglobin 31 23.7 33.0 28.3
Enolase 36 26.5 41.2 33.8
Aldolase 46 34.9 59.0 47.0
Ribosome 85.0 154.9 120.0
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Ligand Homology Modeling:

Ligand-based virtual 1024-Dbit fingerprints
against the KEGG Cﬁﬁwﬁt of 12,478 molecules
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Ligand Homology I\/Iodeling/:
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