
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group
Computational Biophysics Workshop

User-Defined Forces in
NAMD

Alek Aksimentiev

David Wells

Greg Sigalov

November 2006

A current version of this tutorial is available at
http://www.ks.uiuc.edu/Training/Tutorials/

Join the tutorial-l@ks.uiuc.edu mailing list for additional help.

CONTENTS 2

Contents

1 TclForces 5
1.1 Introduction . 5
1.2 Example 1: Constant Forces . 5
1.3 Example 2: Rotation . 9
1.4 Example 3: Forcing a Subset of Atoms 13
1.5 Example 4: Improving Efficiency 17

2 TclBC 21
2.1 Example 1: Making a Bubble . 22
2.2 Optimizing a TclBC script . 25
2.3 Example 2: Concentrating the ions in a solution 28
2.4 Example 3: Improving efficiency 32
2.5 Example 4: Imposing a Shear Flow 36

CONTENTS 3

Introduction

This tutorial is designed to guide users of VMD and NAMD in the use of
tclForces and tclBC. The tutorial assumes that you already have a working
knowledge of VMD and NAMD, as well as the Tcl language. For the accompa-
nying VMD and NAMD tutorials go to:
http://www.ks.uiuc.edu/Training/Tutorials/
This tutorial has been designed specifically for VMD 1.8.5, and should take about
5 hours to complete in its entirety.

The tutorial is subdivided into two separate units, one for tclForces and one
for tclBC. These script-based facilities make possible virtually any perturbation
of your system, and after completing this tutorial you will have the basic skills
to use them.

Throughout the text, some material will be presented in separate “boxes”.
These boxes include complementary information to the tutorial and tips or
technical details that can be further explored by the advanced user.

Tcl code is written in this font. When a line ends with a backslash (\) this
means that there should be no line break . . . don’t press enter, just keep typing!

If you have any questions or comments on this tutorial, please email the TCB
Tutorial mailing list at tutorial-l@ks.uiuc.edu. The mailing list is archived at
http://www.ks.uiuc.edu/Training/Tutorials/mailing list/tutorial-l/.

CONTENTS 4

Required programs

The following programs are required for this tutorial:

• VMD: Available at http://www.ks.uiuc.edu/Research/vmd/ (for all plat-
forms)

• NAMD: Available at http://www.ks.uiuc.edu/Research/namd/ (for all
platforms)

Getting Started

You can find the files for this tutorial in the forces-tutorial-files directory.
Below you can see in Fig. 1 the files and directories of forces-tutorial-files.

Figure 1: Directory structure of forces-tutorial-files

To start VMD type vmd in a Unix terminal window, double-click on the VMD
application icon in the Applications folder in Mac OS X, or click on the Start
→ Programs → VMD menu item in Windows.

1 TCLFORCES 5

1 TclForces

In this unit, you will learn about NAMD’s TclForces functionality. Although
many user needs were anticipated in the development of NAMD, to anticipate
them all specifically would be impossible. TclForces allows users to easily sup-
plement the built-in constraint and force functionality with script-based forces.

1.1 Introduction

The basic idea of tclForces is very simple: we provide NAMD with a Tcl script
which tells NAMD to apply certain forces to certain atoms. The only special
requirement of this script is that it define a command named calcforces. This
command is called by NAMD each timestep. Within the script, we can access
atomic positions and masses, as well as parameters set in the NAMD configura-
tion file. In this unit, we will see how to use tclForces through four examples
of increasing complexity.

1.2 Example 1: Constant Forces

For our first exposure to tclForces, we will do one of the simplest thing one
could imagine: apply a constant net force to a system.

1 First, let’s look at the NAMD configuration file. Go to the directory
forces-tutorial-files/tclForcesFiles/push and open the file push.namd.
Everything is standard about it until the end, where we see some unfa-
miliar lines:
tclforces on
set linaccel "30 0 0"
tclforcesscript push.tcl

The first line simply turns tclForces on. The second sets a parameter
for the acceleration that we’ll use in the script, as we’ll soon see. The last
line is the name of the script which actually does the work.

In-line scripts. It is also possible to include the contents of your
tclForces script directly in your NAMD configuration file. Instead
of providing the name of a script, we could instead write the script
contents within curly braces:

tclforcesscript {
... contents of script ...
}

This is most useful for particularly short scripts.

2 Now let’s look at the script. Open the file push.tcl, in the same directory.

1 TCLFORCES 6

3 First, we select the atoms we’re interested in:

set numatoms 1231

set atoms {}
for { set i 1 } { $i <= $numatoms } { incr i } {
lappend atoms $i

}

foreach atom $atoms {
addatom $atom

}

The structure we’re using is ubiquitin, the same protein as that used in
the VMD and NAMD Tutorials. Here, we’re using the protein alone, in
vacuum, and so the structure contains just 1231 atoms. We first build a
list of the atomic indices (NAMD atom indices, unlike VMD atom indices,
start at 1.) For each atom, we then call the addatom command. This tells
NAMD that we want access to this atom’s coordinates. Forces may be
applied to an atom without this call.

4 We next convert from the natural acceleration units Å·ps−2 to the NAMD
units kcal/mol·Å·amu, and print some information:

set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
print "Linear acceleration imparted: ($linaccel) Ang*ps^-2"

Note that to print messages, we must use the print command, instead of
the normal Tcl command puts.

NAMD Units. The basic NAMD units are kcal/mol for energy,
Angstroms for length, atomic mass units (a.k.a. Daltons) for mass,
and Bar for pressure. Other units are derived from these, e.g. the
NAMD unit of force is 1 kcal/mol·Å ≈ 69.48 pN.

5 The only thing left is the calcforces command:

1 TCLFORCES 7

proc calcforces { } {
global atoms numatoms linaccel namd
loadcoords coords
loadmasses masses
set comsum "0 0 0"
set totalmass 0
foreach atom $atoms {
set force [vecscale $masses($atom) $linaccel namd]
addforce $atom $force
set comsum [vecadd $comsum \
[vecscale $masses($atom) $coords($atom)]]

set totalmass [expr $totalmass + $masses($atom)]
}
print "Center of mass = [vecscale [expr 1.0/$totalmass] \
$comsum]"

}

The first line of the command is very important. It basically imports
the variables named, so that they can be accessed in the calcforces
command.

Next we call the command loadcoords. This sets the variable coords to a
Tcl array of coordinates of the atoms that have been added using addatom.
In this case, of course, that is all the atoms of the system. Array elements
in Tcl are accessed using parentheses. Similarly, loadmasses retrieves the
atomic masses, putting them in an array named masses.

Then we loop through the atoms, applying the specified force to each using
the addforce command. Along the way, we also calculate the center of
mass of the protein. We see two more Tcl commands in actions here:
vecadd and vecscale. These add two vectors and multiply a vector by a
scalar, respectively. There is a third vector command, vecsub, which we
will see a bit later.

Linear acceleration. Linear acceleration is governed by Newton’s
Second Law:

F = ma

Here, F is a force vector, m is the mass, and a is the acceleration
vector. Thus, this equation says that to achieve a specified accel-
eration, we must apply a force equal to that acceleration times the
mass, in the same direction we want to accelerate. In our case, we
apply a force to each individual atom, scaled by its mass so that
each experiences the same acceleration, and thus the protein moves
together as a whole.

6 Because the system is so small, you can run it on your desktop or laptop
without trouble, and see the protein move. Run the file push.namd. With
a normal installation, you would do this with the command

namd2 push.namd > push.log

1 TCLFORCES 8

Coordinates. Coordinates in tclForces are not wrapped around
the unit cell. If you need wrapped coordinates for whatever reason,
you must wrap them yourself using the periodic cell dimensions and
origin.

7 After this finishes, we want to see how the protein was affected. We
will now use VMD’s MultiPlot plugin to view the results. Open the file
plot.tcl in your favorite text editor, and change the first line to be the
location of the log file you just created, e.g.

set log push.log

if you named the log file push.log. To run the script, either type

vmd -e plot.tcl

from the command line, or open VMD and source the script file in the Tk
Console:

source plot.tcl

0 5000 10000 15000 20000
t/fs

0

10

20

30

40

50

60

70

x/
Å

Center of mass

Figure 2: Center of mass position plotted versus time.

8 You should see something like Fig. 2. The beginning of the graph is
quadratic, as we expect. However, the velocity saturates at some value
because of the Langevin dynamics used in the simulation. Langevin dy-
namics involve a damping factor, which creates a terminal velocity.

1 TCLFORCES 9

Langevin dynamics. Langevin dynamics are commonly used in
NAMD to simulate at constant temperature, in this case in a so-
called NVT ensemble. The keywords beginning with langevin in
the NAMD configuration file control its settings. Without Langevin
dynamics activated, we would be simulating in the NVE ensemble,
in which case energy rather than temperature is constant. NAMD
also includes constant-pressure options for simulation in the NPT
ensemble.

9 Now open the trajectory in VMD. First launch VMD, then open the Tk
Console. Make sure you’re in the tclForcesFiles directory, then type
the command

mol load psf common/ubiquitin.psf dcd push/push.dcd

If you could not produce the trajectory, there is a sample one in the
example-output directory. Notice that the Langevin dynamics prevent
the protein from moving too quickly.

1.3 Example 2: Rotation

We will now add a layer of complexity: we will force atoms differently based
on their coordinates. In this example, we will force atoms in such a way that,
in addition to a linear force, the protein also rotates about an axis parallel to
the z-axis and through the protein’s center of mass. Note that this represents
a perturbation which cannot be achieved using NAMD’s built-in constant force
and rotating constraint functionalities.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-a.

2 Look at the NAMD configuration file. Open the file rot-a.namd. At the
end, we see the following:

tclforces on
set linaccel "30 0 0"
set angaccel 1
tclforcesscript rot-a.tcl

This is very similar to the previous example, but here we provide an
additional scalar to describe the angular acceleration.

3 Now let’s look at the script itself. Open the file rot-a.tcl. The atom
selection part at the beginning is identical to the last case, so we will not
repeat the discussion. The next part of the file is again similar, but also
processes the angular acceleration, and sets a constant for π.

set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
set angaccel namd [expr double($angaccel)/418.68]
set PI 3.1415926535898

1 TCLFORCES 10

print "Linear acceleration imparted: ($linaccel) Ang*ps^-2"
print "Angular acceleration imparted: (0 0 $angaccel) Rad*ps^-2"

We convert from natural units to NAMD units, just like before. Then we
print some informational text using the print command.

4 Now we’ll look at the calcforces command. The first part is nearly the
same as in the previous example. The differences are the change of one of
the global variables, and the fact that we no longer apply forces in the
first loop.

proc calcforces { } {
global atoms numatoms linaccel namd angaccel namd
global PI

loadcoords coords
loadmasses masses

set comsum "0 0 0"
set totalmass 0
foreach atom $atoms {

set comsum [vecadd $comsum [vecscale $masses($atom) \
$coords($atom)]]

set totalmass [expr $totalmass + $masses($atom)]
}
set com [vecscale [expr 1.0/$totalmass] $comsum]
print "Center of mass = $com"

5 The last part of the script is where the real differences lie:

foreach atom $atoms {
set linforce [vecscale $masses($atom) $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt(pow($x, 2) + pow($y, 2))]
set phi [expr atan2($y, $x) + $PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angforce [vecscale [expr $masses($atom) * \

$angaccel namd * $rho] $angdir]
set force [vecadd $linforce $angforce]
addforce $atom $force

}
}

1 TCLFORCES 11

The first section above calculates the distance from the rotation axis, rho,
and the angle from the x-axis at which the force should be applied, phi
(90◦ from the angle of the position vector, hence the addition of π/2
radians.) Fig. 3 shows how these variables are related.

x

y

φF

φ−π/2

ρ

rotation axis

atom

x

y

z

Figure 3: Relationships among variables in the script rot-a.tcl

After printing the force angle associated with one atom so we can monitor
the rotation, we find a unit vector (i.e. a vector with length one) pointing
in the phi direction. We then multiply this by the mass of the atom and its
distance from our rotation axis, giving us the correct angular force for the
angular acceleration requested in the NAMD configuration file. Finally,
we add the linear and angular forces to get the total force.

1 TCLFORCES 12

Angular acceleration. Angular acceleration is governed by an equa-
tion analogous to Newton’s Second Law:

τ = Iω (1)

τ is torque (analogous to force), ω is the angular acceleration, and
I is the moment of inertia (analogous to mass). Torque is given by

τ = ρ× F

where F is the force and ρ is a position vector relative to the rotation
axis (see Fig. 3). In our case, we apply the force perpendicular to
the ρ vector, so the cross product simplifies and we get

τ = ρF (2)

for the magnitude. For point particles, the moment of inertia is
simply I = mρ2, where m is the particle’s mass. Combining this
with Eqns. 1 and 2 and solving for F , we get

F = mωρ

for the force per particle to achieve a specified angular acceleration.

6 Now run the simulation:

namd2 rot-a.namd > rot-a.log

This should again take just a few minutes.

7 Plot the angle phi by using the script plot.tcl just as you did before
(there is a different copy in the current directory.)

You should see something like Fig. 4. Plot the center of mass as well, by
opening plot.tcl and changing the var variable to "Center of mass".
This can be accomplished by simply commenting the first set var line,
and uncommenting the other:
#set var "atom 1: phi"
set var "Center of mass"

8 We again see a roughly quadratic time dependence at the beginning of the
trajectory give way to a linear one, again a consequence of the Langevin
damping.

9 Open the trajectory in VMD. With VMD open, go to the main tclForcesFiles
directory, then type the following in the Tk Console:

mol load psf common/ubiquitin.psf dcd rot-a/rot-a.dcd

Challenge: Find the dependence of the terminal linear and angular veloci-
ties on the langevinDamping parameter of the simulation, set in the configura-
tion file, as well as the dependence on the applied force.

1 TCLFORCES 13

Figure 4: Rotation angle plotted versus time.

1.4 Example 3: Forcing a Subset of Atoms

This example deals with the important ability to force a subset of your atoms.
In practice, you almost never want to apply force to all atoms in the system.
In this section, we will apply forces only to the backbone atoms of the protein.
We accomplish this by making a special “target atom” PDB file, using the beta
column to mark the atoms we want to apply force to. In addition, we will use
the occupancy column to tell our script the atomic masses, in order to demon-
strate how to provide the script with additional information.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-b.

2 As usual, we will first examine the NAMD configuration file. Open the
file rot-b-short.namd. First, note that we are now using a different
system, one in which the ubiquitin has been solvated. This is a more
natural environment for the protein, and we can use it now that we are
not applying forces to all atoms.

Look at the end of the file, where we set up tclForces. We see a new
line:

set targetAtomPdb ../common/ubiquitin solvate backbone.pdb

With this line, we specify the aforementioned target atom PDB file. Thus,
our first task is to produce that file. We will use a VMD script to accom-
plish this.

3 Open the file ../makeTargetAtomPdb.tcl. The first section sets a few
variables. First, the relevant file names:

1 TCLFORCES 14

set pdb common/ubiquitin solvate.pdb
set psf common/ubiquitin solvate.psf
set targetPdb common/ubiquitin solvate backbone.pdb

Next, we set the selection text we will use to select our atoms, and the
beta value that these atoms will receive:
set selection "protein and backbone"
set targetMark "1.00"

4 Next, we load the structure into VMD, and set both the beta and occu-
pancy columns to zero:

mol load psf $psf pdb $pdb
set all [atomselect top all]
$all set beta 0
$all set occupancy 0

5 Now we make a selection of the target atoms, set their beta and occupancy
columns to the appropriate values, and write the output PDB. Note the
ease with which the list of masses are used to set the occupancy:

set target [atomselect top $selection]
set masses [$target get mass]
$target set beta $targetMark
$target set occupancy $masses

$all writepdb $targetPdb
exit

6 Now run the script:

vmd -dispdev text -e ../makeTargetAtomPdb.tcl

(Note: For Windows users, open the VMD GUI and source the script file
in the Tk Console.)

If you were unable to run the script, copy the file example-output/
ubiquitin solvate backbone.pdb into the common directory.

7 Next, take a look at the tclForces script. Open the file rot-b.tcl. Right
from the beginning, we notice many differences. It first sets a targetMark
variable so that the script can recognize the marks we’ve set in the target
PDB:

set targetMark "1.00"

8 Now we have to process the PDB. There are no built-in routines for accom-
plishing this, so the following code is quite low-level, but it is conceptually
simple. The columns of a PDB file have a fixed character width, so we
must simply read each line, and break it into fixed-sized pieces:

1 TCLFORCES 15

set targets {}
set masses {}
set inStream [open $targetAtomPdb r]
foreach line [split [read $inStream] \n] {
set string1 [string range $line 0 3]
set string2 [string range $line 6 10]
set string3 [string range $line 17 20]
set string4 [string range $line 12 15]
set string5 [string range $line 46 53]
set string6 [string range $line 72 75]
set string673 [string range $line 73 75]
set string7 [string range $line 22 25]
set string8 [string range $line 62 65]
set string9 [string range $line 55 60]

9 These pieces are then parsed according to the PDB format. We first make
sure that this line corresponds to an atom record and not a comment line
or some other entry. Then, if the atom has a beta value matching the
target value, we form a triple consisting of the atom’s segname, resid,
and name. This is necessary for finding the index of the atom:

if { ([string equal $string1 {ATOM}] || \
[string equal $string1 {HETA}]) &&
[string equal $targetMark $string8] } {

lappend targets "[string trim $string6] \
[string trim $string7] [string trim $string4]"

lappend masses "[string trim $string9]"
}

}
close $inStream

10 The next step is to use the atom triples to find its index, and form a list
of these, using the atomindex command. addatom is then called for each
of these atoms:
set atoms {}
foreach target $targets {
foreach {segname resid atom} $target { break }
set atomindex [atomid $segname $resid $atom]
lappend atoms $atomindex
addatom $atomindex

}

Notice the third line. This is a common trick in Tcl for succinctly extract-
ing the elements of a list into individual scalar variables.

11 Next we find the number of target atoms. We also set a boolean flag,
applyforces, telling the rest of the script whether any atoms have been

1 TCLFORCES 16

selected to force, allowing us to skip the calculation code if it’s unneces-
sary:

set numatoms [llength $atoms]
if { $numatoms > 0 } {
set applyforce 1

} else {
print "WARNING: no target atoms have been detected"
set applyforce 0

}

set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
set angaccel namd [expr double($angaccel)/418.68]
set PI 3.1415926535898
print "Linear acceleration imparted: ($linaccel) Ang*ps^-2"
print "Angular acceleration imparted: (0 0 $angaccel) Rad*ps^-2"

12 Now we get to the main part of the script, the calcforces definition. It is
essentially identical to the last example, except for the test of applyforce:

proc calcforces { } {
global atoms numatoms masses linaccel namd angaccel namd
global applyforce
global PI

if { $applyforce } {
loadcoords coords
set comsum "0 0 0"
set totalmass 0
foreach atom $atoms mass $masses {

set comsum [vecadd $comsum [vecscale $mass $coords($atom)]]
set totalmass [expr $totalmass + $mass]

}
set com [vecscale [expr 1.0/$totalmass] $coordsum]
print "Center = $com"

foreach atom $atoms mass $masses {
set linforce [vecscale $mass $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt(pow($x, 2) + pow($y, 2))]
set phi [expr atan2($y, $x) + $PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

1 TCLFORCES 17

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angforce [vecscale [expr $angaccel namd * $rho * \
$mass] $angdir]

set force [vecadd $linforce $angforce]
addforce $atom $force

}
}

}

13 Now run the simulation, just as you have in previous examples:

namd2 rot-b-short.namd > rot-b-short.log

If you have access to a cluster, run it on the cluster—refer to local in-
structions for how this is done. This simulation will run for just 100 steps,
so that the benchmark times are printed. In the next section, we will see
how to improve this performance.

If you are interested, examine the files rot-b-long.log and rot-b-long.dcd
in the example-output directory, which were produced with a slightly
longer simulation. When loading the trajectory in VMD, use the PSF
common/ubiquitin solvate.psf

1.5 Example 4: Improving Efficiency

In most cases, it’s unnecessary to recalculate the force values applied at each
time step. Depending on the situation, one may be able to recalculate every
1000 steps, saving a lot of computational effort and therefore increasing the
speed of the simulation. In this section, we will see how to do that.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-c.

2 Open the NAMD configuration file, rot-c-short.namd. The new line this
time is

set forcesRecalcFreq 10

As its name implies, this parameter sets how often our forces will be
recalculated.

3 Now open the script rot-c.tcl. The first differences start at line 58:

set forces {}
foreach index $atoms {
lappend forces "0.0 0.0 0.0"

}

set forcecount $forcesRecalcFreq
set printcount 0

1 TCLFORCES 18

We first set up a forces list. This is the variable which holds the values
of the forces we will apply to the atoms. We also set up some counter vari-
ables: forcecount and printcount are both incremented each timestep.
When forcecount equals forcesRecalcFreq, the forces are recalculated,
and forcecount is reset to zero; otherwise, the forces are not recalculated.

4 Now we begin the calcforces command. First, as usual, we declare our
global variables. We then apply the forces that are saved in the forces
list.
proc calcforces { } {
global atoms numatoms forcemult masses avgmass forces
global applyforce forcesRecalcFreq
global forcecount printcount
global PI

if { $applyforce } {
foreach atom $atoms force $forces {
addforce $atom $force

}

5 Next, we test whether the forces will be recalculated next timestep, and if
so, tell NAMD that we will want atomic coordinates for the target atoms
by calling addatom:

if { $forcecount == [expr $forcesRecalcFreq - 1] } {
print "Adding atoms prior to reconfiguring forces at \
$printcount"

foreach atom $atoms {
addatom $atom

}
}

As we will see shortly, we call clearconfig after the forces are recalcu-
lated. This call erases all addatom records; without it, the coordinates of
the atoms added will be available every timestep, independently of whether
we call loadcoords, and therefore much of the potential speed gain will
be lost. However, this means that addatom must be called again each time
we want to recalculate forces, and because of technical details it has to be
done at least one step before the coordinates will be used.

6 Next we have the code that recalculates the force. As alluded to above,
the recalculation happens when forcecount equals forcesRecalcFreq.
The rest of the force calculation code is identical to the code we had in
the last example, except that instead of calling addforce with each force
vector, we now put the vector in the forces list variable:

if { $forcecount == $forcesRecalcFreq } {
print "Recalculating forces at $printcount"

1 TCLFORCES 19

loadcoords coords
set comsum "0 0 0"
set totalmass 0
foreach atom $atoms mass $masses {
set comsum [vecadd $comsum [vecscale $mass $coords($atom)]]
set totalmass [expr $totalmass + $mass]

}
set com [vecscale [expr 1.0/$totalmass] $comsum]
print "Center of mass = $com"

set forces {}
foreach atom $atoms mass $masses {
set linforce [vecscale $mass $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt(pow($x, 2) + pow($y, 2))]
set phi [expr atan2($y, $x) + $PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angforce [vecscale [expr $angaccel namd * $rho * \

$mass] $angdir]
set force [vecadd $linforce $angforce]
lappend forces $force

}

7 Finally, we print some information, call clearconfig, and reset forcecount.

print "Step ${printcount}: Recalculated \
[llength $forces] forces"

set forcecount 0
clearconfig

}
incr forcecount

}
incr printcount
return

}

8 Now run the simulation:

namd2 rot-c-short.namd > rot-c-short.log

Again, this is a short simulation, running 100 steps, just long enough for
benchmark timing information to be printed. Compare the speed of this

1 TCLFORCES 20

simulation to the last. There should be a significant difference—comparing
the example files rot-b-short.log and rot-c-short.log, which were
run on just a single CPU, there is nearly a 15% speed increase. As the size
of the system and the number of CPUs increase, applying tclForces ef-
ficiently becomes even more important: comparing rot-c-long.log with
rot-b-long.log, both run on 20 processors, rot-c is almost 60% faster!

Once again, there are sample output files, rot-c-long.dcd and rot-c-long.log
in the example-output directory, and should again be loaded together
with the PSF file common/ubiquitin solvate.psf.

Challenge: Take the provided file kcsa closed.pdb, and use the partial
structure kcsa open.pdb as a target to open the channel using tclForces.

You now know the basics of tclForces. In the next section, you will learn
about a similar feature of NAMD called tclBC, which is suitable for different
circumstances.

2 TCLBC 21

2 TclBC

In a NAMD configuration file, one sets up the simulation parameters, such
as the temperature, pressure, or a uniform electric field, for the molecular
system as a whole. In many cases, though, you will need to impose bound-
ary conditions, apply a non-uniform electric field, or selectively apply forces
to a group of atoms of the given type or located in a particular area. For
this purpose, you can use a tclBC(which stands for Tcl Boundary Condi-
tions) script. A tclBCscript is written in the Tcl programming language (see
http://tmml.sourceforge.net/doc/tcl/), a rudimentary knowledges of which would
be enough for most tasks. The script will be interpreted line-by-line, therefore
slowing down the simulation, sometimes considerably. For this reason you will
want to keep your scripts simple and efficient.

tclBC versus tclForces. tclBC and tclForces are both scripting
interfaces that allow to get information about the atoms’ positions
and apply forces to selected atoms during a NAMD simulation. In
both scripts, the force can be calculated individually for each atom,
depending on its unique ID number and its current position. The
main difference between tclBC and tclForces is that an indepen-
dent instance of tclBC is running on each processor, and only atoms
forming the patch treated by that processor are visible to the given
instance of tclBC. This feature makes tclBC more efficient than
tclForces, which is run on just one CPU, but also limits its ca-
pabilities. If you need to apply forces to each atom irrespective of
the position of other atoms, use tclBC. On the other hand, if you
have to consider mutual positions of two or more atoms or gather
information about the whole system, you will need tclForces.

The way the coordinates of atoms are wrapped around periodic boundaries
in a tclBC script is controlled using the command wrapmode, which that may
have one of the following arguments:

• patch is the default mode: the atom’s coordinates are considered as the
position in NAMD’s internal patch data structure. This is in general
different from an atom’s coordinates relative to the global origin, so patch
mode should not be used unless you know what you are doing.

• In mode input, the atom’s coordinates correspond to its position in the
input files of the simulation.

• In mode cell, the atom’s equivalent position in the unit cell centered on
the cellOrigin is used.

• In mode nearest, the atom’s equivalent position nearest to the
cellOrigin is used.

For most purposes, mode cell is a good choice.

2 TCLBC 22

2.1 Example 1: Making a Bubble

Imagine that you have a water box, and you want to create a spherical bubble
of vacuum. You can do that by applying forces to every atom found inside
this sphere to push it out. To avoid instability, you would want to start with
a small bubble and then increase it until the desired size is reached. The rate
of increasing the size of the bubble is up to you. If this rate is too large,
some atoms will be pushed too hard and therefore move too fast, causing the
simulation to crush. Fast-moving atoms may also break the structure of a
double-stranded DNA or another molecular complex held together by relatively
weak non-bonded interactions (van der Waals and electrostatic forces). Even
if the simulation remains stable, you should watch the changes in temperature
and pressure to make sure that the energy influx, which is equal to the work
done by the force you are applying, has enough time to dissipate.

Choosing the loading rate. Generally you would want to keep the
perturbation of the system as low as possible by imposing any exter-
nal forces as slowly as you can afford given your available computa-
tional resources. It is a good idea, though, to run a trial simulation
at a fast pace to see what is happening to the system, and thereby
get an idea of how fast you can move things without losing the
stability of the simulation or increasing the temperature or pressure
beyond reason.

1 Open the file tclBCexamples/BUBBLE/eq04.bubble.namd in a text editor.
Scroll down to the end of the file to the line tclBC on.

You should find the following code:

tclBC on
tclBCScript {
set bubbleCenter "0.0 0.0 0.0"
set tclBCScript < your working directory >/bubble.tcl
source $tclBCScript

}
tclBCArgs {0. 15. 0.01 5.}

Since a tclBC script is called from NAMD, it is referenced NAMD configu-
ration file, which is also a good place to set the script parameters. The NAMD
command tclBC on turns the TclBC interface on. In our example, tclBCScript
{ ... } contains the initialization of a key variable and a reference to the file
that contains the script itself: source $tclBCScript. If the script is short, it
can be placed entirely within the body of the command tclBCScript in the
NAMD configuration file. Finally, the command tclBCArgs is used to pass a
list of variables to the main TclBC procedure calcforces (we will talk about
it very soon). In this case, the four arguments found in curly brackets have the
meaning: “make a bubble starting from radius 0 and increase it to 15 at a rate
of 0.01 per simulation step, by applying forces (proportional to) 5.”

2 TCLBC 23

2 Look through the script tclBCexamples/BUBBLE/bubble.tcl.

bubble.tcl contains the following code:

Two first agruments of calcforces are automatically forwarded
to it by NAMD. The other 4 arguments match the list of 4 values
from command tclBCArgs.

proc calcforces {step unique Rstart Rtarget Rrate K} {

global bubbleCenter ;# defined in tclBCScript{ ... }

increase R, starting from $Rstart, by $Rrate at each step,
until it reaches $Rtarget; then keep it constant

set R [expr $Rstart + $Rrate * $step]
if { $R > $Rtarget } { set R $Rtarget }

let only the main processor print the output

if { $unique } {
print "step $step, bubble radius = $R"

}

get the components of the bubble center vector

foreach { x0 y0 z0 } $bubbleCenter { break }

pick atoms of the given patch one by one

while {[nextatom]} {

set rvec [getcoord] ;# get the atom’s coordinates

get the components of the vector
foreach { x y z } $rvec { break }

find the distance between the atom and the bubble center
(long lines can be broken by a backslash and continued
on the next line)

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))]

if the atom is inside the sphere, push it away radially

2 TCLBC 24

if { $rho < $R } {
set forceX [expr $K * ($x-$x0) / $rho]
set forceY [expr $K * ($y-$y0) / $rho]
set forceZ [expr $K * ($z-$z0) / $rho]
addforce "$forceX $forceY $forceZ"

}
}

}

The structure of a TclBC script. Just as in the case of tclForces,
every tclBC script must define a calcforces command. Unlike
in the case of tclForces, however, calcforces now takes two
or more arguments. The first two arguments are forwarded to it
automatically: step is simply the simulation step, and unique is
nonzero for only one instance of calcforces corresponding to the
atom patch 0. The tclBCArgs line in the NAMD configuration file
specifies the rest.

In the code bubble.tcl, we use the unique flag to print something from
within calcforces once at each step. Without if { $unique } clause, the
print command would be executed by every processor.

The list of variables Rstart Rtarget Rrate K forwarded to calcforces
matches the list of values tclBCArgs {0. 10. 0.01 5.} of the NAMD con-
figuration file. You can use more or fewer variables, or none at all, as long as
the lengths of the two lists are the same. The automatic variable step and
unique don’t count, so calcforces will always have two more arguments than
to tclBCArgs.

The key command in calcforces is nextatom, which tells NAMD to select
the next atom of the given patch. nextatom returns a value which is nonzero if
the next atom has been successfully selected, or zero if no more atoms are left to
process. Thus, while {[nextatom]} { ... } is a loop that will be repeated
until all atoms of the current patch are processed.

In principle, you never know which exactly atom will be selected next. How-
ever, once an atom is selected by nextatom, a number of commands can be used
to get its properties:

set atomid [getid] ;# 1-based atom ID number
set coords [getcoord] ;# 3-component coordinate vector (A)
set mass [getmass] ;# mass (atomic units)
set charge [getcharge] ;# charge (atomic units)

Using these parameters, you can decide what to do to that atom.
In the script bubble.tcl, we find the coordinates of the atom using the

command foreach { x y z } $rvec { break }; this is a standard trick to
get the components of a vector or a list in Tcl. Using the same method, we
find the coordinates of the bubble center. Then we check whether the atom is
inside the bubble of radius $R and center $bubbleCenter. If so ($rho < $R),

2 TCLBC 25

we calculate the components of the force vector such that it is directed radially
from the bubble’s center. In this simple example, the absolute value of the force
is always $K whenever the force is applied. Finally, addforce tells NAMD to
actually push the given atom by adding the force vector “$forceX $forceY
$forceZ” to the force that would act on that atom otherwise.

3 Change (cd) to the directory tclBCexamples/BUBBLE.

4 Run a NAMD simulation by typing

namd2 eq04.bubble.namd > eq04.bubble.log

(for standard installations of NAMD.)

5 Open file eq04.bubble.log, and find a line that reports the speed of com-
putation, e.g. TIMING: 3000 CPU: 1340.82, 0.4363/step. The speed
of computation is given in seconds per step, one step being 1 fs in this
case. Write these numbers down, as you will need to compare them to the
speed of an optimized script.

6 If you are unable to run the simulation, use the sample output file
../BUBBLE OUTPUT EXAMPLE/eq04.bubble.log.

7 Open the simulation trajectory in VMD. Use the sample trajectory file
../BUBBLE OUTPUT EXAMPLE/eq04.bubble.dcd if necessary.

8 In main VMD window, click Graphics, then Representations. In Graphi-
cal Representations window, type x>0 in Selected Atoms text box, press
Enter. Below this box, click Trajectory, select Update Selections Every
Frame. Rotate the image if necessary using mouse.

9 In the main VMD window, click Display, then check Depth Cueing box.
Click Display again, click Display Settings. Set Cue Mode to Linear. Set
Cue Start 2.00, Cue End 3.00, vary them to see the effect of this parameters
on the system’s view.

10 Run the trajectory animation, and watch the formation of the bubble.

Sample snapshots of the simulation trajectory are shown in Fig. 5. The direc-
tory tclBCmovies contains MPEG movies bubble*.mpg that show the bubble
formation trajectory animation at 0.1 ps per frame.

2.2 Optimizing a TclBC script

The above script bubble.tcl is far from being perfect. The same job can be
done much more efficiently by decreasing the number of atoms processed at each
step, as well as the number of arithmetic operations. Note that Tcl arithmetic
is much slower than hard-coded C++ arithmetic of the NAMD. A more efficient
script is given in file BUBBLE/bubbleFast.tcl.

2 TCLBC 26

Figure 5: Snapshots of the bubble formation. The initial simulation cell bound-
aries are shown by a line.

Dropping atoms. The command dropatom tells the processor to
no longer select the given atom by the command nextatom in a
TclBC script. This increases the speed of computation because
fewer atoms are considered. The command cleardrops cancels all
the dropatom commands called earlier on the given processor. Note
that a dropped atom can drift to another processor where it has not
been dropped. Since the list of atoms in a patch changes with time,
it is often a good idea to call cleardrops occasionally and then
drop unnecessary atoms again.

1 Take a look at the script BUBBLE/bubbleFast.tcl, also presented below:

wrapmode cell

this line is moved above calcforces to avoid doing this
transformation more than once

foreach { x0 y0 z0 } $bubbleCenter { break }

set TOL 3. ;# distance tolerance parameter

proc calcforces {step unique Rstart Rtarget Rrate K} {

global x0 y0 z0 TOL

set R [expr {$Rstart + $Rrate * $step}]
if { $R > $Rtarget } { set R $Rtarget }

if { $unique } {
print "step $step, bubble radius = $R"

}

Atoms found at a distance larger than $TOL from the surface
of the bubble, or $RTOL from the center of the bubble, will

2 TCLBC 27

be ignored (dropped) for the rest of a 100-step cycle.

set RTOL [expr {$R + $TOL}]

restore the complete list of atoms to consider

if { $step % 100 == 0 } { cleardrops }

while {[nextatom]} {

set rvec [getcoord]
foreach { x y z } $rvec { break }
set rho [expr {sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))}]

Atoms at distances 0 to $R from the bubble center are pushed,
atoms father than $RTOL are dropped. Atoms between $R to $RTOL,
that is with a layer of thickness $TOL, are neither pushed nor
dropped at this step, so that they will be considered again at
the next step(s). They may come closer to the bubble and then
they will have to be pushed.

if { $rho < $R } {

set forceX [expr {$K * ($x-$x0) / $rho}]
set forceY [expr {$K * ($y-$y0) / $rho}]
set forceZ [expr {$K * ($z-$z0) / $rho}]
addforce "$forceX $forceY $forceZ"

} elseif { $rho > $RTOL } {

dropatom ;# no longer consider this atom until "cleardrop"

}
}

}

Since most water molecules are far from the bubble, we don’t need to check
their coordinates every step. It’s enough to do that once in a while (every 100
steps in this example). At all other times, only a small number of atoms that
are still inside the bubble or within distance $TOL from it, and only these are
selected by nextatom each step.

2 Open configuration file eq04.bubbleFast.namd, and make sure that it is
calling the tclBC script bubbleFast.tcl. Run a NAMD simulation by
typing

2 TCLBC 28

namd2 eq04.bubbleFast.namd > eq04.bubbleFast.log.

3 If you are unable to run the simulation, use the sample log file
../BUBBLE OUTPUT EXAMPLE/eq04.bubbleFast.log.

4 Look through file eq04.bubbleFast.log, find the word TIMING, and com-
pare the speed to that found when using the script bubble.tcl. In our
samples, the speeds obtained on a single CPU are 0.4363 s/step (8.0 ps/hr)
and 0.2084 s/step (18.8 ps/hr) for the original and optimized script, re-
spectively. Your numbers may differ.

5 Run a NAMD simulation using file eq04.bubbleFast.namd on a cluster.
Make sure to direct the output to a new file. Repeat the above steps and
find the computation speed. In our example
(../BUBBLE OUTPUT EXAMPLE/eq04.bubbleFast.4CPU.log), the speed on
4 CPUs increased to 0.0619 s/step (40.3 ps/hr).

Scaling of the speed of computation. The NAMD performance
on a multi-processor cluster or supercomputer is roughly propor-
tional to the number of processors, when the number of CPUs is up
to ≈ 1 CPU per 1000 atoms. Since a tclBC script distributes its
computations over all CPUs used, the performance of NAMD with
tclBC also scales well, though some loss in speed is inevitable. Op-
timization of tclBC scripts, in particular by the use of the dropatom
command, is essential to keeping up high simulation performance.

2.3 Example 2: Concentrating the ions in a solution

A more complex initialization of the TclBC script is necessary when it is sup-
posed to process a selected group of atoms. Imagine that, for whatever reason,
you want to gather all K+ and Cl− ions within a sphere with the same center
and radius as in the above example. For this purpose, we will push all ions
toward the center of the sphere. The force applied will be constant for all ions
beyond the sphere, and proportional to the distance between the ion and the
sphere center for atoms inside the sphere.

1 Change to the directory tclBCexamples/IONS.

2 Open file eq04.concentrateIons.namd, scroll to the end, and look at the
tclBC block.

As before, the tclBC script is set up in the NAMD configuration file:

tclBC on
tclBCScript {
set sphereCenter "0.0 0.0 0.0"
set sphereRadius 10.0
set maxForce 5.0

2 TCLBC 29

set pdbSource waterbox40-0.2M.pdb
set tclBCScript concentrateIons.tcl
source $tclBCScript

}
tclBCArgs { }

In this case, we don’t explicitly pass any extra arguments to calcforces
(the variables step and unique will still be passed implicitly). Instead, we set
up global variables sphereCenter, sphereRadius, maxForce, and pdbSource.
They will be made visible in calcforces using command global.

To identify the ions, we will read the system’s PDB file, locate the ions’
entries, and make a list of their IDs.

3 Open the file waterbox40-0.2M.pdb in a text editor and find the lines
containing text CLA (for chloride) or POT (for potassium).

The ion entries in the PDB file for a large system may look like

ATOM ***** CLA CLA 170 -36.100 -48.734 7.045 1.00 0.00 ION CL

...

ATOM ***** POT POT 1 -0.574 -49.643 34.378 1.00 0.00 POT K

In the above example, atom IDs for the ions are above 99999, and therefore not
shown in the PDB file by a decimal. Thus, to find out the atom IDs of the
ions, we will need to read the PDB file line by line while counting the atom
entries. An entry for each atom must begin with four letters ATOM or HETA. In
the PDB file above, each ion is identified by the residue name CLA or POT, which
occupies positions 17-19 of the line. Note that a 4-letter residue name would
occupy positions 17-20 of the line. To make the script more general, we will
read symbols 17-20 and then trim them (remove spaces).

4 Open file concentrateIons.tcl, and look through it.

The file concentrateIons.tcl begins with the following code:

set ionList {} ;# a list of atom IDs of the ions
set atomID 1 ;# in NAMD, atom IDs are 1-based numbers

set inStream [open $pdbSource r] ;# opening the PDB file

reading the PDB file line after line:
foreach line [split [read $inStream] \n] {

symbols 0-3 should be ATOM or HETA
set string1 [string range $line 0 3]

symbols 17-20 contain the residue name
set string2 [string range $line 17 20]

2 TCLBC 30

set string2 [string trim $string2] ;# trimming the residue name

if { [string equal $string1 {ATOM}] || \
[string equal $string1 {HETA}] } {

so it’s a valid atom entry; let’s see if this is an ion

if { [string equal $string2 {CLA}] || \
[string equal $string2 {POT}] } {

yes it’s an ion; append its index to the list
lappend ionList $atomID

}

increase the atomID counter by 1 (default increment)
incr atomID

}
}
close $inStream

This part of the code, preceding proc calcforces, will be executed once
by each processor. Identical instances of the list ionList of atom IDs for the
ions will also be kept in memory at each processor.

Now we are ready to write the main part of the code:

wrapmode cell

in this case the command tclBCArgs {} located in the NAMD config
file doesn’t pass any arguments to calcforces, therefore only
step and unique will be listed below:

proc calcforces {step unique} {

list all global variables set outside this procedure
(except those we won’t need, like pdbSource)

global sphereCenter sphereRadius maxForce ionList

find the components of the sphere’s center

foreach { x0 y0 z0 } $sphereCenter { break }

while {[nextatom]} {

set atomid [getid] ;# get the ID of the current atom

2 TCLBC 31

check if this ID is listed in ionList; if it’s found,
lsearch will return the position of the search pattern
in the list (a number >= 0), otherwise -1 is returned

if { [lsearch $ionList $atomid] >= 0 } {

set rvec [getcoord] ;# get the ion’s coordinates
foreach { x y z } $rvec { break }

find the distance between the ion and the sphere’s center

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))]

Apply same force $maxForce to each ion if it’s outside the
sphere. The components of the force vector are chosen so
that the vector is directed toward the sphere’s center,
and the vector’s norm is $maxForce.

if { $rho > $sphereRadius } {

set forceX [expr -$maxForce * ($x-$x0) / $rho]
set forceY [expr -$maxForce * ($y-$y0) / $rho]
set forceZ [expr -$maxForce * ($z-$z0) / $rho]

} else {

If the ion in already inside the sphere, scale the force
by a factor of $rho/$sphereRadius, so that the force
decreases from $maxForce to 0 as the ion approaches the
sphere’s center:

set forceX [expr -$maxForce * ($x-$x0) / $sphereRadius]
set forceY [expr -$maxForce * ($y-$y0) / $sphereRadius]
set forceZ [expr -$maxForce * ($z-$z0) / $sphereRadius]

}

Finally, applying the force calculated above
to the current atom

addforce "$forceX $forceY $forceZ"
}

}
}

2 TCLBC 32

5 Run a NAMD simulation with file eq04.concentrateIons.namd.

6 If you are unable to do that, find the example output files
eq04.concentrateIons.log and eq04.concentrateIons.dcd in the di-
rectory ../IONS OUTPUT EXAMPLE.

7 Open the log file eq04.concentrateIons.log, and find the speed of com-
putation marked by keyword TIMING. In our example, it is 0.2038 s/step
(17.2 ps/hr).

8 Load the simulation trajectory in VMD. Create two separate VDW repre-
sentations for potassium (resname POT) and chloride (resname CLA) ions.
For each of them, select Coloring Method: ColorID 4 (yellow) for Cl− and
12 (lime) for K+ ions.

9 Use the Molecule File Browser to load the same structure (waterbox40-0.2M.pdb
and waterbox40-0.2M.psf files) again as a new molecule. Select this sys-
tem in the Graphical Representations window, type "water" in the Se-
lected Atoms box, and select coloring method ColorID 15 (iceblue) and
drawing method MSMS with transparent material.

10 In Main window, double-click in column T of the molecule for which you
created the ions’ representations to make this molecule the top one. Run
the animation and watch the ions gather in the center of the water box.

Sample snapshots of the ion concentration trajectory are shown in Fig. 6.
The directory tclBCmovies contains MPEG movie ionConcentration.mpg that
shows the process at 0.1 ps per frame.

Figure 6: Snapshots of the ion concentration trajectory. The simulation cell
boundaries are shown for reference.

2.4 Example 3: Improving efficiency

The above code can be made both more computationally efficient, as well as
more concise and elegant. In our case, we are pushing only the ions, therefore
all other atoms can be safely dropped using the statement

2 TCLBC 33

if { [lsearch $ionList $atomid] == -1 } {

dropatom
continue

}

This way all non-ion atoms will be dropped at the first step and never selected
again by nextatom until cleardrops is called, thus making the code more
efficient. Some extra time could be saved if we didn’t need to continue pushing
the atoms that are already inside the sphere:

if { $rho < $sphereRadius } {
dropatom ;# don’t process this atom in the future
continue ;# don’t process this atom now, either

}

time to time (every 100 steps in this example),
let’s restore the complete list of atoms
to catch ions escaping from the sphere

if { $step % 100 == 0 } { cleardrops }

Using the vector routines, instead of robust but lengthy (and therefore error-
prone) code

foreach { x0 y0 z0 } $sphereCenter { break }
foreach { x y z } $rvec { break }

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))] ;# find the distance between two points

calculate the force components

set forceX [expr -$maxForce * ($x-$x0) / $rho]
set forceY [expr -$maxForce * ($y-$y0) / $rho]
set forceZ [expr -$maxForce * ($z-$z0) / $rho]

addforce "$forceX $forceY $forceZ" ;# apply the force

we could write briefly and clearly:

set relativePosition [vecsub $rvec $sphereCenter]
set rho [veclength $relativePosition]
set forceVector [vecscale $relativePosition \
[expr -$maxForce / $rho]]

addforce $forceVector

2 TCLBC 34

or even more briefly (though maybe less clearly):

set relativePosition [vecsub $rvec $sphereCenter]
addforce [vecscale [vecscale $relativePosition \
[expr -$maxForce / [veclength $relativePosition]]]]

Another trick can simplify a tclBC script if you need to process all atoms
of a certain type, as K+ and Cl− in the above example. Since such atoms have
unique masses, you could avoid reading the PDB file, and make the list of atoms
by writing, e.g.:

while { [nextatom] } {
if { [getmass] > 35 && [getmass] < 40 } { ... }

}

Likewise, you could use if { [getcharge] } as a selection criterion. Just
make sure that no other atoms could match the conditions of the selection.

1 Open the file concentrateIonsBrief.tcl, look through the code, partly
explained above:

we will use the following variable to calculate and print the
average number of ions found outside the sphere at each step

set avgNumIons 0

set forceCoef [expr -$maxForce/$sphereRadius]

wrapmode cell

##

proc calcforces {step unique} {

global sphereCenter sphereRadius maxForce avgNumIons

if { $step > 0 && $step % 100 == 0 } {

Calculate and print the average number ions found outside
the sphere

set avgNumIons [expr $avgNumIons / 100.]
print "Step $step, average number of ions outside \
the sphere: $avgNumIons"

set avgNumIons 0

cleardrops

2 TCLBC 35

}

while {[nextatom]} {

if { [getmass] < 35 || [getmass] > 40 } {
dropatom ;# not a K+ or Cl-, forget about it
continue

}

vector between the ion and the sphere’s center

set relativePosition [vecsub [getcoord] $sphereCenter]
set rho [veclength $relativePosition]

if { $rho > $sphereRadius } {
addforce [vecscale $relativePosition [expr -$maxForce/$rho]]
incr avgNumIons

} else {
dropatom ;# this ion is already inside the sphere

}
}

}

2 Note that in this code, the ions already inside the sphere are no longer
pushed and are dropped. Can they escape from the sphere? 1

3 Run a NAMD simulation with file eq04.concentrateIonsBrief.namd
that calls the tclBC script concentrateIonsBrief.tcl. If unable to do
so, find the exemplary output concentrateIonsBrief.log and
concentrateIonsBrief.dcd in directory ../IONS OUTPUT EXAMPLE.

4 Open file concentrateIonsBrief.log, find the computation speed of the
optimized script, compare it to the speed you found when using the original
script. In our examples, the speeds are 0.1330 s/step (26.8 ps/hr) versus
0.2038 s/step (17.2 ps/hr).

5 In the file concentrateIonsBrief.log, find the lines that look like this:
TCL: Step 100, average number of ions outside the sphere: 13.0.
Plot the number of ions against simulation step. Hint: under a UNIX/Linux
system, you can type grep outside eq04.concentrateIonsBrief.log
| awk ‘{print $3 " " $11}’ > numIons.dat, and import the data from
the file numIons.dat into xmgrace or another technical graphics program.
Open the xmgrace file IONS OUTPUT EXAMPLE/numIons.agr to see a sam-
ple plot.

1Answer: yes, ions can escape, but they will be pushed back once the command cleardrops

is executed.

2 TCLBC 36

2.5 Example 4: Imposing a Shear Flow

As previously mentioned, the main feature of TclBC scripts is their ability to
apply geometry-based forces. Using a TclBC script, it is possible to impose
arbitrary fields of forces, thus imitating complex geometries and interactions
while keeping the molecular system relatively small and simple. For example,
a solution containing DNA in a microfluidic channel undergoes a shear flow, so
that parallel layers of the liquid move with different velocities. We can simulate
the shear flow by applying force to oxygen atoms of water molecules found
within thin layers in XY planes at and around z = zLo and z = zHi, which
variables will be set in the NAMD configuration file.

1 Change to the directory tclBCexamples/SHEAR, open file eq04.shear.namd,
scroll to its end.

The following initialization is made in the NAMD configuration file:

tclBC on
tclBCScript {
set zLo -15. ;# lower plane where forces are applied
set zHi 15. ;# top plane where forces are applied
set dz 3. ;# half-width of the layer
set TOL 6. ;# drop atoms that far from either layer
set force 5.
set pdbSource dsDNA6_solv.pdb
set tclBCScript shear.tcl
source $tclBCScript

}
tclBCArgs { }

2 Open the tclBC script shear.tcl, read it while paying attention to the
comments (the same script is shown below).

set atomList {} ;# a list of atom IDs of water oxygens
set atomID 1 ;# in NAMD, atom IDs are 1-based numbers

set inStream [open $pdbSource r] ;# opening the PDB file

reading the PDB file line after line:
foreach line [split [read $inStream] \n] {

symbols 0-3 should be ATOM or HETA
set string1 [string range $line 0 3]

symbols 13-16 contain the atom’s name
set string2 [string range $line 13 16]

2 TCLBC 37

trimming the atom’s name
set string2 [string trim $string2]

if { [string equal $string1 {ATOM}] || \
[string equal $string1 {HETA}] } {

so it’s a valid atom entry; let’s see if
this is a water’s oxygen

if { [string equal $string2 {OH2}] } {

yes it is; append its index to the list

lappend atomList $atomID
}
incr atomID

}
}
close $inStream

puts "[llength $atomList] water oxygens atoms found"

set totalTorque 0.

wrapmode cell

##

proc calcforces {step unique} {

global atomList shearStress zLo zHi dz TOL force

the value of a global variable will be stored
between calls to this procedure, while a local
variable would be lost

global totalTorque

if { $step % 100 == 0 } {

if { $totalTorque != 0. } {
print "Step $step, total torque applied: $totalTorque"
set totalTorque 0.

}
cleardrops

}

2 TCLBC 38

while {[nextatom]} {

check if this atom should be considered at all

if { [lsearch $atomList [getid]] == -1 } {

dropatom
continue

}

now check if it’s within bounds zLo to zHi

foreach { x y z } [getcoord] { break } ;# get coordinates

if { $z >= [expr {$zLo-$dz}] && $z <= [expr {$zLo+$dz}] } {

addforce "[expr {-$force}] 0.0 0.0"
set totalTorque [expr {$totalTorque - $force * $z}]

} elseif { $z >= [expr {$zHi-$dz}] && \
$z <= [expr {$zHi+$dz}] } {

addforce "$force 0.0 0.0"
set totalTorque [expr {$totalTorque + $force * $z}]

} elseif { ($z >= [expr {$zLo-$TOL}] && \
$z <= [expr {$zLo+$TOL}]) || \

($z >= [expr {$zHi-$TOL}] && \
$z <= [expr {$zHi+$TOL}]) } {

continue ;# keep an eye on it, it may come closer next time

} else {

dropatom ;# this atom is too far, forget about it for now

}
}

}

3 Run a NAMD simulation with configuration file eq04.shear.namd that
calls the tclBC script shear.tcl. Use the sample output from directory
../SHEAR OUTPUT EXAMPLE if necessary.

4 View the simulation trajectory in VMD. Use representation style Licorice
for both DNA strands, coloring method ColorID 11 (purple) for segid

2 TCLBC 39

ADNA and ColorID 7 (green) for segid BDNA. For selection water, use
style Lines, ColorID 15 (iceblue).

5 Why were zLo and zHi not set to be the lower and upper boundaries of
the system?2

6 Open the output file eq04.shear.log, find a line with the total torque
output. Plot the total torque versus simulation step. Use the hint from
the previous section to extract the data. Open xmgrace file
SHEAR OUTPUT EXAMPLE/torque.agr to see a sample plot.

7 Run the same simulation on a cluster. How many times is the “total
torque” printed at each checkpoint? Can you modify the TclBC script to
print a system-wide total just once each time?3

Sample snapshots of the simulation trajectory are shown in Fig. 7. MPEG
movies (found in directory tclBCmovies) shearSlow.small.mpg and
shearSlow.big.mpg show the trajectory animation at 0.1 ps per frame. At
this slow framerate, the movement of water layers is clearly visible. In movies
shearFast.small.mpg and shearFast.big.mpg, the frame rate is 1 ps per
frame, which allows one to see the slow rotation and dissociation of DNA in
the shear flow.

Figure 7: Snapshots of the shear flow. Arrows in the leftmost frame show the
direction and place where the shear forces are applied.

2Answer: The system has periodic boundary conditions, therefore its apparent top and
lower boundaries are actually the same plane.

3Answer: The torque is printed as many times as there are patches containing atoms to
which the force is applied. No, it’s impossible to collect this information from all patches in a
tclBC script. Each instance of the script can only access information about the atoms handled
by one processor.

