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Figure 1: Structure of the anion of the glucuronic acid.

1 Introduction

A molecular dynamics (MD) simulation generates trajectories consisting of the
evolution of atomic Cartesian coordinates and velocities over the simulation
time. It can be imagined that not all degrees of freedom (DOFs) are relevant
to our studies of the underlying biomolecular processes. These processes, such
as conformational changes of biomolecules and membrane permeations, often
involves rare events. The concept of collective variable (CV)[?] is useful for
identifying relevant DOFs for analyzing and sampling the rare events. In general,
a CV, £ is a function of the atomic Cartesian coordinates, r, namely

fzf(rla"' arN)

where N is the number of atoms. In addition, in many biased sampling methods,
including steered MD, [*l metadynamics!* and umbrella sampling, [°! an external
force Fias(€), is attached to &, which is exerted on the underlying atoms by using
the gradient of ¢ with respect to atomic Cartesian coordinates,

Fbias(rk) = Fbias(é-) vrké-(rh e ,I‘N)

There are various ways to compute CVs on-the-fly during a simulation in
NAMD, ) and using Colvars!” is one of them. There are a plethora of pre-
defined CV functions available in the Colvars module in NAMD, including di-
hedral angles, distances between atom groups, path CVs[®l and more. However,
we may want to design a complex CV function that are not in the existing
Colvars implementation. In such case, we have to (i) utilize the TCL scripting
interface of NAMD and Colvars, or (ii) modify the C++ source code of Colvars
to support our customization. In general, the approach (ii) could have better
performance, but (i) is better for debugging and prototyping. In this tutorial,
we will use the Cremer-Pople parameter[? as an example to show how to im-
plement a new CV in NAMD, and run a targeted MD simulation along the
parameters to bias a glucuronic acid towards the 'Cy conformation. It ought
to be noted that in this tutorial, the targeted MD is performed along the new
CV that we will implement, not the root-mean-square deviation (RMSD) with
respect to a reference.
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Figure 2: Schematic representation of describing the conformation of a pyranose
ring using the Cremer-Pople parameter (@, 6, ¢). The figure was made by Shinya
Fushinobu.

2 Cremer-Pople Parameters

2.1 Background

The Cremer-Pople parameter is a set of CVs describing the puckering of cyclic
compounds, which uses N — 3 CVs to describe the N-member nonaromatic
monocyclic rings. These CVs has been extensively used to characterize the con-
formations of carbohydrates in cyclic form. For example, the possible conforma-
tions of a six-membered pyranose ring can be represented in a polar coordinate
system (Q, 0, ¢), as shown in Figure 2 '.

2.2 Calculation

In this tutorial, we focus on the case N = 6. The calculation of (Q,0,¢) is
summerized as follows:

Center the Cartesian coordinate. Assume the vectors from ry to rg are the
positions of O1 and C1-C5 atoms, the centered position vectors are calculated
as

1 N
RJ:FJ'—NZW (1)
k=1

LURL: http://enzymel13.bt.a.u-tokyo.ac.jp/CP/
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Determine the orientation of the mean plane. The normal of the mean
plane, n, can be determined by

R’ xR

_— 2
IR’ x R”| @)

ﬁ:

where the two vectors R’ and R are from

N
R = ZRj sin[27(j — 1)/N]

) (3)
R’ = ZRj cos [2m(j — 1)/N]

Project the centered position vectors to the normal. The projections,

zj, is computed as
zj=Rj-n (4)

Determine the spherical coordinates. The spherical coordinates can be
solved by the following linear system when N = 6,

[27 & 2 2
Qsinfsing = — N;Zj sin [NQ(] - 1)] =— NA
N
. 2 27 . 2
@sin 6 cos ¢ zy/ﬁgzjcos {NZ(]—l)] = NB (5)
1 & 1
_ j—1, _
Q cosd = N;(_l)J zj = NC
and the solution should be
1
Q = \/N (242 4+ 2B2% + C?)
¢ = arctan2 (—A, B) (6)

C
# = arccos
V2A2% +2B2 4 C?
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3 NAMD Implementation

The NAMD simulation workflow is shown in Figure 3. The Colvars module ac-
cepts the total forces and positions of specified atoms, and computes the biasing
forces acting on these atoms for the integration of next step. The following two
subsections will describe how to implement the calculations of Cremer-Pople
parameters from Eq. (1) to Eq. (6). The first subsection focuses on the TCL
scripting interface when using NAMD with Colvars, and the second one tries to
improve the performance by porting the TCL code to C++ in Colvars. Both
subsections assume that the readers have known basic NAMD simulation tech-
niques including equilibrium simulations and how to enable Colvars.

Step i-1 Integration

Total forces]—b[ Velocities ]—b[ Positions ]
]
[

Forces 1

v v v vy

(Nonbclmded] ( Bolnd ] ( Angle ] ( Diheldral ] [ Col\l/arS}
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Integration

\ #{ Total forces ]—b[ Velocities H Positions l

A

Figure 3: Schematic representation of the workflow of NAMD when enabling
Colvars.

3.1 TCL Scripting
3.1.1 Load TCL procedures from a script.

Under the hood, to compute the CVs using TCL, NAMD loads a TCL script,
and then Colvars runs specific TCL procedures (also known as functions in
other programming languages) from the script every time step. The cruxes here
are (i) how to load the TCL script file and (ii) what the signatures of the TCL
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procedures should be. Assuming that the TCL script is pucker.tcl and locates
in the same directory of the NAMD configuration file, the answer to (i) is simply
adding the following lines of code before any of the run command in the NAMD
configuration file (lines starting with # are code comments):

# Other NAMD simulation options

# Colvars configuration
colvars on
colvarsConfig pucker_tcl.colvars

load ./pucker.tcl
# run 100000

The configuration above also assumes that the Colvars configuration file is
pucker_tcl.colvars. As for (ii), we are going to used the scriptedFunction?
feature in Colvars, and it depends on the names of the Colvars components. In
our implementation of Cremer-Pople parameters, there should be three Colvars
components corresponding to @, 6 and ¢, respectively. A minimal code example
is shown below

Listing 1: pucker__tcl.colvars

# pucker.colvars
colvar {
name Q
scriptedFunction cpQ
cartesian {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}
}

colvar {
name theta
scriptedFunction cptheta
cartesian {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}
}

colvar {

2URL: https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html#
colvar|scriptedFunction
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name phi
scriptedFunction cpphi
cartesian {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}

3

The three Colvars components feature three different parameters of
scriptedFunction, namely cpQ, cptheta and cpphi. The cartesian blocks
specifies the atomic coordinates necessary for the calculation of the Cremer-
Pople parameters, and the atomnumbers blocks list the atom serial numbers of
01, C1, C2, C3, C4, and C5, which can be found in the second column of the
input PDB file for NAMD simulations, as shown in Figure 4. As described in

ATOM 1 C1 BGLC 1 -1.041 1.300 0.283 1.00 0.00 CARB C
ATOM 2 Hl1 BGLC 1 -1.108 1.189 1.392 1.00 0.00 CARB H
ATOM 3 01 BGLC 1 -1.929 2.326 -0.685 1.00 0.00 CARB 0
ATOM 4 HO1 BGLC 1 -1.775 2.496 -1.620 1.00 0.00 CARB H
ATOM 5 CS5 BGLC 1 1.229 0.586 0.412 1.060 0.00 CARB C
ATOM 6 HS5 BGLC 1 1.179 0.498 1.519 1.60 0.00 CARB H
ATOM 7 05 BGLC 1 0.320 1.589 -0.061 1.060 0.00 CARB 0
ATOM 8 (€2 BGLC 1 -1.445 -0.007 -0.379 1.00 0.00 CARB C
ATOM 9 H2 BGLC 1 -1.326 0.108 -1.484 1.00 0.00 CARB H
ATOM 16 02 BGLC 1 -2.807 -0.331 -0.126 1.00 0.00 CARB 0
ATOM 11 HO2 BGLC 1 -3.056 -0.059 0.768 1.00 0.00 CARB H
ATOM 12 C3 BGLC 1 -0.523 -1.119 0.678 1.00 0.00 CARB C
ATOM 13 H3 BGLC 1 -0.609 -1.224 1.186 1.00 0.00 CARB H
ATOM 14 03 BGLC 1 -0.881 -2.369 -0.498 1.00 0.00 CARB 0
ATOM 15 HO3 BGLC 1 -1.771 -2.619 -0.224 1.00 0.00 CARB H
ATOM 16 C4 BGLC 1 0.904 -0.748 -0.251 1.60 0.00 CARB C
ATOM 17 H4 BGLC 1 0.994 -0.639 -1.359 1.00 0.00 CARB H
ATOM 18 04 BGLC 1 1.809 -1.757 0.175 1.60 0.60 CARB 0
ATOM 19 HO4 BGLC 1 2.618 -1.648 -0.359 1.00 0.00 CARB H
ATOM 20 C6 BGLC 1 2.6100 1.101 0.013 1.060 0.00 CARB C
ATOM 21 061 BGLC 1 3.457 1.114 0.943 1.00 0.00 CARB 0
ATOM 22 062 BGLC 1 2.744 1.433 -1.194 1.060 0.00 CARB 0

Figure 4: The glucuronic acid molecule section in the PDB file. The numbers
marked in red are the atom serial numbers used for defining the Cremer-Pople
parameters in Colvars.

the Colvars manual 3, to calculate the CV values, Colvars would call calc_cpQ,
calc_cptheta and calc_cpphi for the three components, respectively. In other
words, we should have the following T'CL procedure signatures in pucker.tcl,

Listing 2: pucker.tcl

3URL: https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html#
colvar|scriptedFunction
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3 NAMD IMPLEMENTATION 9

# pucker.tcl
proc calc_cpQ {args} {
# Implementation will be detailed below

}

proc calc_cptheta {args} {
# Implementation will be detailed below

}

proc calc_cpphi {args} {
# Implementation will be detatled below

}

The three TCL procedures are expected to accept a list of atomic coordinates
from args and then return floating point values representing @), # and ¢. The
args is 2D TCL list (or list of lists), and the first element in the list corresponds
to a list of atomic coordinates in xyz...xyz order. The following TCL com-
mands exemplifies how to retrieve the atomic coordinates (it ought to be noted
that the array starts with index 0):

Listing 3: pucker.tcl

proc calc_cpQ {args} {
# Get the z coordinate of 4th atom
set z4 [lindex [lindex $args 0] [expr (4-1)*3+2]]
# Get the = coordinate of 6th atom
set x6 [lindex [lindex $args 0] [expr (6-1)*3+0]]
}

A schematic representation of the TCL procedure requirements above is shown
in Figure 5.

3.1.2 Implement the TCL procedures.

The implementation of the TCL procedures can be broken down into small
functions to do each of the tasks in Section 2.2:

Center the Cartesian coordinate. The calculation of R; could be imple-
mented by as follows:

Listing 4: pucker.tcl

# Shift the atom coordinates to the origin
proc calc_Rj {args} {
# Number of atoms
set num_atoms [expr [llength $args] / 3]
# Center of geometry
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3 NAMD IMPLEMENTATION 10

Name match Type
colvar { proc calc_CtQ {a*gs} {
name Q # Return a scalar value for Q

scriptedFunction cpQ }
cartesian { List of numbers I

name 001 9 ¢ v

atoms { ... } o [{{...} {...}...}}
}- g N __J
cartesian { c v

name 002 5 Sort by the value of name

atoms { ... }4—%

hy
hy

Figure 5: Schematic representation of the TCL procedure requirements used by
scriptedFunction in Colvars.

set cog_x 0.0

set cog_y 0.0

set cog_z 0.0

for {set i 0} {$i < $num_atoms} {incr i} {
set i_atom [expr $i * 3]
set cog_x [expr $cog_x + [lindex $args [expr $i_atom + 0]]]
set cog_y [expr $cog_y + [lindex $args [expr $i_atom + 1]]1]
set cog_z [expr $cog_z + [lindex $args [expr $i_atom + 2]]]

}

set cog_x [expr $cog_x / $num_atoms]

set cog_y [expr $cog_y / $num_atoms]

set cog_z [expr $cog_z / $num_atoms]

# R j =17r_3 - R_cog

set result [list]

for {set i 0} {$i < $num_atoms} {incr i} {
set i_atom [expr $i * 3]
set R_jx [expr [lindex $args [expr $i_atom + 0]] - $cog_x]
set R_jy [expr [lindex $args [expr $i_atom + 1]1] - $cog_y]
set R_jz [expr [lindex $args [expr $i_atom + 2]] - $cog_z]
lappend result [list $R_jx $R_jy $R_jz]

}

return $result

}

args here is a 1D list consisting of atomic Cartesian coordinates. cog_x, cog_y
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and cog_z are the center of geometry. To facilitate the further calculations, the
code also “reshape” the array from the 1D list into a N x 3 2D list where the

i-th element corresponds to the i-th atom coordinates.

Calculate the projection of R; onto the mean plane.
just fuses the calculation of the normal vector of the mean plane n and the
projection of R; on it into a single procedure, with R as the input arguments.

The code is listed as follows:

Listing 5: pucker.tcl

# Calculate z_j, args are R_J
set pi 3.14159265358979323846
proc calc_zj {args} {

# Calculate R' and R''

set N

[1length $args]

set Rpx 0.0

set Rpy 0.0

set Rpz 0.0

set Rppx 0.0

set Rppy 0.0

set Rppz 0.0

global pi

# Calculate R' and R''
for {set i 0} {$i < $N} {incr i} {
factor [expr (2.0 * $pi * $i) / $N]
sin_f [expr sin($factor)]

cos_f [expr cos($factor)]

R_j [lindex $args $il

R_jx [lindex $R_j 0]

R_jy [lindex $R_j 1]

R_jz [lindex $R_j 2]

set
set
set
set
set
set
set
set
set
set
set
set
set

}

Rpx [expr $Rpx +
Rpy [expr $Rpy +
Rpz [expr $Rpz +
Rppx [expr $Rppx
Rppy [expr $Rppy
Rppz [expr $Rppz

# Calculate the mormal
set cross_x [expr $Rpy * $Rppz - $Rpz * $Rppy]
set cross_y [expr $Rpz
set cross_z [expr $Rpx * $Rppy - $Rpy * $Rppx]
# Calculate the normal
set n_norm_factor [expr sqrt(‘

$cross_x * $cross_x + $cross_y * $cross_y + ‘

$sin_f * $R_jx]
$sin_f * $R_jyl
$sin_f * $R_jz]

+ $cos_f * $R_jx]
+ $cos_f * $R_jyl
+ $cos_f * $R_jz]
vector (step 1): R' cross R''

* $Rppx - $Rpx * $Rppz]

vector (step 2): |R' cross R''/

The code here
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$cross_z * $cross_z)]
set n_x [expr $cross_x / $n_norm_factor]
set n_y [expr $cross_y / $n_norm_factor]
set n_z [expr $cross_z / $n_norm_factor]
set z [list]
set n [list]
# Project R_j onto the mormal wvector
for {set i 0} {$i < $N} {incr i} {

set R_j [lindex $args $i]

set R_jx [lindex $R_j 0]

set R_jy [lindex $R_j 1]

set R_jz [lindex $R_j 2]

set z_j [expr $R_jx * $n_x + $R_jy * $n_y + $R_jz * $n_z]

lappend z $z_j
¥

return $z

Determine the spherical coordinates. We break the procedure into two
steps for better code reusability. The first step is the calculation of A, B and C
from all z:

Listing 6: pucker.tcl

# Calculate A, B and C from z_j
proc calc_ABC {args} {

}

set N [llength $args]

set A 0.0

set B 0.0

set C 0.0

global pi

for {set i 0} {$i < $N} {incr i} {
set factor [expr 2.0 * $pi / $N * 2 * $i]
set sin_f [expr sin($factor)]
set cos_f [expr cos($factor)]
set A [expr $A + [lindex $args $i] * $sin_f]
set B [expr $B + [lindex $args $i] * $cos_f]
set C [expr $C + [lindex $args $i] * ((-2.0) * ($i % 2) + 1.0)]

}

return [list $A $B $C]

The second step is then the calculation of (Q, 6, ¢) by calling all the procedures
above:

Listing 7: pucker.tcl
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3 NAMD IMPLEMENTATION 13

proc calc_cptheta {args} {
# args ts a list of atom coordinates of length 3*N
set R_j [calc_Rj {*}[lindex $args 0]]
set z_j [calc_zj {*}$R_j]
lassign [calc_ABC {*}$z_jl A B C
global pi
set cptheta [expr 180.0 / $pi *
acos($C / sqrt(2.0 * $A * $A + 2.0 * $B * $B + $C * $C))]
return $cptheta
}

proc calc_cpphi {args} {
# args ts a list of atom coordinates of length 3*N
set R_j [calc_Rj {*}[lindex $args 0]]
set z_j [calc_zj {*}$R_j]
lassign [calc_ABC {*}$z_jl A B C
global pi
set cpphi [expr 180.0 / $pi * (atan2(-$A, $B))]
if {$cpphi < 0} {
set $cpphi [expr $cpphi + 360.0]
}
return $cpphi
}

proc calc_cpQ {args} {
# args s a list of atom coordinates of length 3*N
set R_j [calc_Rj {*}[lindex $args 0]]
set z_j [calc_zj {*}$R_j]
lassign [calc_ABC {*x}$z_jl A B C
set q [expr sqrt((2.0 * $A * $A + 2.0 * $B * $B + $C * $C) / 6.0)]
return $q

The full source code can be found in the pucker.tcl in the tutorial files.

3.1.3 Simulation and Performance

With the pucker.tcl above, we could try running our simulation printing the
values of (Q, 0, ¢) every 1000 step by adding the following lines to the beginning
of pucker.colvars:

Colvarstrajfrequency 1000
Colvarsrestartfrequency 10000

If we run the simulation, then we can get the (Q, 6, ¢) in the <outputname>.
colvars.traj file (the exact filename depends on the outputname setting in
the NAMD configuration file), which may contains
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# step theta phi
0 1.63816558478516e+01  8.53793052984263e+01  6.12507333001755e-01
1000 1.21118794619448e+01  5.05819956466481e+01  5.59147282106055e-01
2000 1.36943489028639e+01  5.52729603443354e+01  6.25136065248863e-01
3000 2.85165637199508e+00 -1.67644190362664e+02  6.02365951802746e-01
4000 1.10522913896010e+01  1.12666490322298e+02  6.37176507034846e-01
5000 1.43026502793403e+01  3.04050362556335e+01  5.86074768967032e-01

You are encouraged to check if the code computes the (Q, 8, ¢) correctly by com-
paring the Colvars TCL implementation with other existing implementations,
such as the online calculator on http://enzymel3.bt.a.u-tokyo.ac.jp/CP/. Tt
ought to be noted that there could be marginal numerical difference between
the TCL scripting implementation and the online calculator, as the latter uses
the PDB file content that has less precision as the input.

So far, we could satisfy with the TCL scripting solution. However, the
execution of the TCL script hurts the overall performance. From the NAMD
log file, we may see

Listing 8: Performance of the TCL scripting implementation

Info: Benchmark time: 4 CPUs 0.00163979 s/step 105.379 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.00163778 s/step 105.509 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.00163713 s/step 105.551 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.00164208 s/step 105.233 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.00164251 s/step 105.205 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.001661 s/step 104.034 ns/day O MB memory

which indicates that the simulation is about 105 ns/day. If we disable the
Colvars and do not perform the calculation of (Q, 0, ¢), we may get

Listing 9: Performance of simulation without Colvars

Info: Benchmark time: 4 CPUs 0.000444843 s/step 388.452 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.000447507 s/step 386.14 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.000449203 s/step 384.681 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.000457953 s/step 377.332 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.000450557 s/step 383.526 ns/day O MB memory
Info: Benchmark time: 4 CPUs 0.000456553 s/step 378.488 ns/day O MB memory

which approximates to 380 ns/day. It seems by simply calculating (Q, 6, ¢)
on-the-fly the simulation speed drops more than two third. The slowdown is
caused mainly by the fact that TCL is a scripting language and not optimized
ahead-of-time like compiled languages such as C++. In the next subsection,
we will illustrate how to modify the C++ source code of Colvars to add the
calculation of Cremer-Pople parameters there to improve the performance.

3.2 C++4 within Colvars

The Colvars developer documentation can be found in http://colvars.github.
io/doxygen/html/index.html. The steps of implementing a new CV can be
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https://colvars.github.io/doxygen/html/index.html.
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colvar {
name Q
scriptedFunction
cartesian {
name 001

Iy
cartesian {
name 002
atoms { ... }
¥

3

Figure 6: Colvars configuration hierarchy. The C++ classes colvar, cvc (or its
derived classes) and colvaratoms correspond to the blue, red and green blocks
of the configurations.

found in https://colvars.github.io/doxygen/html/classcolvar_1_1cvc.
html. Here, we try to go through all the steps that are necessary to implement
the new CVs. The source code of Colvars can be downloaded from the Github:

git clone https://github.com/Colvars/colvars.git

3.2.1 Modify the source code.

Before modifying the source code, we need to take a look at the structure of
the Colvars configuration file. An example of the Colvars configuration block is
shown in Figure 6. The outermost “colvar” block (the blue box in Figure 6)
merely serves as a “container”, which contains the inner “cartesian” blocks (the
red box in Figure 6) and may modify the results from them. In other words, the
inner “cartesian”, also known as components*, do the actual CV calculations.
The “colvar” block can further modify the results from the component blocks.
In Figure 6 the “scriptedFunction” is used for passing the results from the
“cartesian” components to TCL procedures. There are many useful options®
for the “colvar” blocks. This tutorial will only cover those that are relevant
to our new CVs. A component can accepts the atomic coordinates (shown in
the green box in Figure 6) as its inputs. The blue, red and green Colvars
configuration blocks in Figure 6 correspond to the C++ classes colvar, cvc
and colvaratoms, respectively. In summary, we need to implement new derived
classes of cvc to calculate (Q, 0, ¢). After the implementation, the new Colvars
configuration blocks should look like

Listing 10: pucker_ cpp.colvars

colvar {
name Q

4URL: https://colvars.github.io/master/colvars-refman-namd.html#sec:cvc_list
SURL: https://colvars.github.io/master/colvars-refman-namd.html#sec:colvar


https://colvars.github.io/doxygen/html/classcolvar_1_1cvc.html#:~:text=Detailed%20Description
https://colvars.github.io/doxygen/html/classcolvar_1_1cvc.html#:~:text=Detailed%20Description
https://colvars.github.io/master/colvars-refman-namd.html#sec:cvc_list
https://colvars.github.io/master/colvars-refman-namd.html#sec:colvar
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3 NAMD IMPLEMENTATION 16

cpQ {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}
}

colvar {
name theta
cptheta {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}
}

colvar {
name phi
cpphi {
atoms {
atomnumbers { 7 1 8 12 16 5 }
}
}
}

Derive classes from cvec. The class definition of cvec can be found in
colvarcomp.h. Our derived classes need to (i) read the atomic coordinates
of the six atoms, and (ii) perform the calculations of Cremer-Pople parame-
ters. For (i), the derived classes need to have their own “init” functions to
know which atoms are specified. For (ii), the derived classes must have the
“calc_value” functions implemented. We declare the three new derived classes
in colvarcomp_pucker.h, namely cpQ, cptheta and cpphi as

Listing 11: colvarcomp_ pucker.h

class colvar::cpQ : public colvar::cvc
{
protected:
/// Atom group
cvm: :atom_group *atoms = nullptr;
public:
cpQQO ;
virtual int init(std::string const &conf);
virtual void calc_value();

};
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class colvar::cptheta : public colvar::cvc

{
protected:
/// Atom group
cvm: :atom_group *atoms = nullptr;
public:
cptheta();
virtual int init(std::string const &conf);
virtual void calc_value();
3
class colvar::cpphi : public colvar::cvc
{
protected:
/// Atom group
cvm: :atom_group *atoms = nullptr;
public:
cpphi();
virtual int init(std::string const &conf);
virtual void calc_value();
3

The atoms pointers are used for tracking the positions of specified atoms inside
the component blocks.

Implement the constructors of the derived classes. The class construc-
tors, need to (i) set the name of the components, (ii) specify the type of the CV
(either scalar or vector), and (iii) set the periodic boundary if necessary. The
example code is shown below

Listing 12: colvarcomp_ pucker.cpp

colvar::cpQ::cpQ() {
set_function_type("cpQ");
x.type(colvarvalue: :type_scalar);

}

colvar: :cptheta: :cptheta() {
set_function_type("cptheta");
init_as_angle();

}

colvar: :cpphi::cpphi() {
set_function_type("cpphi");
x.type(colvarvalue: :type_scalar);
provide(f_cvc_periodic);
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enable(f_cvc_periodic);
period = 360.0;
init_scalar_boundaries(0, 360.0);

}

The variable x is a protected member of the cvc class to store the result of
the CV. The variable 6 should always be in the range [0°,180°], so we call
init_as_angles() to set it. The variable ¢ is periodic and has a period of 360°,
so we need to setup period and the boundaries to make sure it is wrapped.

Implement the init functions. The init function is responsible for reading
the atoms defined in the “atoms {...3}” block. The example code below of init
(i) calls the initialization function of the parent class, and (ii) read the definition
of atoms:

Listing 13: colvarcomp_ pucker.cpp
int colvar::cpQ::init(const std::string& conf) {

int error_code = cvc::init(conf);
atoms = parse_group(conf, "atoms");

if (latoms || atoms->size() !'= 6) {
return error_code | COLVARS_INPUT_ERROR;

}

return error_code;

}

The implementation also checks the number of atoms specified, and returns an
error if it is not exactly six, as we only implement the Cremer-Pople parameters
for N = 6. The init functions of the cptheta and cpphi can be implemented
in the same way.

Implement the calc_value functions. To simplify and reuse the code,
we can port the calc_ABC TCL procedure to C++, and then call it from
cpQ: :calc_value, cptheta::calc_value and cpphi::calc_value:

Listing 14: colvarcomp__pucker.cpp

void colvar::cpQ::calc_value() {

cpABC result = calc_cpABC(*atoms) ;

cvm: :real A = result.A;

cvm::real B = result.B;

cvm: :real C = result.C;

x.real_value = std::sqrt((

2.0 A*x A+2.0*xB*xB+C=*C)/ 6.0);

}

void colvar::cptheta::calc_value() {
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cpABC result = calc_cpABC(*atoms) ;
cvm: :real A result.A;
cvm::real B result.B;
cvm: :real C = result.C;
x.real_value = 180.0 / M_PI =
std::acos(C / std::sqrt(2.0 * A * A +
2.0 * B*x B+ C * C));

3

void colvar::cpphi::calc_value() {
cpABC result = calc_cpABC(*atoms) ;
cvm::real A = result.A;
cvm: :real B result.B;
cvm: :real C = result.C;
x.real_value = 180.0 / M_PI * std::atan2(-A, B);
if (x.real_value < 0) {
x.real_value += 360.0;
}
}

The full implementation of calc_cpABC and relevant helper code can be found
from colvarcomp_pucker.h and colvarcomp_pucker.cpp in the Github repos-
itory 6. The new colvarcomp_pucker.h and colvarcomp_pucker.cpp are as-
sumed to be in colvars/src.

Make the new cvc classes accessible from the colvar class. The colvar
block ought to recognize our new cvec-derived classes, which can be done by (i)
forward declaring the classes cpQ, cptheta and cpphi in colvar.h, and then
(ii) modifying the colvar::define_component_types() function in colvar.
cpp with add_component_type.

3.2.2 Compile NAMD with the updated Colvars.

Update the build configuration file. The Colvars build configuration file
relevant to NAMD is colvars/namd/colvars/src/Makefile.namd. Since we
have added colvarcomp_pucker.{h,cpp}, we need to modify the Makefile.
namd to ensure the new code is compiled, which can be done by appending
\$ (DSTDIR) /colvarcomp_pucker.o to the COLVARSLIB variable.

Update the NAMD source code. The NAMD source code is bundled with
the official version of Colvars, and we are going to replace that one with our
modified version with the new CVs. Assuming that the NAMD source code is
in <namd_src>, we can run the following command to update the Colvars code,

<colvars_src_dir>/update-colvars-code.sh ./

SURL: https://github.com/HanatoK/colvars/tree/pucker/src


https://github.com/HanatoK/colvars/tree/pucker/src
https://github.com/HanatoK/colvars/tree/pucker/src
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where the <colvars_src_dir> refers to the Colvars source code location.

Build NAMD. Now we can follow the same instruction as <namd_src>/
notes.txt to build NAMD (see the “Compiling NAMD” section). The only
difference is that before running “make” we need to run “make depends” at
first.

3.3 Simulation and Performance

Now we can try the newly built NAMD with the same system and the Colvars
config as shown in Listing 10. The NAMD configuration file is modified as
follows,

# Colvars configuration
colvars on
colvarsConfig pucker_cpp.colvars

The performance of the C++ implementation of the Cremer-Pople parameters
should look like

Listing 15: Performance of the TCL scripting implementation

Info: Benchmark time: 4 CPUs 0.000496346 s/step 348.144 ns/day O MB memory

Info: Benchmark time: 4 CPUs 0.000497668 s/step 347.219 ns/day O MB memory

Info: Benchmark time: 4 CPUs 0.000500817 s/step 345.036 ns/day O MB memory

Info: Benchmark time: 4 CPUs 0.000498759 s/step 346.46 ns/day O MB memory

Info: Benchmark time: 4 CPUs 0.000502659 s/step 343.772 ns/day O MB memory
4 0

Info: Benchmark time: 4 CPUs 0.000505699 s/step 341.705 ns/day O MB memory

which is almost three times faster than the TCL scripting implementation!
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4 Targeted MD along the CV

If our initial conformation for simulating the glucuronic acid molecule is not the
chair conformation, and we want to perform a targeted MD biasing glucuronic
acid towards the 'Cy4, what should we do? In other words, we want to apply
external forces on the six atoms of the ring, and make 6 close to 180° as much as
possible. The force acting on the six atoms can be derived from the generalized
force acting on 6 as follows,

Vrmp(0) = %k’ (6 —0.(1))

Frp) = - "

Frup(r;) = Frup(0)Ve,0

where Vryp(6) is the targeted MD biasing potential, Fryp(6) is the biasing
force along 6, k is a spring force constant, 6.(t) is a moving reference value
that gradually evolves towards 180° during simulation, and V., is the gradient
of # with respect to the Cartesian coordinates of the atoms. At first glance,
it seems that we have to implement Viryp(0), Fryp(f) and all gradients of 6
with respect to all six atom positions. However, Colvars has already supported
targeted MD along CVs, and the biasing forces to the atoms are obtained by
the chain rule, "% namely,

M
P =3 Fig) 0

Jj=1

where F(r;) is the three-dimensional force acting on atom 4, M is the number
of CVs, and F(§;) is the biasing force acting on CV ;. In other words, all we
need is to tell Colvars how to calculate the gradients of 6§, and Colvars shall
handle the rest.

4.1 Gradient of the CV

As you can imagine, the calculation of gradients could be complicated. Techni-
cally there are several ways that you could try to make such task easier, including
(i) using a math library supporting automatic differentiation in Colvars, (ii) us-
ing a computer algebra system (CAS) like Maxima or Mathematica to do the
calculation, and (iii) asking a multimodal language model, for example, Chat-
GPT to do it for you. Unfortunately, the author does not have good knowledge
of (i) and (ii), and is not sure if a language model can give the correct answer, so
let us derive the gradient of one component, and then complete the remaining
by induction.

We start from the derivative of z; with respect to ., where r;; is the x
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coordinate of atom i, as follows,

9z; 9 R;-(R'xR)
87’1@ B 87’1@ |R/ X R//|

1
- o R KRR R RO
Ry - (R < RY)] 50 [R x R”|}
Tix

where the two partial derivatives with respect to r;, are computed as follows
(using the rule of derivative of scalar triple product of vectors),

0] IR,
R' . RI RII — '] . Rl RII
g Ry (R x RO = S5 (R < RY) +
OR/
R, - (8% X R”) + (10)
aR//
R, - (R
7 ( % 8T1x>
0 R’ x R” OR’ OR”
R' xR’ = . R+ R’ . 11
87‘2@‘ x | |R/ X R”l <8rm x + x 87‘130) ( )
The partial derivatives of R’ and R” can be expanded into
OR' ism 27(j — 1) OR,
g 4 N Org
Jj=1

OR” Y or(j—1)0R 12

_ ™) — J

67'1@ o Z €08 N amz

Jj=1
where only OR,;/0r;,; remains unknown, and considering Eq. 1, we have
IR; 1

(13)

IR, 1 o,
57‘m - (N7070> ) 7’7&]
Eqg. 13 indicates that we could also easily derive the derivatives of R; with

respect to the r;, and ;.. Our final goal is 06/0r;,, which can be obtained by
the derivative rules,

a0 7 1 1
Oriw B 2 2424 92B2+4 (2
1- (\/2A2+QB2+02) , (14)

<80 V2A2+2B24+C?2-C 0 \/2A2+232+02>

67"” 81%
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0 \/— 1
242 4 2B% + C2 = :
Orig V242 +2B2 + C?

0A 0B oC
<2A e +2B e + Carm>

The partial derivatives of A, B and C' with respect to r;, are obtained by the
chain rule,

(15)

0A Y 0A 0z, o~ . [2m.. 0z

o g 92 Ores ;sm [N2(] - 1)} o

OB Y 0B 0z~ [2m. . 0z

i Z 8787”] Zcos {N2(] - 1)] 87‘-] (16)
1T : 1T ]:1 1T

aC Y9C 0z N, o1 07

D Y =t o Bl G T

where 0z;/0r;; has been derived from Eq. 9 to Eq. 13.

4.2 Implementation

If the TCL scripting implementation is used and the gradient is required, Colvars
will try to find the “calc_<scripted_name>_gradient” function for calculating
the gradient, where “<scripted_name>” refers to the value of the corresponding
“scriptedFunction”. In our example, we want the gradient of 6, and we have
already defined the calc_cptheta procedure in pucker.tcl to compute the
value of 6, then we need a procedure calc_cptheta_gradient to compute its
gradient. This procedure is expected to return an array that has the same shape
of args. In other words, if args is a 2D list, then calc_cptheta_gradient
should also be a 2D list that has the same number of elements of args. The
code below (listing 16) serves an example (see the attached pucker.tcl for the
full source code listing).

Listing 16: pucker.tcl

proc calc_cptheta_gradient {args} {
global pi
set N [llength [lindex $args 0]]
# args s a list of atom coordinates of length 3*N
set R_j [calc_Rj {*}[lindex $args 0]]
set z_j [calc_zj {*}$R_jl
lassign [calc_ABC {*}$z_jl A B C
lassign [calc_ABC_gradient {*}[lindex $args 0]] dA dB dC
set tmpl [expr 2.0 * ($A * $A + $B * $B) + $C * $CI
set factor [expr -180.0 / $pi / sqrt(1.0 —!
(8C * $C / $tmp1)) * (1.0 / $tmp1)]
set tmp2 [expr sqrt($tmpil)]
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set tmp3 [expr 1.0 / $tmp2]
set grad [list]
for {set i 0} {$i < $N} {incr i} {
lappend grad [expr $factor * ($tmp2 * [lindex $dC $i] - H
$C * $tmp3 * (2.0 * $A * [lindex $dA $i] +
2.0 * $B * [lindex $dB $i] + $C * [lindex $dC $il))]
}
# Expect to return an array with the same shape of args
return [list $gradl]
}

If the C++ implementation is preferred for its better performance, we can
try implementing the “calc_gradients” virtual function for the “cptheta”
class. The updated declaration of the class is,

Listing 17: colvarcomp_ pucker.h

class colvar::cptheta : public colvar::cvc
{
protected:
/// Atom group
cvm: :atom_group *atoms = nullptr;
cvm::real A;
cvm: :real B;
cvm: :real C;
std: :vector<cvm: :rvector> dA_dr;
std: :vector<cvm: :rvector> dB_dr;
std: :vector<cvm: :rvector> dC_dr;
public:
cptheta();
virtual int init(std::string const &conf);
virtual void calc_value();
virtual void calc_gradients();

};

Here we also add a few member variables to save the intermediate A, B and
C to optimize the calculation, since Colvars always runs calc_value before
calc_gradients, and A, B and C with their derivatives could be determined
in calc_value at the same time when computing #. For the same reason,
calc_value and calc_cpABC are also modified to compute 0A/0r;, 0B/0r; and
0C/0r; at the same time and save the results to dA_dr, dB_dr and dC_dr. In the
definition of calc_gradients, the gradient of each atom position is supposed to
save to (*xatoms) [ia] .grad in the parsed atom group as follows (the full code
listing can be found at Github),

Listing 18: colvarcomp_ pucker.cpp


https://raw.githubusercontent.com/HanatoK/colvars/pucker/src/colvarcomp_pucker.cpp
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void colvar::cptheta::calc_gradients() {
const cvm::real tmpl = 2.0 * (A * A+ B * B) + C * C;
const cvm::real factor = -180.0 / M_PI /
std::sqrt(1.0 - (C * C / tmpl)) * (1.0 / tmpl);
const cvm::real tmp2 = std::sqrt(tmpl);
const cvm::real tmp3 = 1.0 / tmp2;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms) [ial .grad = factor * (dC_dr[ia] * tmp2 -
C * tmp3 * (2.0 * A * dA_dr[ia] +
2.0 * B * dB_dr[ia] + C * dC_dr[ial));

4.3 Simulation Setup

We are going to run a targeted MD simulation along 6 to generate an 'C} struc-
ture. The first step of simulation is to determine the value of 8 of our initial
structure, which can be done by running a “zero”-step equilibrium simulation
(using run 0 in the NAMD configuation file). In our example, we have deter-
mined that 6 is 16.38°, and we want to gradually “pull” it to 180° in 50,000
simulation steps, given that we have already implemented the gradients of 6
with respect to the atomic coordinates, we can add the following section in the
Colvars configuration file,

Listing 19: Targeted MD along 6

harmonic {
colvars theta
centers 16.38
targetCenters 180.0
targetNumSteps 50000
forceConstant 0.5
outputEnergy on
outputCenters on

3

We can then combine the Listing 19 and Listing 10 into a new file pucker_cpp_tmd.
colvars and update the colvarsConfig field in the NAMD configuration as
well (see tmd_cpp.namd in the tutorial files). Then we start a simulation for
100,000 steps, the results of which are shown in Figure 7.
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Figure 7: (A) Initial conformation of the glucuronic acid. (B) Resultant confor-
mation of the glucuronic acid after 100-ps targeted MD simulation and 100-ps
simulation with € being restrained to 180°. (C) Time evolution of 6.
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