
Department of Biochemistry and Molecular Biology
Gordon Center for Integrative Science
The University of Chicago

One-dimensional replica-exchange
umbrella sampling

Lu Hong
Mikolai Fajer

Benoı̂t Roux
August 21, 2015

Please visit www.ks.uiuc.edu/Training/Tutorials/ to get the latest version of this tutorial, to
obtain more tutorials like this one, or to join the tutorial-l@ks.uiuc.edu mailing list
for additional help.

1

Abstract

This tutorial introduces replica exchange umbrella sampling (REUS) simulation method
using NAMD. 16 independent replicas of deca-alanine in vacuum is created and then to
each replica a harmonic biasing potential is added to the distance between the two termini
of the polypeptide. From the results of the simulation the free energy of the system is
calculated as a function of the distance using WHAM. This tutorial assumes familiarity
with the basics of NAMD, VMD, Tcl and the Linux CLI.

2

1. Introduction

This tutorial is designed to familiarize you with using NAMD to setup a replica exchange um-
brella sampling (REUS) MD simulation, also known as umbrella sampling with Hamiltonian
replica exchange molecular dynamics (US/H-REMD).

A central issue in using MD simulations to estimate PMF is obtaining a representative sam-
ple of the conformational space. Given the currently available computational powers, however,
sufficient sampling is usually difficult to achieve, especially when systems has a large number
of degrees of freedom and relevant conformational states are separated by large energy barri-
ers. As a result, the system under simulation may be trapped in a few conformational states
throughout the simulation, which results in PMF estimations that are dependent on the starting
conformation of the system.

One method used to overcome the problem of unrepresentative sampling is REUS. In a REUS
simulation, a sequence of n independent copies of the system is created, and in the ith system,
a harmonic biasing potential V (ξ, i) is added to the Hamiltonian of the system. The biasing
potential is of the form

V (ξ, i) =
1

2
k(ξ − ξi)2

where i is an integer ranging from 0 to n − 1, k is the force constant, ξ is a collective variable
along which the PMF is calculated, and ξi is the center of the biasing potential. During the
simulation, the energy of adjacent replicas are compared periodically and their biasing poten-
tial exchanged with a specific transition probability. When the simulations are complete, the
unbiased PMF can be recovered using the Weighed Histogram Analysis Method (WHAM). By
sufficient “mixing” of the biasing potential in the replica space during the simulation and re-
stricting the size of the conformational space that each replica can access, the REUS method
improves the efficiency and quality of the sampling process.

In this tutorial, you will examine the energetics of stretching a deca-alanine α-helix using
REUS. You will simulate a deca-alanine molecule in vacuum with a harmonic biasing potential
of the form V (d, i) = 1/2k(d− di)2, where d is a collective variable defined by

d(t) = ‖rC(t)− rN(t)‖

In other words, d is the distance between the C- and N-termini of the deca-alanine molecule.
The simulation creates 16 independent replicas of the deca-alanine molecule, numbered consec-
utively from 0 to 15. The biasing potential in each replica has a force constant of 1 kcal/mol·Å2,

3

and for the ith replica, the biasing potential is centered at (17 + i) Å. Each replica is simulated
for 10 ns.

This tutorial assumes that you are working on a Linux machine and are familiar with basic
Linux CLI and running conventional MD simulations with NAMD. For the analysis part, you
should be familiar with the basics of shell scripting, Tcl programming, and VMD scripting. To
complete this tutorial, you need

1. umbrella 1d.zip, which is provided with this document,

2. NAMD, version 2.10 or later (www.ks.uiuc.edu/Research/namd/),

3. VMD, version 1.9 or later (www.ks.uiuc.edu/Research/vmd/),

4. An implementation of WHAM, such as membrane.urmc.rochester.edu/

content/wham.

2. Compiling NAMD

Running replica exchange with NAMD requires Charm++ 6.50 or later built with a low-level
runtime system (LRTS). See the “Compiling NAMD” section in the file notes.txt that
comes with the NAMD source code if you need help on how to compile NAMD. A NAMD
of version 2.6 or higher is needed to support the replica exchange module.

In this tutorial, we uses Open MPI for the LRTS (http://www.open-mpi.org/). On
Debian style Linux systems, Open MPI can be installed by typing

sudo apt-get install libopenmpi-dev openmpi-bin

into a terminal.

3. Running the REUS simulation

To run the deca-alanine simulation, unzip umbrella 1d.zip to your preferred directory.
Open job0.conf and job1.conf and locate the line

if { ! [catch numPes] } { source ../umbrella.namd }

4

Change ../umbrella.namd to <your NAMD directory>/lib/replica/

umbrella.namd. Type in a terminal the following commands:

cd <your_working_directory>
mkdir output; cd output
mkdir {0..15}; cd ..
mpirun -np 16 namd +replicas 16 job0.conf +stdout output/%d/job0.%d.log

The first three lines set up the output folder, which will be used to store the output files from
the simulation. Each replica is given a separate folder in output with a name matching the
index of the replica. The fourth line initiates the simulation. The command mpirun calls Open
MPI, and the option -np 16 specifies that the number of MPI ranks is 16. The number of
ranks must always be a multiple of the number of replicas. The command namd +replicas

16 calls NAMD with the replica exchange module and specifies the number of replicas. The
command +stdout output/%d/job0.%d.log indicates that the session log for the ith
replica will be directed to the file output/i/job0.i.log.

The simulation can be restarted if desired by using the command:

mpirun -np 16 namd +replicas 16 job1.conf +stdout output/%d/job1.%d.log

Depending on the local setup or network environment of your machine, a different set of com-
mand may be needed to submit your job to the MPI. Consult with your system administrator for
more information.

4. The set-up of the REUS simulation

This section explains how to set up a REUS simulation by a detailed discussion of the
configuration of the deca-alanine example. The files relevant to the REUS simulations in
umbrella 1d.zip are

– alanin.params

– alanin.pdb

– alanin.psf

– alanin base.namd

– colvars.conf

– input/

– job0.conf

– job1.conf

– stretch alanin.conf

The files alanin.params, alanin.pdb, and alanin.psf, which deal with the struc-

5

ture and connectivity of the deca-alanine molecule, are common to most MD simulations, and
therefore will not be discussed further. The rest of the files are discussed in the order in which
they are read by NAMD during the simulations.

4.1. job0.conf

As seen from the last section, when the REUS simulation is submitted to the MPI, NAMD first
reads the job0.conf file, which contains two commands:

source stretch_alanin.conf
if { ! [catch numPes] } { source ../umbrella.namd }

The first line instructs NAMD to read in stretch alanin.conf, and the second line in-
structs NAMD to read in umbrella.namd, which contains the NAMD code for running
REUS simulations.

4.2. stretch alanin.conf

The file stretch alanin.conf sets up the following parameters necessary for the REUS
simulations:

– num replicas: the number of replicas used in the simulation.

– temperature: the temperature used in the simulation.

– steps per run: the number of simulation timesteps between exchange attempts. The
value of steps per run defines the length of a run.

– num runs: the number of runs before stopping, which should be a multiple of
runs per frame × frames per restart. The product of step per run and
num runs is the total number of time steps that each replica will be simulated.

– runs per frame: the number of runs between trajectory outputs.

– frames per restart: the number of runs between restart outputs.

– namd config file: the NAMD configuration file that contains the parameters needed for
the conventional MD simulations in between exchanges.

6

– output root: the directory for output files.

– input root: the directory for the initial configurations of the replicas. If you wish to
initiate all replicas with the same initial configuration, you can comment out this line.

The file stretch alanin.conf also defines two new Tcl commands (functions). The first
command is called replica bias:

proc replica_bias { i } {
return [list lenpot "centers [expr 17 + $i]"]

}

The command replica bias takes in i, the index of the replicas, and returns the center of
the ith replica, which is (17+ i)Å. Note that lenpot is the name of the harmonic restraint (see
section 4.5.) This function replica bias controls the centers of the biasing potentials. You
can change how the biasing potentials are positioned along the collective variable by replacing
17 + $i with another function of i. In general, the centers of the biasing potentials should
be positioned to allow sufficient overlap between neighboring biasing potentials.

In some situations it may be advisable to vary the force constant of each biasing potential. This
can be done by changing replica bias to

proc replica_bias { i } {
return [list lenpot "centers [expr 17 + $i] forceConstant function_of_i"]

}

The second command is replica neighbors:

proc replica_neighbors { i } {
global num_replicas
if { $i % 2 } { set s -1 } { set s 1 }
set result {}
foreach { d } { $s -$s } {

set j [expr $i + $d]
if { $j < 0 || $j >= $num_replicas } {

lappend result $i ; # swap with self
} {

lappend result $j
}

}
return $result

}

This command takes on one parameter, i, the index of the replicas, and returns a list of the
indices of the two adjacent replicas. For example, if i = 3, then replica neighbors

returns 2 and 4. The exceptions are the first and last replicas. For the first replica (replica #0),

7

the function returns 0 and 1, and for the last replica (in this example, replica #15), the function
returns 14 and 15.

4.3. alanin base.namd

The file alanin base.namd is read after stretch alanin.conf. This file contains
conventional MD simulation parameters and some performance tuning parameters that are
shared by all replicas.

The file alanin base.namd also sets up the collective variable module:

colvars on
colvarsConfig colvars.conf

The first line enables the collective variables module, which is necessary for the definition of the
biasing potentials. The second line provides the name of the configuration file for the collective
variables.

4.4. input/

This folder contains the velocity (.vel), position coordinates (.coor), and extended system
configuration (.xsc) files for each replica. These files are already equilibrated with the biasing
potentials and are used to initiate each replica in the REUS simulation if the input root

parameter in stretch alanin.conf is pointed to "input/alanin.initial.%d".

4.5. colvars.conf

The file colvars.conf contains parameters used to create the collective variables and bias-
ing potentials for the REUS simulations. Recall that in the deca-alanine example, a harmonic
biasing potential is defined on the distance between the C- and N-termini of deca-alanine.

The file colvars.conf has three blocks of code. First, it defines the parameter
colvarsTrajFrequency, which is the number of steps in the simulation between which
the value of collective variables (colvars) are written to the colvars.traj files.

The second block of code defines a colvar:

8

colvar {
name length
distance {

group1 { atomNumbers 1 }
group2 { atomNumbers 66 }

}
}

The keyword name specifies the name of the colvar. Lines 3 to 6 define the component of
length, which specifies the functional form of the colvar and the atoms involved in the
colvar. The keyword distance indicates that the colvar is a distance function. This key-
word is followed by two groups of atoms whose distance between each other is to be measured:
atomNumbers 1 and atomNumbers 66. These numbers refer to the atom IDs in the PDB
file.

The colvars.conf file ends with a definition of the harmonic restraint potential:

harmonic {
name lenpot
colvars length
centers 17.0
forceConstant 1.0

}

The keyword name defines the name of the harmonic restraint. The keyword colvars speci-
fies the name of the colvar to which the biasing potential will be applied. On the fourth line, the
keyword centers defines the center of the biasing potential, and on the fifth line, the keyword
forceConstant defines the force constant of the biasing potential. Although it is required
to specify the center and force constant when defining a harmonic restraint, these values are not
used in a REUS simulation because it is overridden by the replica bias function defined
in stretch alanin.conf.

The collective variable module of NAMD is quite versatile and its functions well-documented.
See chapter 10 of the NAMD User’s Guide (Version 2.10) at www.ks.uiuc.edu/

Research/namd/2.10/ug/ for a more detailed discussion of this module.

5. Analysis

In this section you will compute the Gibbs free energy of the deca-alanine system as a func-
tion of the distance between the C- and N-termini of deca-alanine using WHAM. This section

9

assumes that you have completed the simulation in section 3.

To start the analysis, navigate to the analysis folder and type in the command

./analysis.sh

Make sure that the shell file has the correct permission to execute. If the binary directories of
NAMD, VMD, and WHAM are not already added to the PATH environmental variable, you
need to edit analysis.sh so that the bash shell can locate the needed binary files.

5.1. The set-up of the analysis procedure

The analysis.sh file does three tasks, which can also be done manually if you do so desire.
First, it calls the program sortreplicas, which is found in the NAMD binary directory.
This program takes three arguments:

sortreplicas <job_output_root> <num_replicas> <runs_per_frame>

The program sorts through all the 16 trajectories generated by the replicas and produces 16
sorted trajectories so that the ith sorted trajectory contains only frames with the biasing potential
V (d, i). This sorting is necessary for the following WHAM analysis.

Second, analysis.sh loads the script time series.vmd into VMD:

vmd -dispdev text -e time_series.vmd -args <current_replica> <current_step>

This script measures the distance between atom 1 and 66 (i.e., the distance between the two
termini) in each frame, and writes the list of distances to files in time series/. The script
takes two arguments, the first argument, current replica, is the index of the replicas,
which is looped over in analysis.sh, and the second argument, current step, is the
number of times the simulation has been restarted. The command

echo "‘cat -n time_series/alanine_0_$i.anal‘">time_series/alanine_0_$i.anal

adds a column of line numbers to the distance time series, so that the format conforms with the
requirement of WHAM. For more information on VMD scripting, see the VMD User’s Guide
(Version 1.9.2) at www.ks.uiuc.edu/Research/vmd/current/ug/.

Third, analysis.sh calls WHAM with the command

wham 10 40 30 0.01 300 0 meta PMF.out

This command instructs WHAM to divide the reaction coordinate d into 30 bins for analysis,
each 1 Å long, starting at 10 Å and ending at 40 Å. The convergence tolerance for the WHAM

10

calculations is 0.01. The temperature of the simulations is 300 K. 0 indicates that no “padding”
values should be printed for the PMF. Then WHAM reads in the meta file, which contains the
location of the distance time series, the center of the biasing potential, and the force constant of
the biasing potential for each replica. In the end WHAM writes out its analysis results to the
PMF.out file. For a complete description of the available arguments and file requirements, see
the WHAM manual at membrane.urmc.rochester.edu/sites/default/files/
wham/doc.html.

5.2. Results

Open PMF.out, and the first table contains the PMF we wished to estimate:

#Coor Free +/-Prob +/-
10.500000 inf -nan 0.000000 -nan
11.500000 inf -nan 0.000000 -nan
12.500000 inf -nan 0.000000 -nan
13.500000 inf -nan 0.000000 -nan
14.500000 inf -nan 0.000000 -nan
15.500000 0.450333 -nan 0.187453 -nan
16.500000 0.000000 -nan 0.399633 -nan
17.500000 0.161082 -nan 0.304834 -nan
... ...

The first column of the table gives the center of the 30 bins requested in the WHAM analysis,
and the second column contains the ∆G(d) function. Some values are labeled inf because the
simulation does not contain frames where the distance between the two termini falls within the
range of the bin. Because no error analysis is requested, the column headed by +/- contains
only -nan. A plot of ∆G(d) is shown in Figure 1. The plot shows that stretching destabi-
lizes the α-helix conformation of deca-alanine, and the energy difference between the α-helix
conformation and the stretched random coil conformation is approximately 18 kcal/mol.

6. Concluding remarks

Replica exchange umbrella sampling is a useful technique for improving PMF estimation. In
this tutorial we explored how to use NAMD to implement a simple one-dimensional REUS
simulation of deca-alanine in vacuum. The method described in this tutorial can be easily
adapted for studying more complex and realistic biological systems and processes, possibly
with reaction coordinates other than distance.

11

Figure 1: Changes in free energy as a function of the distance between the C- and N-termini of
deca-alanine.

One immediate extension of the one-dimensional REUS method is multidimensional REUS
simulation, where several colvars are constrained at the same time, creating a replica space
of several dimensions. This requires some simple modifications of the replica bias and
replica neighbors functions, as well as the colvars and biasing potential definitions. You
can find an example of two-dimensional REUS simulation in <your NAMD directory>/

lib/replica/umbrella2d. In this example, two sets of biasing potentials are applied to
the length of the deca-alanine molecule, with one set applied to the upper half of the molecule,
and the other set to the lower half of the molecule. Higher dimensional REUS simulations allow
a more detailed description of the energetics of the system, but also demand significantly more
computational resources and time for sufficient “mixing” of the replicas.

One critical issue in doing PMF calculation is convergence. Although REUS allows the system
to thoroughly sample one (or a few) degrees of freedom, MD simulations with REUS method
may still require long simulation time before convergence, especially for large systems with
complicated structures such as a proteolipid complex. This is in part due to the fact that the
colvars under investigation may be coupled with some other slow varying degrees of freedom.
Many methods are available for error analysis and assessing convergence, such as block aver-
aging and the Monte Carlo Bootstrap error analysis method available in WHAM.

12

	Introduction
	Compling NAMD
	Running the REUS simulation
	The set-up of the REUS simulation
	job0.conf
	stretch_alanin.conf
	alanin_base.namd
	input
	colvars.conf

	Analysis
	The set-up of the analysis procedure
	Results

