
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group
Computational Biophysics Workshop

User-Defined Forces in
NAMD

Alek Aksimentiev

David Wells

Greg Sigalov

November 2006

A current version of this tutorial is available at
http://www.ks.uiuc.edu/Training/Tutorials/

Join the tutorial-l@ks.uiuc.edu mailing list for additional help.

CONTENTS 2

Contents

1 TclForces 5
1.1 Introduction . 5
1.2 Example 1: Constant Forces . 5
1.3 Example 2: Rotation . 9
1.4 Example 3: Forcing a Subset of Atoms 13
1.5 Example 4: Improving Efficiency 16

2 TclBC 20
2.1 Example 1: Making a Bubble . 21
2.2 Optimizing a TclBC script . 24
2.3 Example 2: Concentrating the ions in a solution 27
2.4 Example 3: Improving efficiency 31
2.5 Example 4: Imposing a Shear Flow 35

3 Grid-steered Molecular Dynamics 39
3.1 Introduction . 39
3.2 Example 1: Constant Force . 39
3.3 Example 2: Surface . 43
3.4 Example 3: Multiple grids . 46

CONTENTS 3

Introduction

This tutorial is designed to guide users of VMD and NAMD in the use of
tclForces and tclBC. It is assumed that you already have a working knowl-
edge of VMD and NAMD, as well as the Tcl language. For the accompanying
VMD and NAMD tutorials go to:
http://www.ks.uiuc.edu/Training/Tutorials/
This tutorial has been designed specifically for VMD 1.8.5, and should take about
5 hours to complete in its entirety.

The tutorial is subdivided into two separate units, one for tclForces and one
for tclBC. These script-based facilities make possible virtually any perturbation
of your system, and after completing this tutorial you will have the basic skills
to use them.

Throughout the text, some material will be presented in separate “boxes”.
These boxes include complementary information to the tutorial and tips or
technical details that can be further explored by the advanced user.

Tcl code is written in this font. When a line ends with a backslash (\) this
means that there should be no line break . . . don’t press enter, just keep typing!

If you have any questions or comments on this tutorial, please email the TCB
Tutorial mailing list at tutorial-l@ks.uiuc.edu. The mailing list is archived at
http://www.ks.uiuc.edu/Training/Tutorials/mailing list/tutorial-l/.

CONTENTS 4

Required programs

The following programs are required for this tutorial:

• VMD: Available at http://www.ks.uiuc.edu/Research/vmd

• NAMD: Available at http://www.ks.uiuc.edu/Research/namd

Getting Started

You can find the files for this tutorial in the forces-tutorial-files directory.
Fig. 1 shows the files and directories of forces-tutorial-files.

example-output

tclForcesFiles
rot-a

rot-b

BUBBLE

rot-c

BUBBLE_OUTPUT_EXAMPLE

SHEAR

SHEAR_OUTPUT_EXAMPLE

push

tclBCmovies

IONS_OUTPUT_EXAMPLE
forces-tutorial-files

IONS
tclBCfiles

common

gridForceFiles

example-output

graphene

ions-grid

push-grid

Figure 1: Directory structure of forces-tutorial-files

To start VMD type vmd in a Unix terminal window, double-click on the VMD
application icon in the Applications folder in Mac OS X, or click on the Start
→ Programs → VMD menu item in Windows.

1 TCLFORCES 5

1 TclForces

In this unit, you will learn about NAMD’s TclForces functionality. Although
many user needs were anticipated in the development of NAMD, to anticipate
them all specifically would be impossible. TclForces allows users to easily sup-
plement the built-in constraint and force functionality with script-based forces.

1.1 Introduction

The basic idea of tclForces is simple: we provide NAMD with a Tcl script
which tells NAMD to apply certain forces to certain atoms. The only special
requirement of this script is that it define a command named calcforces. This
command is called by NAMD each timestep. Within the script, we can access
atomic IDs, positions and masses. In this unit, we will see how to use tclForces
through four examples of increasing complexity.

1.2 Example 1: Constant Forces

For our first exposure to tclForces, we will do something very simple: apply
a constant net force to a system.

1 First, let’s look at the NAMD configuration file. Go to the directory
forces-tutorial-files/tclForcesFiles/push and open the file push.namd.
Everything is standard about it until the end, where we see some unfa-
miliar lines:
tclforces on
set linaccel "30 0 0"
tclforcesscript push.tcl

The first line simply turns tclForces on. The second sets a parameter
for the acceleration that we’ll use in the script, as we’ll soon see. The last
line is the name of the script which actually does the work.

In-line scripts. It is also possible to include the contents of your
tclForces script directly in your NAMD configuration file. Instead
of providing the name of a script, we could instead write the script
contents within curly braces:

tclforcesscript {
... contents of script ...
}

This is most useful for particularly short scripts.

2 Now let’s look at the script. Open the file push.tcl, in the same directory.

1 TCLFORCES 6

3 First, we select the atoms we’re interested in:

set numatoms 1231

set atoms {}
for { set i 1 } { $i <= $numatoms } { incr i } {
lappend atoms $i

}

foreach atom $atoms {
addatom $atom

}

The structure we’re using is ubiquitin, the same protein used in the VMD
and NAMD Tutorials. Here, we’re using the protein alone, in vacuum,
and so the structure contains just 1231 atoms. We first build a list of the
atomic indices (NAMD atom indices, unlike VMD atom indices, start at
1.) For each atom, we then call the addatom command. This tells NAMD
that we want access to this atom’s coordinates. Forces may be applied to
an atom without this call.

4 We next convert from the natural acceleration units Å·ps−2 to the NAMD
units kcal/mol·Å·amu, and print some information:

set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
print "Linear acceleration imparted: ($linaccel) Ang*ps^-2"

Note that to print messages from the force script, we must use the print
command, instead of the usual puts command.

NAMD Units. The basic NAMD units are kcal/mol for energy,
angstroms for length, atomic mass units (a.k.a. Daltons) for mass,
and bar for pressure. Other units are derived from these, e.g. the
NAMD unit of force is 1 kcal/mol·Å ≈ 69.48 pN.

Linear acceleration. Linear acceleration is governed by Newton’s
Second Law:

F = ma

Here, F is a force vector, m is the mass, and a is the acceleration
vector. Thus, this equation says that to achieve a specified accel-
eration, we must apply a force equal to that acceleration times the
mass, in the same direction we want to accelerate. In our case, we
apply a force to each individual atom, scaled by its mass so that
each experiences the same acceleration, and thus the protein moves
together as a whole.

5 The only thing left is the calcforces command:

1 TCLFORCES 7

proc calcforces { } {
global atoms numatoms linaccel namd
loadcoords coords
loadmasses masses
set comsum "0.0 0.0 0.0"
set totalmass 0.0
foreach atom $atoms {
set force [vecscale $masses($atom) $linaccel namd]
addforce $atom $force
set tmp [vecscale $masses($atom) $coords($atom)]
set comsum [vecadd $comsum $tmp]

}
set invmass [expr 1.0/$totalmass]
print "Center of mass = [vecscale $invmass $comsum]"

}

The script starts with the global command, which imports the variables
named so that they can be accessed in the calcforces command.

Next we call the command loadcoords. This sets the variable coords to a
Tcl array of coordinates of the atoms that have been added using addatom.
In this case, of course, that is all the atoms of the system. Array elements
in Tcl are accessed using parentheses. Similarly, loadmasses retrieves the
atomic masses, putting them in an array named masses.

Then we loop through the atoms, applying the specified force to each using
the addforce command. Along the way, we also calculate the center of
mass of the protein. We see two more Tcl commands in actions here:
vecadd and vecscale. These add two vectors and multiply a vector by a
scalar, respectively.

6 Because the system is so small, you can run it on your desktop or laptop
without trouble, and see the protein move. Run the file push.namd. With
a normal installation, you would do this with the command

namd2 push.namd > push.log

Coordinates. Coordinates in tclForces are not wrapped around
the unit cell. If you need wrapped coordinates for whatever reason,
you must wrap them yourself using the periodic cell dimensions and
origin.

7 After this finishes, we want to see how the protein was affected. We
will now use VMD’s MultiPlot plugin to view the results. Open the file
plot.tcl in your favorite text editor, and change the first line to be the
location of the log file you just created, e.g.

set log push.log

if you named the log file push.log. To run the script, either type

1 TCLFORCES 8

vmd -e plot.tcl

from the command line, or open VMD and source the script file in the Tk
Console:

source plot.tcl

0 500 1000 1500 2000 2500 3000
time (ns)

0

10

20

30

40

50

60

70

x
(Å

)

Center of mass

Figure 2: Center of mass position plotted versus time.

8 You should see a plot similar to Fig. 2. The beginning of the graph is
quadratic, as we expect. However, the velocity saturates at some value
because of the Langevin dynamics used in the simulation. Langevin dy-
namics involve a damping factor, which creates a terminal velocity.

Langevin dynamics. Langevin dynamics are commonly used in
NAMD to simulate at constant temperature, in this case in a so-
called NVT ensemble. The keywords beginning with langevin in
the NAMD configuration file control its settings. Without Langevin
dynamics activated and in the absence of any external forces, we
would be simulating in the NVE ensemble, in which case energy
rather than temperature is constant. NAMD also includes constant-
pressure options for simulation in the NPT ensemble.

9 Now open the trajectory in VMD. First launch VMD, then open the Tk
Console. Make sure you’re in the tclForcesFiles directory, then type
the command

mol load psf common/ubiquitin.psf dcd push/push.dcd

If you could not produce the trajectory, there is a sample one in the
example-output directory. Notice that the Langevin dynamics prevent
the protein from moving too quickly.

1 TCLFORCES 9

1.3 Example 2: Rotation

We will now add a layer of complexity: we will force atoms differently based
on their coordinates. In this example, we will force atoms in such a way that,
in addition to a linear force, the protein also rotates about an axis parallel to
the z-axis and through the protein’s center of mass.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-a.

2 Look at the NAMD configuration file. Open the file rot-a.namd. At the
end, we see the following:

tclforces on
set linaccel "30 0 0"
set angaccel 1
tclforcesscript rot-a.tcl

This is very similar to the previous example, but here we provide an
additional scalar to describe the angular acceleration.

3 Now let’s look at the script itself. Open the file rot-a.tcl. The atom
selection part at the beginning is identical to the last case, so we will not
repeat the discussion. The next part of the file is again similar, but also
processes the angular acceleration.

set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
set angaccel namd [expr $angaccel/418.68]

print "Linear acceleration: ($linaccel) Ang*ps^-2"
print "Angular acceleration: (0 0 $angaccel) Rad*ps^-2"

We convert to NAMD units, just like before. Then we print some infor-
mational text using the print command.

4 Now we’ll look at the calcforces command. The first part is nearly the
same as in the previous example. The differences are the change of one of
the global variables, and the fact that we no longer apply forces in the
first loop.

proc calcforces { } {
global atoms numatoms linaccel namd angaccel namd

loadcoords coords
loadmasses masses

1 TCLFORCES 10

set comsum "0 0 0"
set totalmass 0
foreach atom $atoms {
set tmp [vecscale $masses($atom) $coords($atom)]
set comsum [vecadd $comsum $tmp
set totalmass [expr $totalmass + $masses($atom)]

}
set com [vecscale [expr 1.0/$totalmass] $comsum]
print "Center of mass = $com"

5 The last part of the script is where the real differences lie:

foreach atom $atoms {
set linforce [vecscale $masses($atom) $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt($x*$x + $y*$y)]
set phi [expr atan2($y, $x) + $M PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angmag [expr $masses($atom) * $angaccel namd * $rho]
set angforce [vecscale $angmag $angdir]
set force [vecadd $linforce $angforce]
addforce $atom $force

}
}

The first section above calculates the distance from the rotation axis, rho,
and the angle from the x axis at which the force should be applied, phi
(90◦ from the angle of the position vector, hence the addition of π/2
radians.) Fig. 3 shows how these variables are related.

After printing the force angle associated with one atom so we can monitor
the rotation, we find a unit vector (i.e. a vector with length one) pointing
in the phi direction. We then multiply this by the mass of the atom and its
distance from our rotation axis, giving us the correct angular force for the
angular acceleration requested in the NAMD configuration file. Finally,
we add the linear and angular forces to get the total force.

1 TCLFORCES 11

x

y

φF

φ−π/2

ρ

rotation axis

atom

x

y

z

Figure 3: Relationships among variables in the script rot-a.tcl

Angular acceleration. Angular acceleration is governed by an
equation analogous to Newton’s Second Law:

τ = Iω (1)

τ is torque (analogous to force), ω is the angular acceleration, and
I is the moment of inertia (analogous to mass). Torque is given by

τ = ρ× F

where F is the force and ρ is a position vector relative to the rotation
axis (see Fig. 3). In our case, we apply the force perpendicular to
the ρ vector, so the cross product simplifies and we get

τ = ρF (2)

for the magnitude. For point particles, the moment of inertia is
simply I = mρ2, where m is the particle’s mass. Combining this
with Eqns. 1 and 2 and solving for F , we get

F = mωρ

for the force per particle to achieve a specified angular acceleration.

1 TCLFORCES 12

6 Now run the simulation:

namd2 rot-a.namd > rot-a.log

This should again take just a few minutes.

7 Plot the angle phi by using the script plot.tcl just as you did before
(there is a different copy in the current directory.)

The result is shown in Fig. 4. Plot the center of mass as well, by opening
plot.tcl and changing the var variable to "Center of mass". This
can be accomplished by simply commenting the first set var line, and
uncommenting the other:
#set var "atom 1: phi"
set var "Center of mass"

0 500 1000 1500 2000 2500 3000
time (fs)

-0.5

0

0.5

1

1.5

2

φ
(r

ad
)

Angle of rotation

Figure 4: Rotation angle plotted versus time.

8 We again see a roughly quadratic time dependence at the beginning of the
trajectory give way to a linear one, again a consequence of the Langevin
damping.

9 Open the trajectory in VMD. With VMD open, go to the main tclForcesFiles
directory, then type the following in the Tk Console:

mol load psf common/ubiquitin.psf dcd rot-a/rot-a.dcd

Challenge: Find the dependence of the terminal linear and angular veloci-
ties on the langevinDamping parameter of the simulation, set in the configura-
tion file, as well as the dependence on the applied force.

1 TCLFORCES 13

1.4 Example 3: Forcing a Subset of Atoms

This example deals with the important ability to force a subset of your atoms.
In this section, we will apply forces only to the backbone atoms of the protein.
We accomplish this by making a special “target atom” PDB file, using the beta
column to mark the atoms we want to apply force to. In addition, we will use
the occupancy column to tell our script the atomic masses, in order to demon-
strate how to provide the script with additional information.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-b.

2 As usual, we will first examine the NAMD configuration file. Open the file
rot-b-short.namd. First, note that we are now using a different system,
one in which the ubiquitin has been solvated. This is a more natural
environment for the protein.

Look at the end of the file, where we set up tclForces. We see a new
line:

set targetAtomPdb ../common/ubiquitin solvate backbone.pdb

With this line, we specify the aforementioned target atom PDB file. Thus,
our first task is to produce that file. We will use a VMD script to accom-
plish this.

3 Open the file makeTargetAtomPdb.tcl. The first section sets a few vari-
ables. First, the relevant file names:

set pdb common/ubiquitin solvate.pdb
set psf common/ubiquitin solvate.psf
set targetPdb common/ubiquitin solvate backbone.pdb

Next, we set the selection text we will use to select our atoms, and the
beta value that these atoms will receive:
set selection "protein and backbone"
set targetMark "1.00"

4 Next, we load the structure into VMD, and set both the beta and occu-
pancy columns to zero:

mol load psf $psf pdb $pdb
set all [atomselect top all]
$all set beta 0
$all set occupancy 0

5 Now we make a selection of the target atoms, set their beta and occupancy
columns to the appropriate values, and write the output PDB. Note the
ease with which the list of masses are used to set the occupancy:

1 TCLFORCES 14

set target [atomselect top $selection]
set masses [$target get mass]
$target set beta $targetMark
$target set occupancy $masses

$all writepdb $targetPdb
exit

6 Now run the script:

vmd -dispdev text -e makeTargetAtomPdb.tcl

(Note: For Windows users, open the VMD GUI and source the script file
in the Tk Console.)

If you were unable to run the script, copy the file example-output/
ubiquitin solvate backbone.pdb into the common directory.

7 Next, take a look at the tclForces script. Open the file rot-b.tcl. Right
from the beginning, we notice many differences. It first sets a targetMark
variable so that the script can recognize the marks we’ve set in the target
PDB:

set targetMark 1.0

8 Now we have to process the PDB. There are no built-in routines for ac-
complishing this, so the following code is quite low-level. The columns of
a PDB file have a fixed character width, so we must simply read each line,
and break it into fixed-sized pieces according to the PDB format:

set targets {}
set masses {}
set inStream [open $targetAtomPdb r]
foreach line [split [read $inStream] \n] {
set type [string trim [string range $line 0 5]]
set name [string trim [string range $line 12 15]]
set resid [string trim [string range $line 22 25]]
set beta [string trim [string range $line 60 65]]
set occupancy [string trim [string range $line 54 59]]
set segname [string trim [string range $line 72 75]]

9 We first make sure that this line corresponds to an atom record and
not a comment line or some other entry. Then, if the atom has a beta
value matching the target value, we form a triple consisting of the atom’s
segname, resid, and name. This is necessary for finding the index of the
atom:

1 TCLFORCES 15

if { ($type eq "ATOM" || $type eq "HETATM") \
&& $beta == $targetMark } {
lappend targets "$segname $resid $name"
lappend masses $occupancy

}
}
close $inStream

10 The next step is to use the atom triples to find its index, and form a list
of these, using the atomindex command. addatom is then called for each
of these atoms:
set atoms {}
foreach target $targets {
lassign $target segname resid atom
set atomindex [atomid $segname $resid $atom]
lappend atoms $atomindex
addatom $atomindex

}

11 Next we find the number of target atoms:

set numatoms [llength $atoms]
set linaccel namd [vecscale [expr 1.0/418.68] $linaccel]
set angaccel namd [expr $angaccel/418.68]
print "Linear acceleration: ($linaccel) Ang*ps^-2"
print "Angular acceleration: (0 0 $angaccel) Rad*ps^-2"

12 Now we get to the main part of the script, the calcforces definition. It
is essentially identical to the last example:

proc calcforces { } {
global atoms numatoms masses linaccel namd angaccel namd

loadcoords coords
set comsum "0 0 0"
set totalmass 0
foreach atom $atoms mass $masses {

set tmp [vecscale $mass $coords($atom)]
set comsum [vecadd $comsum $tmp]
set totalmass [expr $totalmass + $mass]

}
set com [vecscale [expr 1.0/$totalmass] $coordsum]
print "Center = $com"

1 TCLFORCES 16

foreach atom $atoms mass $masses {
set linforce [vecscale $mass $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt($x*$x + $y*$y)]
set phi [expr atan2($y, $x) + $M PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angmag [expr $angaccel namd * $rho * $mass]
set angforce [vecscale $angmag $angdir]
set force [vecadd $linforce $angforce]
addforce $atom $force

}
}

13 Now run the simulation, just as you have in previous examples:

namd2 rot-b-short.namd > rot-b-short.log

If you have access to a cluster, run it on the cluster—refer to local in-
structions for how this is done. This simulation will run for just 100 steps,
so that the benchmark times are printed. In the next section, we will see
how to improve this performance.

If you are interested, examine the files rot-b-long.log and rot-b-long.dcd
in the example-output directory, which were produced with a slightly
longer simulation. When loading the trajectory in VMD, use the PSF
common/ubiquitin solvate.psf

1.5 Example 4: Improving Efficiency

In most cases, it’s unnecessary to recalculate the force values applied at each
time step. Depending on the situation, one may be able to recalculate every
1000 steps, saving a lot of computational effort and therefore increasing the
speed of the simulation. In this section, we will see how to do that.

1 Change to the directory forces-tutorial-files/tclForcesFiles/rot-c.

2 Open the NAMD configuration file, rot-c-short.namd. The new line this
time is

set forcesRecalcFreq 10

As its name implies, this parameter sets how often our forces will be
recalculated.

1 TCLFORCES 17

3 Now open the script rot-c.tcl. The first differences start at line 58. We
first set up a forces list, which is a variable to hold the values of the
forces we will apply to the atoms. We also set up some counter variables:
forcecount and printcount are both incremented each timestep. When
forcecount equals forcesRecalcFreq, the forces are recalculated, and
forcecount is reset to zero, as seen below.
set forces {}
foreach index $atoms {
lappend forces "0.0 0.0 0.0"

}

set forcecount $forcesRecalcFreq
set printcount 0

4 Now we begin the calcforces command. First, as usual, we declare our
global variables. We then apply the forces that are saved in the forces
list.
proc calcforces { } {
global atoms numatoms forcemult masses avgmass forces
global forcesRecalcFreq
global forcecount printcount

foreach atom $atoms force $forces {
addforce $atom $force

}

5 Next, we test whether the forces will be recalculated next timestep, and if
so, tell NAMD that we will want atomic coordinates for the target atoms
by calling addatom:

if { $forcecount == [expr $forcesRecalcFreq - 1] } {
print "Adding atoms prior to reconfiguring forces at \
$printcount"

foreach atom $atoms {
addatom $atom

}
}

As we will see shortly, we call clearconfig after the forces are recalcu-
lated. This call erases all addatom records; without it, the coordinates of
the atoms added will be available every timestep, independently of whether
we call loadcoords, and therefore much of the potential speed gain will
be lost. However, this means that addatom must be called again each time
we want to recalculate forces, and because of technical details it has to be
done at least one step before the coordinates will be used.

6 Next we have the code that recalculates the force. As alluded to above,
the recalculation happens when forcecount equals forcesRecalcFreq.

1 TCLFORCES 18

The rest of the force calculation code is identical to the code we had in
the last example, except that instead of calling addforce with each force
vector, we now put the vector in the forces list variable:

if { $forcecount == $forcesRecalcFreq } {
print "Recalculating forces at $printcount"

loadcoords coords
set comsum "0 0 0"
set totalmass 0
foreach atom $atoms mass $masses {
set tmp [vecscale $mass $coords($atom)]
set comsum [vecadd $comsum $tmp]
set totalmass [expr $totalmass + $mass]

}
set com [vecscale [expr 1.0/$totalmass] $comsum]
print "Center of mass = $com"

set forces {}
foreach atom $atoms mass $masses {
set linforce [vecscale $mass $linaccel namd]
set r [vecsub $coords($atom) $com]
set x [lindex $r 0]
set y [lindex $r 1]
set rho [expr sqrt($x*$x + $y*$y)]
set phi [expr atan2($y, $x) + $M PI/2]

if { $atom == 1 } {
print "atom $atom: phi = $phi"

}

set angdir "[expr cos($phi)] [expr sin($phi)] 0.0"
set angmag [expr $angaccel namd * $rho * $mass]
set angforce [vecscale $angdir]
set force [vecadd $linforce $angforce]
lappend forces $force

}

7 Finally, we print some information, call clearconfig, and reset forcecount.

print "Step ${printcount}: Recalculated \
[llength $forces] forces"

set forcecount 0
clearconfig

}
incr forcecount
incr printcount
return

}

1 TCLFORCES 19

8 Now run the simulation:

namd2 rot-c-short.namd > rot-c-short.log

Again, this is a short simulation, running 100 steps, just long enough for
benchmark timing information to be printed. Compare the speed of this
simulation to the last. There should be a significant difference—comparing
the example files rot-b-short.log and rot-c-short.log, which were
run on just a single CPU, there is nearly a 15% speed increase. As the size
of the system and the number of CPUs increase, applying tclForces ef-
ficiently becomes even more important: comparing rot-c-long.log with
rot-b-long.log, both run on 20 processors, rot-c is almost 60% faster!

Once again, there are sample output files, rot-c-long.dcd and rot-c-long.log
in the example-output directory, and should again be loaded together
with the PSF file common/ubiquitin solvate.psf.

Challenge: Take the provided file kcsa closed.pdb, and use the partial
structure kcsa open.pdb as a target to open the channel using tclForces.

You now know the basics of tclForces. In the next section, you will learn
about a similar feature of NAMD called tclBC, which is suitable for different
circumstances.

2 TCLBC 20

2 TclBC

In a NAMD configuration file, one sets up the simulation parameters, such as the
temperature, pressure, or a uniform electric field, for the molecular system as
a whole. In many cases, though, you will need to impose boundary conditions,
apply a non-uniform electric field, or selectively apply forces to a group of atoms
of the given type or located in a particular area. For this purpose, you can use
a tclBC (which stands for Tcl Boundary Conditions) script. A tclBC script is
written in the Tcl programming language, a rudimentary knowledges of which
would be enough for most tasks. The script will be interpreted line-by-line,
therefore slowing down the simulation, sometimes considerably. For this reason
you will want to keep your scripts simple and efficient.

tclBC versus tclForces. tclBC and tclForces are both scripting
interfaces that allow to get information about the atoms’ positions
and apply forces to selected atoms during a NAMD simulation. In
both scripts, the force can be calculated individually for each atom,
depending on its unique ID number and its current position. The
main difference between tclBC and tclForces is that an indepen-
dent instance of tclBC is running on each processor, and only atoms
forming the patch treated by that processor are visible to the given
instance of tclBC. This feature makes tclBC more efficient than
tclForces, which is run on just one CPU, but also limits its ca-
pabilities. If you need to apply forces to each atom irrespective of
the position of other atoms, use tclBC. On the other hand, if you
have to consider mutual positions of two or more atoms or gather
information about the whole system, you will need tclForces.

The way the coordinates of atoms are wrapped around periodic boundaries
in a tclBC script is controlled using the command wrapmode, which that may
have one of the following arguments:

• patch is the default mode: the atom’s coordinates are considered as the
position in NAMD’s internal patch data structure. This is in general
different from an atom’s coordinates relative to the global origin, so patch
mode should not be used unless you know what you are doing.

• In mode input, the atom’s coordinates correspond to its position in the
input files of the simulation.

• In mode cell, the atom’s equivalent position in the unit cell centered on
the cellOrigin is used.

• In mode nearest, the atom’s equivalent position nearest to the cellOrigin
is used.

For most purposes, mode cell is a good choice.

2 TCLBC 21

2.1 Example 1: Making a Bubble

Imagine that you have a water box, and you want to create a spherical bubble
of vacuum. You can do that by applying forces to every atom found inside
this sphere to push it out. To avoid instability, you would want to start with
a small bubble and then increase it until the desired size is reached. The rate
of increasing the size of the bubble is up to you. If this rate is too large,
some atoms will be pushed too hard and therefore move too fast, causing the
simulation to crush. Fast-moving atoms may also break the structure of a
double-stranded DNA or another molecular complex held together by relatively
weak non-bonded interactions (van der Waals and electrostatic forces). Even
if the simulation remains stable, you should watch the changes in temperature
and pressure to make sure that the energy influx, which is equal to the work
done by the force you are applying, has enough time to dissipate.

Choosing the loading rate. Generally you would want to keep
the perturbation of the system as low as possible by imposing any
external forces as slowly as you can afford given your available com-
putational resources. It is a good idea, though, to run a trial sim-
ulation at a fast pace to see what is happening to the system, and
thereby get an idea of how fast you can move things without los-
ing the stability of the simulation or increasing the temperature or
pressure beyond reason.

1 Open the file tclBCfiles/BUBBLE/eq04.bubble.namd in a text editor.
Scroll down to the end of the file to the line tclBC on.

You should find the following code:

tclBC on
tclBCScript {
set bubbleCenter "0.0 0.0 0.0"
set tclBCScript bubble.tcl
source $tclBCScript

}
tclBCArgs {0. 15. 0.01 5.}

Since a tclBC script is called from NAMD, it is referenced NAMD con-
figuration file, which is also a good place to set the script parameters. The
NAMD command tclBC on turns the TclBC interface on. In our example,
tclBCScript {...} contains the initialization of a key variable and a reference
to the file that contains the script itself: source $tclBCScript. If the script is
short, it can be placed entirely within the body of the command tclBCScript in
the NAMD configuration file. Finally, the command tclBCArgs is used to pass
a list of variables to the main TclBC procedure calcforces (we will talk about
it very soon). In this case, the four arguments found in curly brackets have the
meaning: “make a bubble starting from radius 0 Å and increase it to 15 Å at a
rate of 0.01 Å per simulation step, by applying forces of 5 kcal/mol·Å.”

2 TCLBC 22

2 Look through the script tclBCfiles/BUBBLE/bubble.tcl.

bubble.tcl contains the following code:

Two first agruments of calcforces are automatically forwarded
to it by NAMD. The other 4 arguments match the list of 4 values
from command tclBCArgs.

proc calcforces {step unique Rstart Rtarget Rrate K} {

global bubbleCenter ;# defined in tclBCScript{ ... }

increase R, starting from $Rstart, by $Rrate at each step,
until it reaches $Rtarget; then keep it constant

set R [expr $Rstart + $Rrate * $step]
if { $R > $Rtarget } { set R $Rtarget }

let only the main processor print the output

if { $unique } {
print "step $step, bubble radius = $R"

}

get the components of the bubble center vector

foreach { x0 y0 z0 } $bubbleCenter { break }

pick atoms of the given patch one by one

while {[nextatom]} {

set rvec [getcoord] ;# get the atom’s coordinates

get the components of the vector
foreach { x y z } $rvec { break }

find the distance between the atom and the bubble center
(long lines can be broken by a backslash and continued
on the next line)

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))]

if the atom is inside the sphere, push it away radially

2 TCLBC 23

if { $rho < $R } {
set forceX [expr $K * ($x-$x0) / $rho]
set forceY [expr $K * ($y-$y0) / $rho]
set forceZ [expr $K * ($z-$z0) / $rho]
addforce "$forceX $forceY $forceZ"

}
}

}

The structure of a TclBC script. Just as in the case of
tclForces, every tclBC script must define a calcforces com-
mand. Unlike in the case of tclForces, however, calcforces now
takes two or more arguments. The first two arguments are forwarded
to it automatically: step is simply the simulation step, and unique

is nonzero for only one instance of calcforces corresponding to
the atom patch 0. The tclBCArgs line in the NAMD configuration
file specifies the rest.

In the code bubble.tcl, we use the unique flag to print something from
within calcforces once at each step. Without if { $unique } clause, the
print command would be executed by every processor.

The list of variables Rstart Rtarget Rrate K forwarded to calcforces
matches the list of values tclBCArgs {0.0 10.0 0.01 5.0} of the NAMD con-
figuration file. You can use more or fewer variables, or none at all, as long as
the lengths of the two lists are the same. The automatic variable step and
unique don’t count, so calcforces will always have two more arguments than
to tclBCArgs.

The key command in calcforces is nextatom, which tells NAMD to select
the next atom of the given patch. nextatom returns a value which is nonzero if
the next atom has been successfully selected, or zero if no more atoms are left
to process. Thus, while {[nextatom]} {...} is a loop that will be repeated
until all atoms of the current patch are processed.

Once an atom is selected by nextatom, a number of commands can be used
to get its properties:

set atomid [getid] ;# 1-based atom ID number
set coords [getcoord] ;# 3-component coordinate vector (A)
set mass [getmass] ;# mass (atomic units)
set charge [getcharge] ;# charge (atomic units)

Using these parameters, you can decide what to do to that atom.
In the script bubble.tcl, we find the coordinates of the atom using the

command foreach { x y z } $rvec { break }; this is a standard trick to
get the components of a vector or a list in Tcl. Using the same method, we
find the coordinates of the bubble center. Then we check whether the atom is
inside the bubble of radius $R and center $bubbleCenter. If so ($rho < $R),
we calculate the components of the force vector such that it is directed radially

2 TCLBC 24

from the bubble’s center. In this simple example, the absolute value of the force
is always $K whenever the force is applied. Finally, addforce tells NAMD to
actually push the given atom by adding the force vector “$forceX $forceY
$forceZ” to the force that would act on that atom otherwise.

3 Change (cd) to the directory tclBCfiles/BUBBLE.

4 Run a NAMD simulation by typing

namd2 eq04.bubble.namd > eq04.bubble.log

(for standard installations of NAMD.)

5 Open file eq04.bubble.log, and find a line that reports the speed of com-
putation, e.g. TIMING: 3000 CPU: 1340.82, 0.4363/step. The speed
of computation is given in seconds per step, one step being 1 fs in this
case. Write these numbers down, as you will need to compare them to the
speed of an optimized script.

6 If you are unable to run the simulation, use the sample output file
../BUBBLE OUTPUT EXAMPLE/eq04.bubble.log.

7 Open the simulation trajectory in VMD. Use the sample trajectory file
../BUBBLE OUTPUT EXAMPLE/eq04.bubble.dcd if necessary.

8 In main VMD window, click Graphics, then Representations. In Graphi-
cal Representations window, type x>0 in Selected Atoms text box, press
Enter. Below this box, click Trajectory, select Update Selections Every
Frame. Rotate the image if necessary using mouse.

9 In the main VMD window, click Display, then check Depth Cueing box.
Click Display again, click Display Settings. Set Cue Mode to Linear. Set
Cue Start 2.00, Cue End 3.00, vary them to see the effect of this parameters
on the system’s view.

10 Run the trajectory animation, and watch the formation of the bubble.

Sample snapshots of the simulation trajectory are shown in Fig. 5. The direc-
tory tclBCmovies contains MPEG movies bubble*.mpg that show the bubble
formation trajectory animation at 0.1 ps per frame.

2.2 Optimizing a TclBC script

The above script bubble.tcl is far from being perfect. The same job can be
done much more efficiently by decreasing the number of atoms processed at each
step, as well as the number of arithmetic operations. Note that Tcl arithmetic
is much slower than hard-coded C++ arithmetic of the NAMD. A more efficient
script is given in file BUBBLE/bubbleFast.tcl.

2 TCLBC 25

Figure 5: Snapshots of the bubble formation. The initial simulation cell bound-
aries are shown by a line.

Dropping atoms. The command dropatom tells the processor
to no longer select the given atom by the command nextatom in
a TclBC script. This increases the speed of computation because
fewer atoms are considered. The command cleardrops cancels all
the dropatom commands called earlier on the given processor. Note
that a dropped atom can drift to another processor where it has not
been dropped. Since the list of atoms in a patch changes with time,
it is often a good idea to call cleardrops occasionally and then
drop unnecessary atoms again.

1 Take a look at the script BUBBLE/bubbleFast.tcl, also presented below:

wrapmode cell

this line is moved above calcforces to avoid doing this
transformation more than once

foreach { x0 y0 z0 } $bubbleCenter { break }

set TOL 3. ;# distance tolerance parameter

proc calcforces {step unique Rstart Rtarget Rrate K} {

global x0 y0 z0 TOL

set R [expr {$Rstart + $Rrate * $step}]
if { $R > $Rtarget } { set R $Rtarget }

if { $unique } {
print "step $step, bubble radius = $R"

}

Atoms found at a distance larger than $TOL from the surface
of the bubble, or $RTOL from the center of the bubble, will

2 TCLBC 26

be ignored (dropped) for the rest of a 100-step cycle.

set RTOL [expr {$R + $TOL}]

restore the complete list of atoms to consider

if { $step % 100 == 0 } { cleardrops }

while {[nextatom]} {

set rvec [getcoord]
foreach { x y z } $rvec { break }
set rho [expr {sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))}]

Atoms at distances 0 to $R from the bubble center are pushed,
atoms father than $RTOL are dropped. Atoms between $R to $RTOL,
that is with a layer of thickness $TOL, are neither pushed nor
dropped at this step, so that they will be considered again at
the next step(s). They may come closer to the bubble and then
they will have to be pushed.

if { $rho < $R } {

set forceX [expr {$K * ($x-$x0) / $rho}]
set forceY [expr {$K * ($y-$y0) / $rho}]
set forceZ [expr {$K * ($z-$z0) / $rho}]
addforce "$forceX $forceY $forceZ"

} elseif { $rho > $RTOL } {

dropatom ;# no longer consider this atom until "cleardrop"

}
}

}

Since most water molecules are far from the bubble, we don’t need to check
their coordinates every step. It’s enough to do that once in a while (every 100
steps in this example). At all other times, only a small number of atoms that
are still inside the bubble or within distance $TOL from it, and only these are
selected by nextatom each step.

2 Open configuration file eq04.bubbleFast.namd, and make sure that it is
calling the tclBC script bubbleFast.tcl. Run a NAMD simulation by
typing

2 TCLBC 27

namd2 eq04.bubbleFast.namd > eq04.bubbleFast.log.

3 If you are unable to run the simulation, use the sample log file
../BUBBLE OUTPUT EXAMPLE/eq04.bubbleFast.log.

4 Look through file eq04.bubbleFast.log, find the word TIMING, and com-
pare the speed to that found when using the script bubble.tcl. In our
samples, the speeds obtained on a single CPU are 0.4363 s/step (8.0 ps/hr)
and 0.2084 s/step (18.8 ps/hr) for the original and optimized script, re-
spectively. Your numbers may differ.

5 Run a NAMD simulation using file eq04.bubbleFast.namd on a cluster.
Make sure to direct the output to a new file. Repeat the above steps and
find the computation speed. In our example
(../BUBBLE OUTPUT EXAMPLE/eq04.bubbleFast.4CPU.log), the speed on
4 CPUs increased to 0.0619 s/step (40.3 ps/hr).

Scaling of the speed of computation. The NAMD performance
on a multi-processor cluster or supercomputer is roughly propor-
tional to the number of processors, when the number of CPUs is up
to ≈ 1 CPU per 1000 atoms. Since a tclBC script distributes its
computations over all CPUs used, the performance of NAMD with
tclBC also scales well, though some loss in speed is inevitable. Op-
timization of tclBC scripts, in particular by the use of the dropatom
command, is essential to keeping up high simulation performance.

2.3 Example 2: Concentrating the ions in a solution

A more complex initialization of the TclBC script is necessary when it is sup-
posed to process a selected group of atoms. Imagine that, for whatever reason,
you want to gather all K+ and Cl− ions within a sphere with the same center
and radius as in the above example. For this purpose, we will push all ions
toward the center of the sphere. The force applied will be constant for all ions
beyond the sphere, and proportional to the distance between the ion and the
sphere center for atoms inside the sphere.

1 Change to the directory tclBCfiles/IONS.

2 Open file eq04.concentrateIons.namd, scroll to the end, and look at the
tclBC block.

As before, the tclBC script is set up in the NAMD configuration file:

tclBC on
tclBCScript {
set sphereCenter "0.0 0.0 0.0"
set sphereRadius 10.0
set maxForce 5.0

2 TCLBC 28

set pdbSource waterbox40-0.2M.pdb
set tclBCScript concentrateIons.tcl
source $tclBCScript

}
tclBCArgs { }

In this case, we don’t explicitly pass any extra arguments to calcforces
(the variables step and unique will still be passed implicitly). Instead, we set
up global variables sphereCenter, sphereRadius, maxForce, and pdbSource.
They will be made visible in calcforces using command global.

To identify the ions, we will read the system’s PDB file, locate the ions’
entries, and make a list of their IDs.

3 Open the file waterbox40-0.2M.pdb in a text editor and find the lines
containing text CLA (for chloride) or POT (for potassium).

The ion entries in the PDB file for a large system may look like

ATOM ***** CLA CLA 170 -36.100 -48.734 7.045 1.00 0.00 ION CL

...

ATOM ***** POT POT 1 -0.574 -49.643 34.378 1.00 0.00 POT K

In the above example, atom IDs for the ions are above 99999, and therefore not
shown in the PDB file by a decimal. Thus, to find out the atom IDs of the
ions, we will need to read the PDB file line by line while counting the atom
entries. An entry for each atom must begin with four letters ATOM or HETA. In
the PDB file above, each ion is identified by the residue name CLA or POT, which
occupies positions 17-19 of the line. Note that a 4-letter residue name would
occupy positions 17-20 of the line. To make the script more general, we will
read symbols 17-20 and then trim them (remove spaces).

4 Open file concentrateIons.tcl, and look through it.

The file concentrateIons.tcl begins with the following code:

set ionList {} ;# a list of atom IDs of the ions
set atomID 1 ;# in NAMD, atom IDs are 1-based numbers

set inStream [open $pdbSource r] ;# opening the PDB file

reading the PDB file line after line:
foreach line [split [read $inStream] \n] {

symbols 0-3 should be ATOM or HETA
set string1 [string range $line 0 3]

symbols 17-20 contain the residue name
set string2 [string range $line 17 20]

2 TCLBC 29

set string2 [string trim $string2] ;# trimming the residue name

if { [string equal $string1 {ATOM}] || \
[string equal $string1 {HETA}] } {

so it’s a valid atom entry; let’s see if this is an ion

if { [string equal $string2 {CLA}] || \
[string equal $string2 {POT}] } {

yes it’s an ion; append its index to the list
lappend ionList $atomID

}

increase the atomID counter by 1 (default increment)
incr atomID

}
}
close $inStream

This part of the code, preceding proc calcforces, will be executed once
by each processor. Identical instances of the list ionList of atom IDs for the
ions will also be kept in memory at each processor.

Now we are ready to write the main part of the code:

wrapmode cell

in this case the command tclBCArgs {} located in the NAMD config
file doesn’t pass any arguments to calcforces, therefore only
step and unique will be listed below:

proc calcforces {step unique} {

list all global variables set outside this procedure
(except those we won’t need, like pdbSource)

global sphereCenter sphereRadius maxForce ionList

find the components of the sphere’s center

foreach { x0 y0 z0 } $sphereCenter { break }

while {[nextatom]} {

set atomid [getid] ;# get the ID of the current atom

2 TCLBC 30

check if this ID is listed in ionList; if it’s found,
lsearch will return the position of the search pattern
in the list (a number >= 0), otherwise -1 is returned

if { [lsearch $ionList $atomid] >= 0 } {

set rvec [getcoord] ;# get the ion’s coordinates
foreach { x y z } $rvec { break }

find the distance between the ion and the sphere’s center

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))]

Apply same force $maxForce to each ion if it’s outside the
sphere. The components of the force vector are chosen so
that the vector is directed toward the sphere’s center,
and the vector’s norm is $maxForce.

if { $rho > $sphereRadius } {

set forceX [expr -$maxForce * ($x-$x0) / $rho]
set forceY [expr -$maxForce * ($y-$y0) / $rho]
set forceZ [expr -$maxForce * ($z-$z0) / $rho]

} else {

If the ion in already inside the sphere, scale the force
by a factor of $rho/$sphereRadius, so that the force
decreases from $maxForce to 0 as the ion approaches the
sphere’s center:

set forceX [expr -$maxForce * ($x-$x0) / $sphereRadius]
set forceY [expr -$maxForce * ($y-$y0) / $sphereRadius]
set forceZ [expr -$maxForce * ($z-$z0) / $sphereRadius]

}

Finally, applying the force calculated above
to the current atom

addforce "$forceX $forceY $forceZ"
}

}
}

2 TCLBC 31

5 Run a NAMD simulation with file eq04.concentrateIons.namd.

6 If you are unable to do that, find the example output files
eq04.concentrateIons.log and eq04.concentrateIons.dcd in the di-
rectory ../IONS OUTPUT EXAMPLE.

7 Open the log file eq04.concentrateIons.log, and find the speed of com-
putation marked by keyword TIMING. In our example, it is 0.2038 s/step
(17.2 ps/hr).

8 Load the simulation trajectory in VMD. Create two separate VDW repre-
sentations for potassium (resname POT) and chloride (resname CLA) ions.
For each of them, select Coloring Method: ColorID 4 (yellow) for Cl− and
12 (lime) for K+ ions.

9 Use the Molecule File Browser to load the same structure (waterbox40-0.2M.pdb
and waterbox40-0.2M.psf files) again as a new molecule. Select this sys-
tem in the Graphical Representations window, type "water" in the Se-
lected Atoms box, and select coloring method ColorID 15 (iceblue) and
drawing method MSMS with transparent material.

10 In Main window, double-click in column T of the molecule for which you
created the ions’ representations to make this molecule the top one. Run
the animation and watch the ions gather in the center of the water box.

Sample snapshots of the ion concentration trajectory are shown in Fig. 6.
The directory tclBCmovies contains MPEG movie ionConcentration.mpg that
shows the process at 0.1 ps per frame.

Figure 6: Snapshots of the ion concentration trajectory. The simulation cell
boundaries are shown for reference.

2.4 Example 3: Improving efficiency

The above code can be made both more computationally efficient, as well as
more concise and elegant. In our case, we are pushing only the ions, therefore
all other atoms can be safely dropped using the statement

2 TCLBC 32

if { [lsearch $ionList $atomid] == -1 } {

dropatom
continue

}

This way all non-ion atoms will be dropped at the first step and never selected
again by nextatom until cleardrops is called, thus making the code more
efficient. Some extra time could be saved if we didn’t need to continue pushing
the atoms that are already inside the sphere:

if { $rho < $sphereRadius } {
dropatom ;# don’t process this atom in the future
continue ;# don’t process this atom now, either

}

time to time (every 100 steps in this example),
let’s restore the complete list of atoms
to catch ions escaping from the sphere

if { $step % 100 == 0 } { cleardrops }

Using the vector routines, instead of robust but lengthy (and therefore error-
prone) code

foreach { x0 y0 z0 } $sphereCenter { break }
foreach { x y z } $rvec { break }

set rho [expr sqrt(($x-$x0)*($x-$x0) + ($y-$y0)*($y-$y0) + \
($z-$z0)*($z-$z0))] ;# find the distance between two points

calculate the force components

set forceX [expr -$maxForce * ($x-$x0) / $rho]
set forceY [expr -$maxForce * ($y-$y0) / $rho]
set forceZ [expr -$maxForce * ($z-$z0) / $rho]

addforce "$forceX $forceY $forceZ" ;# apply the force

we could write briefly and clearly:

set relativePosition [vecsub $rvec $sphereCenter]
set rho [veclength $relativePosition]
set forceVector [vecscale $relativePosition \
[expr -$maxForce / $rho]]

addforce $forceVector

2 TCLBC 33

or even more briefly (though maybe less clearly):

set relativePosition [vecsub $rvec $sphereCenter]
addforce [vecscale [vecscale $relativePosition \
[expr -$maxForce / [veclength $relativePosition]]]]

Another trick can simplify a tclBC script if you need to process all atoms
of a certain type, as K+ and Cl− in the above example. Since such atoms have
unique masses, you could avoid reading the PDB file, and make the list of atoms
by writing, e.g.:

while { [nextatom] } {
if { [getmass] > 35 && [getmass] < 40 } { ... }

}

Likewise, you could use if { [getcharge] } as a selection criterion. Just
make sure that no other atoms could match the conditions of the selection.

1 Open the file concentrateIonsBrief.tcl, look through the code, partly
explained above:

we will use the following variable to calculate and print the
average number of ions found outside the sphere at each step

set avgNumIons 0

set forceCoef [expr -$maxForce/$sphereRadius]

wrapmode cell

##

proc calcforces {step unique} {

global sphereCenter sphereRadius maxForce avgNumIons

if { $step > 0 && $step % 100 == 0 } {

Calculate and print the average number ions found outside
the sphere

set avgNumIons [expr $avgNumIons / 100.]
print "Step $step, average number of ions outside \
the sphere: $avgNumIons"

set avgNumIons 0

cleardrops

2 TCLBC 34

}

while {[nextatom]} {

if { [getmass] < 35 || [getmass] > 40 } {
dropatom ;# not a K+ or Cl-, forget about it
continue

}

vector between the ion and the sphere’s center

set relativePosition [vecsub [getcoord] $sphereCenter]
set rho [veclength $relativePosition]

if { $rho > $sphereRadius } {
addforce [vecscale $relativePosition [expr -$maxForce/$rho]]
incr avgNumIons

} else {
dropatom ;# this ion is already inside the sphere

}
}

}

2 Note that in this code, the ions already inside the sphere are no longer
pushed and are dropped. Can they escape from the sphere? 1

3 Run a NAMD simulation with file eq04.concentrateIonsBrief.namd
that calls the tclBC script concentrateIonsBrief.tcl. If unable to do
so, find the exemplary output concentrateIonsBrief.log and
concentrateIonsBrief.dcd in directory ../IONS OUTPUT EXAMPLE.

4 Open file concentrateIonsBrief.log, find the computation speed of the
optimized script, compare it to the speed you found when using the original
script. In our examples, the speeds are 0.1330 s/step (26.8 ps/hr) versus
0.2038 s/step (17.2 ps/hr).

5 In the file concentrateIonsBrief.log, find the lines that look like this:
TCL: Step 100, average number of ions outside the sphere: 13.0.
Plot the number of ions against simulation step. Hint: under a UNIX/Linux
system, you can type grep outside eq04.concentrateIonsBrief.log
| awk ‘{print $3 " " $11}’ > numIons.dat, and import the data from
the file numIons.dat into xmgrace or another technical graphics program.
Open the xmgrace file IONS OUTPUT EXAMPLE/numIons.agr to see a sam-
ple plot.

1Answer: yes, ions can escape, but they will be pushed back once the command cleardrops

is executed.

2 TCLBC 35

2.5 Example 4: Imposing a Shear Flow

As previously mentioned, the main feature of TclBC scripts is their ability to
apply geometry-based forces. Using a TclBC script, it is possible to impose
arbitrary fields of forces, thus imitating complex geometries and interactions
while keeping the molecular system relatively small and simple. For example,
a solution containing DNA in a microfluidic channel undergoes a shear flow, so
that parallel layers of the liquid move with different velocities. We can simulate
the shear flow by applying force to oxygen atoms of water molecules found
within thin layers in XY planes at and around z = zLo and z = zHi, which
variables will be set in the NAMD configuration file.

1 Change to the directory tclBCfiles/SHEAR, open file eq04.shear.namd,
scroll to its end.

The following initialization is made in the NAMD configuration file:

tclBC on
tclBCScript {
set zLo -15. ;# lower plane where forces are applied
set zHi 15. ;# top plane where forces are applied
set dz 3. ;# half-width of the layer
set TOL 6. ;# drop atoms that far from either layer
set force 5.
set pdbSource dsDNA6_solv.pdb
set tclBCScript shear.tcl
source $tclBCScript

}
tclBCArgs { }

2 Open the tclBC script shear.tcl, read it while paying attention to the
comments (the same script is shown below).

set atomList {} ;# a list of atom IDs of water oxygens
set atomID 1 ;# in NAMD, atom IDs are 1-based numbers

set inStream [open $pdbSource r] ;# opening the PDB file

reading the PDB file line after line:
foreach line [split [read $inStream] \n] {

symbols 0-3 should be ATOM or HETA
set string1 [string range $line 0 3]

symbols 13-16 contain the atom’s name
set string2 [string range $line 13 16]

2 TCLBC 36

trimming the atom’s name
set string2 [string trim $string2]

if { [string equal $string1 {ATOM}] || \
[string equal $string1 {HETA}] } {

so it’s a valid atom entry; let’s see if
this is a water’s oxygen

if { [string equal $string2 {OH2}] } {

yes it is; append its index to the list

lappend atomList $atomID
}
incr atomID

}
}
close $inStream

puts "[llength $atomList] water oxygens atoms found"

set totalTorque 0.

wrapmode cell

##

proc calcforces {step unique} {

global atomList shearStress zLo zHi dz TOL force

the value of a global variable will be stored
between calls to this procedure, while a local
variable would be lost

global totalTorque

if { $step % 100 == 0 } {

if { $totalTorque != 0. } {
print "Step $step, total torque applied: $totalTorque"
set totalTorque 0.

}
cleardrops

}

2 TCLBC 37

while {[nextatom]} {

check if this atom should be considered at all

if { [lsearch $atomList [getid]] == -1 } {

dropatom
continue

}

now check if it’s within bounds zLo to zHi

foreach { x y z } [getcoord] { break } ;# get coordinates

if { $z >= [expr {$zLo-$dz}] && $z <= [expr {$zLo+$dz}] } {

addforce "[expr {-$force}] 0.0 0.0"
set totalTorque [expr {$totalTorque - $force * $z}]

} elseif { $z >= [expr {$zHi-$dz}] && \
$z <= [expr {$zHi+$dz}] } {

addforce "$force 0.0 0.0"
set totalTorque [expr {$totalTorque + $force * $z}]

} elseif { ($z >= [expr {$zLo-$TOL}] && \
$z <= [expr {$zLo+$TOL}]) || \

($z >= [expr {$zHi-$TOL}] && \
$z <= [expr {$zHi+$TOL}]) } {

continue ;# keep an eye on it, it may come closer next time

} else {

dropatom ;# this atom is too far, forget about it for now

}
}

}

3 Run a NAMD simulation with configuration file eq04.shear.namd that
calls the tclBC script shear.tcl. Use the sample output from directory
../SHEAR OUTPUT EXAMPLE if necessary.

4 View the simulation trajectory in VMD. Use representation style Licorice
for both DNA strands, coloring method ColorID 11 (purple) for segid

2 TCLBC 38

ADNA and ColorID 7 (green) for segid BDNA. For selection water, use
style Lines, ColorID 15 (iceblue).

5 Why were zLo and zHi not set to be the lower and upper boundaries of
the system? 2

6 Open the output file eq04.shear.log, find a line with the total torque
output. Plot the total torque versus simulation step. Use the hint from
the previous section to extract the data. Open xmgrace file
SHEAR OUTPUT EXAMPLE/torque.agr to see a sample plot.

7 Run the same simulation on a cluster. How many times is the “total
torque” printed at each checkpoint? Can you modify the TclBC script to
print a system-wide total just once each time? 3

Sample snapshots of the simulation trajectory are shown in Fig. 7. MPEG
movies (found in directory tclBCmovies) shearSlow.small.mpg and
shearSlow.big.mpg show the trajectory animation at 0.1 ps per frame. At
this slow framerate, the movement of water layers is clearly visible. In movies
shearFast.small.mpg and shearFast.big.mpg, the frame rate is 1 ps per
frame, which allows one to see the slow rotation and dissociation of DNA in
the shear flow.

Figure 7: Snapshots of the shear flow. Arrows in the leftmost frame show the
direction and place where the shear forces are applied.

2Answer: The system has periodic boundary conditions, therefore its apparent top and
lower boundaries are actually the same plane.

3Answer: The torque is printed as many times as there are patches containing atoms to
which the force is applied. No, it’s impossible to collect this information from all patches in a
tclBC script. Each instance of the script can only access information about the atoms handled
by one processor.

3 GRID-STEERED MOLECULAR DYNAMICS 39

3 Grid-steered Molecular Dynamics

In this unit, you will learn about NAMD’s Grid-steered Molecular Dynam-
ics (G-SMD) feature, also known as Gridforce. G-SMD calculates forces to
be applied to target atoms based on a potential input by the user. This tech-
nique allows the fast and flexible application of spatially varying forces. Any
work that uses G-SMD should cite the following paper: D.B. Wells, V. Abramk-
ina, and A. Aksimentiev, J. Chem. Phys. 127, 125101 (2007), available at
http://link.aip.org/link/?JCPSA6/127/125101/1.

3.1 Introduction

G-SMD is a method that allows one or more potentials, each defined on a grid,
to be applied to a set of target atoms. Atoms are coupled to the potentials by
electric charge, mass, or any other quantity, and the components of the result-
ing force can be scaled independently. G-SMD has many applications, including
cryo-electron microscopy map fitting and acceleration of transmembrane trans-
port.

Force calculation. The force applied by G-SMD is analogous to
the equation for electrostatic force:

Fi = −qi∇V

where qi is the charge of atom i, and V is the potential function
interpolated from the grid. By default, qi is the electric charge of
atom i, but the charge may also be specified in a PDB file.

3.2 Example 1: Constant Force

As a first example of G-SMD, we will apply a constant net force to a system,
as we did as a first example of Tcl Forces in Section 1.

1 We first look at a simple grid for applying a constant force along the x di-
rection. Go to the directory forces-tutorial-files/gridForceFiles/
push-grid and open the file constant.dx, reproduced here:
object 1 class gridpositions counts 2 2 2
origin 0. 0. 0.
delta 30. 0. 0.
delta 0. 30. 0.
delta 0. 0. 30.
object 2 class gridconnections counts 2 2 2
object 3 class array type double rank 0 items 8 data follows
1. 1. 1.
1. 0. 0.
0. 0.

3 GRID-STEERED MOLECULAR DYNAMICS 40

The grids used for G-SMD are given to NAMD in the form of a DX file.
The first seven lines are header lines and define the geometry of the grid.
Line 1 specifies that the grid is 2 × 2 × 2 gridpoints. Line 2 specifies the
origin of the grid. Lines 3–5 specify the three basis vectors of the grid. In
this case, the directions of the grid basis vectors correspond to the x, y,
and z directions, and say that gridpoints are separated by 30 Å in each
direction. Line 6 is not used by G-SMD, but the counts should be the
same as those on line 1. Finally, line 7 states that 2 × 2 × 2 = 8 data
points compose the data.

After the header section are the values of the potential at each gridpoint.
Three potential values are specified per line. The order is known as “z
fast”, meaning that the z axis of the grid is traversed first, followed by the
y axis, then the x axis. For example, the values above correspond to the
following coordinates:

(0 0 0) (0 0 1) (0 1 0)
(0 1 1) (1 0 0) (1 0 1)
(1 1 0) (1 1 1)

This is illustrated in Fig. 8. Thus, the grid in constant.dx has the value
1 for all gridpoints with x = 0, and the value 0 for all gridpoints with
x = 1, which will produce a constant force in the +x direction (with
certain caveats addressed below.)

Figure 8: Ordering of grid point values in a DX file, called “z fast”.

DX files. DX is a simple text format for regular 3-dimensional grids,
and is the same format output by VMD plugins such as Volmap and
PMEPot.

3 GRID-STEERED MOLECULAR DYNAMICS 41

2 We now make a target PDB file to tell NAMD which atoms are to be
forced. Run the script make-target.tcl:

vmd -dispdev text -e make-target.tcl

The script creates the file ubiquitin-grid.pdb. It works similarly to
those you’ve seen previously. The beta value of protein atoms are set to
1, while the beta values of all other atoms are set to 0. In this case, since
the protein is in vacuum, all atoms are given a beta value of 1. The script
also sets the occupancy of the atoms to the atom’s mass, which will be
used as the “charge” of the atoms—by default, the electric charge of the
atom is used.

3 Next, we look at the NAMD configuration file. Open the file push-grid.namd.
The lines pertaining to G-SMD are listed:

gridforce on
gridforcefile ubiquitin-grid.pdb
gridforcecol B
gridforcechargecol O
gridforcepotfile constant.dx
gridforcescale 1 1 1
gridforcecont1 yes
gridforcecont2 yes
gridforcecont3 yes
gridforcevoff -2 0 0

The keywords are described in Table 1.

Interpolation. G-SMD forces are not calculated directly from
the grid values. Rather, a function interpolated from the grid val-
ues is first constructed, whose gradient is then taken analytically to
determine the force. The interpolating function is a cubic polyno-
mial in each of the three dimensions, and produces forces that vary
smoothly from grid cell to grid cell.

Continuous grids. Sometimes a grid covers only a portion of a
simulation system. Other times, however, one or more dimensions
of a grid will span the entire periodic cell of the simulation sys-
tem. The gridforcecont keywords, described in Table 1, control
whether each grid dimension is continuous. In this case, the space
between periodic images of the grid along that dimension is treated
as just another grid cell. The gridforcevoff keyword, meanwhile,
allows the potential of periodic images of the grid to be shifted by a
constant. This is useful for cases such as the above example where
an overall gradient exists.

3 GRID-STEERED MOLECULAR DYNAMICS 42

Keyword Description
gridforce Turns on G-SMD.
gridforcevolts Whether the grid is defined in volts; default

unit is kcal/mol·Å·e.
gridforcefile PDB file specifying atoms to which force will

be applied.
gridforcecol Which column in gridforcefile to use. The

G-SMD force applied to atoms is multiplied by this
value.

gridforcechargecol Column from which to read atom charge;
optional, default is electric charge.

gridforcepotfile DX file defining grid.
gridforcescale Values by which to scale the x, y, and z

components of force before applying to target
atoms.

gridforcecont[123] Whether the grid is continuous across
periodic boundaries along this direction
(see Info Box).

gridforcevoff Potential offset of grid values between periodic
images; only applicable along continuous
directions (see Info Box).

Table 1: G-SMD keywords.

Grid padding. Grid dimensions that are not continuous present
a challenge, since an atom exiting (or entering) the grid along that
dimension goes from experiencing a force to experiencing no force
(or vice versa). To ensure that the applied force transitions smoothly
to or from zero, the grid is padded with an extra layer of gridpoints
of constant value. The constant value used depends on the number
of continuous grid dimensions, and is either the average of the outer
layer of all discontinuous dimensions, or in the special case of two
continuous dimensions, the separate average of each end of the
discontinuous dimension. This is explained graphically in Fig. 9.

4 Now run the system using NAMD:

namd2 push-grid.namd > push-grid.log

5 After NAMD finishes, we can analyze the trajectory in the same manner
as for the first Tcl Forces trajectory. Run the script file plot.tcl by
typing in the VMD Tk Console:

source plot.tcl

The results should be very similar to those shown in Fig. 2.

3 GRID-STEERED MOLECULAR DYNAMICS 43

Figure 9: Different cases for grid continuity. Red represents the additional
constant layer of gridpoints added to non-continuous dimensions of a grid, while
green represents continuous dimensions which are not “padded” in this fashion.
The pad value is computed as the average of the last layer of gridpoints for
the padded sides; in the case of two continuous dimensions, two pad values are
computed, one for each end.

3.3 Example 2: Surface

Our next example of G-SMD is to model a surface. Specifically, we will model
a graphene sheet featuring a nanogap. To make the grid, we use the VMD plu-
gin Volmap, which can produce grids based on mass density. We then solvate
and ionize the system, and apply a transverse electric field, producing an ionic
current.

1 First, we load the graphene atomic structure into VMD. Navigate to the di-
rectory forces-tutorial-files/gridForceFiles/graphene, then type
the following on in the Tk Console:

mol delete all
mol load psf graphene.psf pdb graphene.pdb

Inorganic Builder. The graphene structure was produced using
the Inorganic Builder plugin for VMD. This plugin simplifies the
production of numerous inorganic crystals commonly used in nan-
otechnology applications, including silicon nitride, silicon oxide, and
graphite.

2 Now run the Volmap command by typing the following in the Tk Console:

volmap density [atomselect top all] -o graphene.dx \
-res 0.5 -minmax {{-20 -20 -5} {20 20 5}}

The command produces a density grid of all the atoms in the top molecule,
with a resolution of 0.5 Å, trimmed to the range [−20, 20] in x and y and
[−5, 5] in z.

3 GRID-STEERED MOLECULAR DYNAMICS 44

Other Volmap modes. Volmap grids are not limited to density.
The plugin can also make grids based on distance, occupancy, elec-
trostatic potential, free energy from implicit ligand sampling, and
others. In addition to single frames, it also can average maps over
a trajectory. For more information, see the VMD Plugin documen-
tation.

3 Next, we make the atomic system, a water box 40 Å on a side with 1.0 M
NaCl. Run the following commands in the VMD Tk Console:

solvate -o graphene-sol -minmax {{-20 -20 -20} {20 20 20}}
autoionize -psf graphene-sol.psf -pdb graphene-sol.pdb \
-is 2.0 -o graphene-ion

4 As usual, we next make a target PDB file. Run the following on the
command line:

vmd -dispdev text -e make-target.tcl

The resulting PDB applies G-SMD to all heavy atoms, and assigns each
a grid charge of 1.

5 We now minimize the system. First examine the file graphene-min.namd.
Notice that the grid is continuous in the x and y directions but not the z
direction. Run the minimization on the command line:

namd2 graphene-min.namd > graphene-min.log

If you watch the trajectory, you will see the water and ions expelled from
the region of the graphene. This is shown in Fig. 10.

Figure 10: Before (left) and after (right) minimization of the graphene system.

3 GRID-STEERED MOLECULAR DYNAMICS 45

Grid energy. If the G-SMD force is scaled isotropically—that
is, the x, y, and z components of the force are scaled by the same
number, i.e. the gridforcescale keyword is a multiple of the vector
(1.0, 1.0, 1.0)—then grid energy is computed and added the the
MISC column in the NAMD log file. The energy is computed in
analogy to electrostatic energy:

Egrid =

N∑
i=0

qiV (xi) (3)

where N is the number of G-SMD atoms, qi is the grid charge
of atom i, xi is the position of atom i, and V is the function
interpolated from the grid.

Figure 11: Graphene surface with a nanogap represented using a grid. Shown
is an isosurface of the grid, and sodium and chloride ions.

6 Finally, we run the system under an external electric field equivalent to a
transmembrane voltage drop of 5 V. Run the following on the command
line:

namd2 graphene-elec.namd > graphene-elec.log

3 GRID-STEERED MOLECULAR DYNAMICS 46

3.4 Example 3: Multiple grids

In this final section, we show how to use G-SMD to apply different potential
grids to different sets of atoms. We will create a simulation similar to the TclBC
simulation that collected all ions in a sphere, but with the twist that the different
species will be placed in two different spheres. This section uses two grids, but
other than memory usage, there is virtually no limit to the number of grids that
can be used in a simulation.

This section also demonstrates the use of a Tcl script to write the grid file.
The simplicity of the DX file format makes this a straightforward task.

1 First, we will examine the script used to write the grid files. Navigate
to the directory forces-tutorial-files/gridForceFiles/ions-grid,
and open the file sphere.tcl. This script constructs a DX file of a grid
representing a spherically symmetric potential that is flat within a cutoff
radius and increases linearly beyond it, see Fig. 12. The first few lines set
the parameters of the potential:

set gridlen 30.0
set gridnum 30
set center "0.0 0.0 10.0"
set radius 5.0
set gradient 1.0
set outfile potassium.dx

The grid produced by the script, given by outfile, is a cube, with side
length in angstroms given by gridlen. The number of gridpoints per side
is given by gridnum. The other parameters are self-explanatory.

Figure 12: Radial profile of spherical potential.

3 GRID-STEERED MOLECULAR DYNAMICS 47

2 Next, the script opens the output file, and writes the DX header informa-
tion:
set out [open $outfile w]

puts $out "object 1 class gridpositions counts \
$gridnum $gridnum $gridnum"

puts $out "origin $gridorigin"
puts $out "delta $griddelta 0.0 0.0"
puts $out "delta 0.0 $griddelta 0.0"
puts $out "delta 0.0 0.0 $griddelta"
puts $out "object 2 class gridconnections counts \
$gridnum $gridnum $gridnum"

puts $out "object 3 class array type double rank 0 \
items $gridpoints data follows"

3 Finally, the script loops through the three dimensions of the grid, cal-
culates the corresponding x, y, and z coordinates using the prescribed
gridpoint spacing and origin, calculates the potential, and prints it to the
DX file:
set n 0
for { set i 0 } { $i < $gridlen } { incr i } {
set x [expr {$i * $griddelta + [lindex $gridorigin 0]}]
for { set j 0 } { $j < $gridlen } { incr j } {
set y [expr {$j * $griddelta + [lindex $gridorigin 1]}]
for { set k 0 } { $k < $gridlen } { incr k } {

set z [expr {$k * $griddelta + [lindex $gridorigin 2]}]
set r [veclength [vecsub "$x $y $z" $center]]
if { $r > $radius } {
set v [expr {($r - $radius) * $gradient}]

} else {
set v 0

}
puts -nonewline $out $v
incr n
if { $n == 3 } {
puts $out ""
set n 0

} else {
puts -nonewline $out " "

}
}

}
}
close $out

The counter n is used to write three grid values per line.

3 GRID-STEERED MOLECULAR DYNAMICS 48

4 Now run the script to produce the potential for potassium. Type the
following in the VMD Tk Console:

source sphere.tcl

This produces the file potassium.dx.

5 Next, we make the grid for chloride ions. In sphere.tcl, change the
center variable to "0.0 0.0 -10.0", and the outfile variable to chloride.dx.
Then run the script again as in the previous step.

6 As usual, we must also make PDB files tagging the atoms to which G-SMD
should be applied. Run the script make-target-mult.tcl:

source make-target-multi.tcl

The script produces two files, potassium.pdb and chloride.pdb, for the
two ion species. In both files, the appropriate ions are given a charge of 1.

7 Now look at the NAMD configuration file ions-grid.namd. The keywords
for G-SMD are at the end:
set scale 30

mgridforce on

mgridforcefile POT potassium.pdb
mgridforcecol POT B
mgridforcechargecol POT O
mgridforcepotfile POT potassium.dx
mgridforcescale POT $scale $scale $scale
mgridforcecont1 POT yes
mgridforcecont2 POT yes
mgridforcecont3 POT yes

mgridforcefile CLA chloride.pdb
mgridforcecol CLA B
mgridforcechargecol CLA O
mgridforcepotfile CLA chloride.dx
mgridforcescale CLA $scale $scale $scale
mgridforcecont1 CLA yes
mgridforcecont2 CLA yes
mgridforcecont3 CLA yes

There are a few key differences that you’ll notice when using multiple
grids:

• First, the gridforce* keywords are replaced by the corresponding
mgridforce* keywords.

• Second, all keywords except the mgridforce keyword turning on G-
SMD take an extra argument identifying the grid to which the key-
word applies. The identifier may be any string. In this case, the

3 GRID-STEERED MOLECULAR DYNAMICS 49

identifiers POT and CLA are used to refer to the potassium and chlo-
ride grids, respectively, but they could have been referred to as 1 and
2, A and B, aitch and seventy-two, or dave and lu—anything that
describes the grid for you.

• Finally, keywords are repeated for each grid used.

8 Finally, run the simulation:

namd2 ions-grid.namd > ions-grid.log

After the simulation has completed, open the trajectory in VMD. You
should see results similar to Fig. 13.

Figure 13: Isosurfaces of the grids for each ion type (left) and snapshots of the
ion concentration trajectory using G-SMD.

