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We present an algorithm to generate complete evolutionary pro-
files that represent the topology of the molecular phylogenetic
tree of the homologous group. The method, based on the multi-
dimensional QR factorization of numerically encoded multiple
sequence alignments, removes redundancy from the alignments
and orders the protein sequences by increasing linear dependence,
resulting in the identification of a minimal basis set of sequences
that spans the evolutionary space of the homologous group of
proteins. We observe a general trend that these smaller, more
evolutionarily balanced profiles have comparable and, in many
cases, better performance in database searches than conventional
profiles containing hundreds of sequences, constructed in an
iterative and computationally intensive procedure. For more di-
verse families or superfamilies, with sequence identity <30%,
structural alignments, based purely on the geometry of the protein
structures, provide better alignments than pure sequence-based
methods. Merging the structure and sequence information allows
the construction of accurate profiles for distantly related groups.
These structure-based profiles outperformed other sequence-
based methods for finding distant homologs and were used to
identify a putative class II cysteinyl-tRNA synthetase (CysRS) in
several archaea that eluded previous annotation studies. Phyloge-
netic analysis showed the putative class II CysRSs to be a mono-
phyletic group and homology modeling revealed a constellation of
active site residues similar to that in the known class I CysRS.

archaeal cysteinyl-tRNA synthetase � gene annotation � lipocalin
superfamily � triosephosphate isomerase superfamily

B ioinformatics has developed as a data-driven science with a
primary focus on storing and accessing the vast and exponen-

tially growing amount of sequence and structure data. The rapid
accumulation of data has led to an extraordinary problem of
redundancy, which must be confronted in almost any type of
statistical analysis. Attwood and Miller (1) observe that the non-
redundant database (NRDB) of the National Center for Biotech-
nology Information ‘‘is not non-redundant, but non-identical, and
is thus massively redundant.’’ Similarly, the current version of
Swiss-Prot, a well curated sequence database and valuable research
tool, is highly skewed toward the Bacteria and Eucarya (2).

An important goal of bioinformatics is to use the vast and
heterogeneous biological data to extract patterns and make discov-
eries that bring to light the ‘‘unifying’’ principles in biology. Because
these patterns can be obscured by bias in the data, we approach the
problem of redundancy by appealing to a well known unifying
principle in biology, evolution. Modern protein sequences and their
three-dimensional structures are descendants of successful realiza-
tions of the evolutionary process. The entries in the sequence and
structure databases are not merely an unconnected and seemingly
endless array of biological novelty; rather, they can be clustered and
treated as a smaller set of homologous groups. Hierarchical clas-
sifications of structures, such as SCOP (Structural Classification of
Proteins) (3) and CATH (Class, Architecture, Topology, and
Homologous superfamily) (4), and of sequences, such as Pfam
(Protein Families Database of Alignments and Hidden Markov
Models) (5), have made significant contributions in this direction,

yet the problem of redundancy has not been addressed in an
evolutionary context.

Here we present an algorithm based on the multidimensional QR
factorization, which produces minimally redundant sets of protein
sequences. This algorithm differs from traditional sequence identity
threshold and sequence weighting approaches to the problem of
redundancy, which we have recently reviewed in ref. 6, in two
important ways. First, the QR algorithm has been designed to
systematically choose a maximally linearly independent subset of
sequences that best span the evolutionary space of the homologous
group at any given level of diversity. In contrast, sequence identity
cutoff algorithms arbitrarily remove sequences that contribute to
pairwise identities above the given threshold, and sequence weight-
ing schemes assign ad hoc weights to the sequences, giving more
common sequences relatively less weight than rare ones. Second,
the QR algorithm produces an ordering of the sequences in such a
way that altering the desired level of diversity of the reduced set only
requires adding or subtracting sequences from the precomputed
order rather than launching a new calculation each time a different
diversity threshold is applied.

Having introduced a structure-based analog of this procedure in
which the QR factorization is computed over the cartesian space of
the protein structures (6), here we detail the sequence-based
algorithm and test its efficacy in forming evolutionarily well bal-
anced profiles, termed evolutionary profiles (EPs), for homology
searches over large sequence and genomic databases. In the case of
distantly related homologous groups, we show that, by supplement-
ing structure-based alignments with the appropriate sequences,
single EPs can be built for diverse protein families or superfamilies
(see Supporting Text, which is published as supporting information
on the PNAS web site) and that these profiles perform as well in a
single database search as the combined results from several data-
base searches with profiles of the component subfamilies or fam-
ilies. Finally, we describe an application of this technology, in
combination with homology modeling and phylogenetic analysis, to
assign the putative function of a previously misannotated group of
archaeal class II cysteinyl-tRNA synthetases (CysRSs) (7).

Theory and Methods
As the basis for the EPs, sequences and structures were selected and
multiple alignments were generated by following the procedures
outlined in Supporting Text. The QR factorization of an alignment
matrix, a numerical encoding of a multiple sequence alignment,
produces an ordering of the aligned proteins. The ordering can then
be used to define a minimal basis set of spanning sequences to any
desired level of redundancy, and the evolutionarily well balanced
profiles computed from these minimal sets are termed EPs.

QR Factorization. The multidimensional QR factorization with
pivoting algorithm (8), as applied to multiple structure align-
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ments was presented in ref. 6. Here we provide only the salient
points of the algorithm and its adaptation to multiple sequence
alignments. Because the sequence databases are biased, any
multiple sequence alignment encoded in matrix A will contain
redundant information. The goal is to find a reduced set of
sequences that well represent the major evolutionary changes in
the alignment data. The problem is similar to a least-squares
problem, Ax � b, of an overdetermined system, A. Although the
problem of redundancy in multiple alignments cannot be fit into
any single least-squares-like problem, redundancy in multiple
alignments can be treated with the same methods used to remove
redundancy in the least-squares problem. The QR factorization
uses a combination of Householder transformations (9) and
column pivoting (10) to establish an ordering of the columns
(protein sequences) of A by increasing linear dependence (see
Fig. 5, which is published as supporting information on the PNAS
web site). The QR algorithm can be applied to an alignment
matrix, A, if an information-preserving numerical encoding of
the multiple sequence alignment is determined.

The sequence alignment data are encoded in the alignment
matrix, A, which is of dimension m � n � d. m is the total length
of the multiple alignment, and n is the number of proteins in the
alignment. Each ‘‘column’’ in A is a (protein) matrix of dimension
m � d that corresponds to a single protein sequence. The descrip-
tion dimension, d � 24, is used to encode the amino acids and gaps
in the alignment. The first 23 components correspond to the 20
amino acids and three ambiguous amino acids (B, X, and Z) and the
24th component corresponds to the gapped positions. For example,
the presence of an Ala at a particular position in the alignment, e.g.,
in the ith alignment position in the jth protein sequence, is encoded
by aijk�1,24 � (1, 0, 0, 0, . . . , 0); a Cys at the same position would
be encoded by aijk�1,24 � (0, 0, 1, 0, . . . , 0); a gapped position would
be encoded by ãijk�1,24 � g � (0, 0, 0, 0, . . . , 1). Although it is logical
to give gaps weight equal to the amino acids, i.e., g � 1, we have
tested the performance by varying the gap scale parameter �:

g � �

�
k�1

23 ��
i�1

m �
j�1

n

�aijk�2�1/2

23��
i�1
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j�1

n

�aij24�2�1/2 .

The range of allowed values is given in Fig. 6, which is published
as supporting information on the PNAS web site.

The multidimensional QR factorization, for a matrix of dimen-
sion m � n � d, is the simultaneous QR factorization of d matrices
each of size m � n. The algorithm is formally expressed as
Q(d)

T A(d)P � R̃(d) in which the matrix A encodes the multiple
sequence alignment. The pivoting step, encoded by the permutation
matrix, P, is applied to ensure that the transformation occurs such
that the most linearly independent protein columns are segregated
from the linearly dependent protein columns. The permutation
matrix, thus, rearranges the column matrices of A such that the
redundant column matrices (protein sequences) are moved to the
right-hand side of the matrix. The permutation matrix, P, is
independent of the d-dimension, so the amino acid components are
not scrambled during pivoting operations. The choice of the first
protein in the representative set is somewhat arbitrary, so we chose
the protein with the smallest average percent identity with the
whole set of proteins. In general, the quality of a profile appears to
depend on the total composition of the profile, i.e., whether the
profile represents the major evolutionarily distinct groups, and not
on the specific choice of the first protein. At the kth step in the
factorization before the application of the kth Householder trans-
formation, the permutation P(k) is constructed to exchange the kth
column of A over each d-dimension simultaneously, with the

column of maximum Frobenius-like matrix p-norm,
maxj�k, . . . , n(�aj�Fp), where

�aj�Fp
�� �

d�1

24 �
i�k

m

�aijd�p�1/p

.

The pivoting step ensures that the kth protein is chosen based on
its linear independence to the basis set formed by the first (k � 1)
proteins. The value of P � 2 is determined numerically in Supporting
Text. In addition, certain sequences, e.g., sequences with known
structure, can be constrained to be a part of the representative set.
These proteins are taken to be the first l members of the alignment,
and no pivoting is performed for the first l steps of the QR
factorization, which ensures that the structure-based alignment
information is retained in the final profile.

In summary, the QR factorization produces an ordering of the
sequences from the original multiple alignment. The number of
proteins retained in the representative set is easily determined by
applying a sequence identity threshold or some other pairwise
similarity threshold that indicates the retention of the first k proteins
in the QR order such that protein (k � 1)th has an above-threshold
pairwise similarity relationship with one of the first k proteins. The
threshold selection can be aided by visualizing the alignment data
with a phylogenetic tree (see Supporting Text).

EPs. The EPs tested in Results and Discussion are based on align-
ments of distantly related homologous groups at the SCOP family
and superfamily (see Supporting Text) levels. Because sequence-
based alignments are not always reliable in this regime of diversity,
structure-based alignments of representative structures (except for
the HisA–HisF family) were used as seeds to which supplemental
sequences were added to completely represent the major evolu-
tionary transitions of the homologous group up to a defined set of
sequence identity thresholds. The structure-based, sequence-
supplemented multiple alignments are the basis for the complete
EPs. Unless otherwise noted, the structure-based QR factorization
(6) was applied to the multiple structure alignment of all known
protein structures for a particular homologous group with an upper
limit threshold equivalent to the upper limit threshold applied for
sequences. A series of threshold values were applied to produce
different profiles for each homologous group as noted in Results and
Discussion. Because proteins with pairwise sequence identity at
�30% cannot be aligned well by using sequence-based methods, the
sequence QR was applied to closely related subgroups with a lower
limit of 30% sequence identity. Complete EPs for the distantly
related groups discussed below were simply amalgamations of the
representatives from the more closely related subgroups, as de-
tailed in Supporting Text.

Results and Discussion
Profiles of the HisA–HisF Family. The HisA and HisF proteins form
a family of enzymes involved in the fourth and sixth steps of His
biosynthesis (11). These proteins belong to the triosephosphate
isomerase (TIM) barrel fold, which consists of a (���)8-barrel with
parallel �-strands. The TIM barrel is thought to be one of the most
abundant folds in the cell, representing 8% of the yeast transcrip-
tome and the most common fold therein (12). According to the
SCOP database (3), the HisA–HisF family is a member of the
ribulose-phosphate binding (RPB) barrel superfamily, which en-
compasses three additional enzyme families. All members of the
superfamily bind a ribulose phosphate-like ligand at the C terminus
of the barrel. These proteins are classified in the same superfamily
in SCOP because their common function and clear structure
similarity indicate a common evolutionary origin (3).

By using the QR factorization and the phylogenetic tree in Fig.
7, which is published as supporting information on the PNAS web
site, we constructed EPs of the HisA–HisF family at various
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sequence identity thresholds from a multiple alignment of all of the
HisA and HisF proteins in Swiss-Prot. The sensitivity of these
profiles is measured by their ability to detect all members within the
homologous group (true positives) in a database search. The results
are shown as a receiver operating characteristic (ROC)50 plot in
Fig. 1 in which the sensitivity is plotted against the specificity of a
profile, here measured by the occurrence of the first 50 proteins
outside the homologous group (false positives). The performance
and reliability of a profile in such database searches is proportional
to the area under each curve in the receiver operating characteristic
plots. The database searches were performed with BLAST over the
nonredundant database (NRDB) of the National Center for Bio-
technology Information. Results for the database search using
HMMER (see Fig. 8, which is published as supporting information on
the PNAS web site) are strikingly similar to the BLAST results.
Although HMMER requires an �100-fold increase in computation
time with respect to BLAST, HMMER does outperform BLAST in
searches with profiles of the more distantly related class II amino-
acyl-RS (AARS) family discussed below or with profiles of the
lipocalin superfamily presented in Fig. 9, which is published as
supporting information on the PNAS web site (for a depiction of
structural conservation, see Fig. 10, which is published as support-
ing information on the PNAS web site).

In Fig. 1a, only HisA–HisF family members are counted as true
positives, whereas in Fig. 1b, which tests superfamily level recog-
nition, all members of the RPB superfamily are counted as true
positives. The EPs are compared to the results from the widely used
Pfam profiles. Although in the family and superfamily recognition
tests the EP constructed from two sequences with �15% sequence
identity does not perform as well as the much larger seed and full
Pfam profiles, the QR 40% profile based on only 13 sequences
clearly performs better. This result is expected because the topology
of the HisA–HisF phylogenetic tree is not adequately represented
by the first two or four sequences in the QR ordering (see Fig. 7).
In general, if the composition of the alignment reflects the evolu-

tionary history of the homologous group, a profile made from such
an alignment, with only a small number of sequences, can detect all
of the proteins that belong to that group.

To estimate the amount of redundancy in the Pfam seed profile,
we applied the QR factorization to the Pfam seed alignment with
a 40% sequence identity threshold, giving a profile of 21 sequences
referred to as Pfam�QR 40%. Interestingly, this profile performs
comparably to the original Pfam seed profile, proving that the Pfam
seed profile with 147 sequences is redundant with seven times more
sequence information than required. Differences between the EP,
QR 40%, and the Pfam seed profile are due to the presence of
Swiss-Prot and TrEMBL sequences in the Pfam seed alignment.
The Pfam seed profiles are constructed from sequences known to
belong to the HisA–HisF family from the Swiss-Prot and TrEMBL
databases, and then iterative database searches are performed until
no additional family members are detected. The QR factorization,
therefore, provides an efficient alternative to Pfam’s computation-
ally intensive profile construction procedure. A comparison of the
performance of the HisA–HisF profiles on superfamily and fold
recognition is also shown in Fig. 1 b and c. It was expected that once
all of the proteins within the family were recognized, the profiles
would hit sequences from other related families within the same
RPB superfamily. We observed instead that all of the profiles found
a larger number of hits to other TIM barrels, not within the RPB
superfamily. In the fold recognition plot (Fig. 1c) the profiles with
a larger number of sequences, including (in order of search accu-
racy) the QR 100% profile and Pfam seed and full profiles, exhibit
better performance. Because it was surprising to find so few hits to
RPB superfamily members (see Fig. 1d), we examined the struc-
tural alignment of a representative set of the TIM barrels found by
the profile search.

A careful investigation of evolutionary relatedness of the TIM
barrel hits in this search reveals that the SCOP hierarchy does not
reflect the correct evolutionary history of these distant relatives to
the HisA–HisF family. The hits to TIM barrels outside the RPB

Fig. 1. Comparison of HisA–HisF
family homology recognition. The
key indicates the seven different pro-
files tested. Here and throughout,
the number of sequences used to
build each profile is listed to the right
of the profile name in the key. (a–c)
The definition of true positives is in-
creasingly relaxed from the family
level (a) to the superfamily level (b)
and finally to the fold level (c). In
family and superfamily recognition,
the QR 40% EP, composed of just 13
sequences, outperforms all other
profiles. In fold recognition, how-
ever, it is apparent that profiles con-
taining the most sequences (QR
100%, Pfam seed, and Pfam full) per-
formed best. (d) The surprising abun-
dance of hits to TIM folds outside the
RPB superfamily as compared with a
relatively small number of hits to
other RPB superfamily members.
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superfamily are found to be members of four different TIM fold
superfamilies; namely, TIMs, thiamin phosphate synthases, flavin
mononucleotide-linked oxidoreductases, and the inosine mono-
phosphate dehydrogenase superfamily. Representative structures
of all five superfamilies were structurally overlapped with an
‘‘outgroup’’ superfamily, representatives of the pyridoxal-5� phos-
phate-binding barrel superfamily, none of which were found by the
HisA–HisF profile searches. The structure-based phylogenetic tree
for these six superfamilies is shown in Fig. 2. Our recently developed
structure-based phylogenetic methods are described in (6, 13). The
five superfamilies found in the database search are evolutionarily
related as a monophyletic group with respect to the pyridoxal-5�
phosphate-binding barrel superfamily. The members of the Trp
biosynthesis family (c.1.2.4), however, display a polyphyletic distri-
bution with respect to the SCOP classification, and, despite the fact
that the proteins of this family are part of a common metabolic
pathway, TrpC and TrpF are more closely related to D-ribulose-5-
phosphate 3-epimerase (SCOP family code c.1.2.2) and even the
thiamin phosphate synthases superfamily (SCOP superfamily code
c.1.3) than either are to TrpA (SCOP family code c.1.2.4). The
structure-based phylogeny along with the database search results
reveal common structure and sequence features of the SCOP
superfamilies (codes c.1.1, c.1.2, c.1.3, c.1.4, and c.1.5) and suggest
their agglomeration into a single superfamily. A similar result was
obtained by using a sequence-based PSI-BLAST search with
seed sequences from the flavin mononucleotide-linked oxido-
reductases (14).

A Single Profile for the Diverse Class II AARS Family. The class II
AARS family, a group of enzymes that enforce the genetic code for

10 of the standard amino acids by catalyzing the correct amino-
acylation of cognate tRNAs, is so diverse that it is not possible to
produce a single, reliable multiple sequence alignment of the
common catalytic domain of the group based on sequence infor-
mation alone. Pfam, for example, represents this group by six
separate subclass-level profiles (see Table 1). Multiple structure
alignment of the entire group, however, is fairly straightforward
(see also Fig. 11 a–d, which is published as supporting information
on the PNAS web site) (13) so the known structures can be used as
the basis for a single, sequence-supplemented multiple alignment
and profile of the class II AARS family. The proteins in the single
profile, which was developed from the QR factorization with a
sequence identity threshold of 40% (sequence–structure QR 40%),
have a sequence identity distribution with a mean of 11% and a
range of 4–39%.

To test the accuracy of the single EP for the class II AARSs,
database searches over Swiss-Prot (2) with HMMER and BLAST (see
Fig. 12a, which is published as supporting information on the PNAS
web site) were performed. The results from the HMMER search,
shown in Fig. 3 and Table 1, were compared with those from the
summed results of the seven subclass-level EPs and six Pfam
profiles. The sum of these seven separate searches with the EPs
should give the total number of class II AARSs in the database, and
this value sets an upper limit on the number of true positives that
the single class-level profiles are expected to find. The performance

Fig. 2. A structure-based phylogeny of the TIM barrel proteins found in the
HisA–HisF database searches with the pyridoxal-5� phosphate (PLP)-binding
barrel superfamily representatives used as an outgroup. In the UPGMA tree
plots, structural similarity is measured by QH, and the branches are labeled by
SCOP superfamily or family names and codes, with the SCOP�ASTRAL domain
codes (3, 23) marking the leaves of the tree. The SCOP superfamilies (codes
c.1.1, c.1.2, c.1.3, c.1.4, and c.1.5) form a monophyletic group, a result also
supported by a neighbor-joining tree of the same group (data not shown).
TPS, thiamin phosphate synthase; FMN, flavin mononucleotide; IMPDH, ino-
sine monophosphate dehydrogenase; OMP, orotidine 5�-monophosphate.

Table 1. Hits from subclass-level profiles of the class II
AARS family

Pfam profile name AARS specificities Pfam hits QR 40% hits

tRNA_Synt_2 D K N 299 (20) 299 (7)
tRNA_Synt_2b G(�2) H P T S, HisZ 412 (129) 420 (21)
tRNA_Synt_2c A 102 (25) 102 (2)
tRNA_Synt_2d F �-chain 93 (48) 92 (5)
tRNA_Synt_2e G(��2) �-chain 61 (9) 61 (1)
N�A F �-chain N�A 110 (16)
AsnA AsnA 15 (7) 15 (2)
Total — 982 (238) 1,099 (54)

Shown are the seven subclass-level profiles of the class II AARS family along
with the name of the corresponding Pfam profile. The Pfam hits and QR 40%
hits columns give the number of true positives found by the Pfam profile and
EP, respectively, at the subclass level. The values in parenthesis indicate the
number of sequences used to build the profile. AsnA and HisZ catalyze similar
enzymatic reactions and, according to sequence and structure, are clearly
members of the class II AARS family. These pseudosynthetases, although not
represented in the single class-level profiles, are counted as true positives in
Fig. 3. —, not applicable; N�A, not available.

Fig. 3. AARS class II profile database search results. str, structure; seq,
sequence.
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of the subclass-level EP for the PheRS �-chain group is compared
to the Pfam profile of the same group in Fig. 12b. The combined
subclass-level Pfam profiles, including 231 sequences, find 982 class
II AARSs, whereas our subclass-level EPs, composed of 54 se-
quences total, find 1,099 class II AARSs. Pfam does not have a
profile for one of the subgroups of the class II AARSs, i.e., PheRS
�-chain, and that accounts for most of the discrepancy in perfor-
mance between the subclass-level EPs and Pfam profiles.

The subclass database searches were more accurate in detecting
all members of the same subclass than the single profile for the
entire family was in detecting all members of each subgroup. As
shown in Fig. 3, although the performance for the EP of the single
class II profile has deteriorated in comparison to the subclass
profiles, the single class II AARS profile (sequence–structure QR
50%) succeeded in finding 98% of all true positives in the database
and 92% of those before, including a single false positive. Naturally,
if the goal of the database search is to find all relatives of the class
II AARSs, then a single profile is n times less as computationally
expensive as n separate subclass-level profiles. Although the profiles
based on representative sets of only the known structures do
perform quite well, the best of which, structure QR 40%, detects
94% of all true positives in the database, the sequence supple-
mented EPs perform significantly better. In ref. 6, a similar profile
for the class I AARSs performed comparably to the six Pfam
profiles corresponding to class I AARSs. The slight decrease in the
performance of the class II profile as compared with the class I
profile is a result of the sparse structural data for some of the
members in this family. Performance of the EP for the class II
AARSs will be better if structures for the archaeal versions of
AlaRS, PheRS �-chain and �-chain, and SerRS are determined
experimentally.

Identification of a Putative Archaeal Class II CysRS. In all known
examples to date, CysRS is a class I AARS of the Rossmann-fold

type, and, being the only known route for charging tRNACys with
Cys, this protein is essential to all cellular life. It was surprising,
therefore, that CysRS has yet to be found in the completely
sequenced genomes of Methanocaldococcus jannaschii (15), Meth-
anothermobacter thermoautotrophicus, or Methanopyrus kandleri
(16), despite the fact that these archaea are indeed capable of
forming Cys-tRNACys and incorporating Cys into proteins (7). A
large body of literature (for a review, see ref. 13) supports the notion
that all amino acids are ligated to their cognate tRNA by a direct
charging mechanism involving either a class I or class II AARS or
by an indirect charging mechanism, as in the case Glu and Asp in
some organisms. Even in the more complicated indirect mecha-
nism, all aminoacylation reactions of the tRNA are catalyzed by a
class I or class II AARS. We hypothesized, therefore, that the
missing archaeal CysRS must be either a class I or class II AARS
common to these three methanogens. This hypothesis prompted
two searches of these genomes with the EPs for the complete class
I AARSs (6) and the complete class II AARSs developed above.
If the missing CysRS is a class II AARS, the subfamily-level profiles
might fail to find this elusive group because it may form a distinct
phylogenetic subgroup within the family.

By using HMMER, a genomic database search of these methano-
genic archaea with the class I AARS profile revealed the nine
known class I AARSs, and, as expected, no class I CysRS was
identified. Also, there were no other class I AARS-like proteins
found to be common to these organisms. In light of the existence
of a class I and class II LysRS (17), it is possible that the missing
CysRS is not a class I enzyme but rather belongs to class II. A similar
homology search with the EP of class II AARSs found, in addition
to the nine expected class II AARSs, a putative �-chain PheRS
common to all three organisms. This putative PheRS is found
among the hits to the class II AARS family and has the sequence
motifs common to the class II AARS family. The multiple sequence

Fig. 4. Bioinformatic identification of the elusive archaeal CysRSs. (a) The multiple alignment of archaeal, eukaryotic, and bacterial representatives of the �-chain
PheRSs with three representative putative class II CysRSs. Although the putative class II CysRSs have conserved residues important for interaction with the
aminoacyl-adenylate intermediate (highlighted in blue), residues important for substrate Phe recognition (highlighted in red) have not been conserved. The putative
CysRS group displays three completely conserved Cys residues (highlighted in yellow) and a completely conserved His (highlighted in green). As shown, in class I CysRS,
two completely conserved Cys residues and a His residue are critical for forming a zinc-binding site that recognizes the substrate Cys. (b) A percent accepted mutation
(PAM) substitution matrix distance-based neighbor-joining tree (�PAM is the distance scale in PAM units) shows the confirmed canonical phylogenetic distribution of
the �-chain PheRSs (20) and the monophyletic outgroup of the putative class II CysRSs. *, Uncultured archaeon GZfos26D8 (National Center for Biotechnology
Information accession no. AAU43713). (c) A structure of the class I CysRS from E. coli (Protein Data Bank ID code 1LI7) is shown with substrate Cys recognition residues
highlighted. (d) The modeled structure of a putative class II CysRS from M. jannaschii shows candidate Cys recognition residues in the class II active site region. Note the
cluster of two Cys residues (yellow spheres are the sulfur atoms) and a His residue (green) in the active site suggests a possible zinc-binding motif. The AARS class II,
completely conserved Arg residues, which are responsible for generic aminoacyl-adenylate and tRNA acceptor stem binding, are shown in blue.
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alignment in Fig. 4a shows that these putative PheRSs lack residues
that are known to recognize the substrate Phe. Furthermore,
biochemical analysis (18) has indicated the absence of PheRS
activity in this group, yet this misannotation still persists in the
database. According to our homology model in Fig. 4d, these
putative AARS-like proteins do have a constellation of conserved
Cys residues and a His typical of the CysRS catalytic site as shown
in Fig. 4c. For this reason, we now refer to this model as a putative
class II CysRS. By using the numbering from PheRS [Protein Data
Bank ID code 1PYS], R204 interacts with the anhydride bond in the
aminoacyl-adenylate intermediate, whereas R321 forms a cation-�
interaction with the adenosine base of the intermediate. The
putative class II CysRS, in addition to the conserved Arg motifs
corresponding to the class II AARSs, has a KMSK-like motif (gray
highlighted residues in Fig. 4a) similar to that found in the class I
AARSs. The role of this motif in the putative class II CysRS is
unclear.

The M. jannaschii putative class II CysRS in Swiss-Prot (Swiss-
Prot accession code YG60�METJA) was used as a representative to
search the nonredundant database NRDB of the National Center
for Biotechnology Information, revealing the presence of this gene
in 10 archaeal genomes (see Fig. 4b). Of these organisms, Meth-
anococcus maripaludis does have the standard class I CysRS, but, in
an experiment in which the class I CysRS was knocked out, the
deletion strain was able to survive, indicating the existence of an
alternative pathway for the formation of Cys-tRNACys (19). The
�-chain PheRS orthologs display a full canonical phylogenetic
distribution, with only a minor amount of horizontal gene transfer
from the Archaea to some bacterial organisms (20). This three-
domains-of-life pattern is also clear in a sequence similarity, dis-
tance-based neighbor-joining tree for a representative set of ar-
chaeal, eukaryotic, and bacterial proteins (Fig. 4b). The tree also
reveals that the putative class II CysRSs form a distinct monophy-
letic outgroup with respect to the PheRS group, suggesting a
functional divergence between the PheRS and putative class II
CysRS groups rather than a speciation-related divergence. This
observation is supported in the multiple alignment in Fig. 4a, where
there are clear distinctions in the sequences of the PheRS group
versus the putative class II CysRS group, which has idiosyncratic
insertions and sequence signatures.

Although the class I and class II LysRSs show no global similarity
in sequence or structure (13), their active sites contain a similar
constellation of residues (21). Because the �-chain PheRS group is
the most closely related of any other AARS group to the putative
class II CysRSs, we used the structure of PheRS from Thermus
thermophilus (Protein Data Bank ID code 1PYS) as a template for
building a homology model of the putative class II CysRS from M.
jannaschii. For comparison, the structure of the class I CysRS from
Escherichia coli (Fig. 4c) is juxtaposed with our model of the
putative class II CysRS (Fig. 4d) with the putative Cys recognition
residues highlighted. In the class I CysRS, a zinc-binding pocket is
formed by two strictly conserved Cys residues and a His residue, and
structural analysis has shown that the substrate Cys is involved in a
direct thiol coordination to the bound zinc (22). The model in Fig.

4d clearly shows the placement of these conserved residues (Cys
residues 104 and 246 and His residue 198) within the active site
region of this class II catalytic domain. Interestingly, there is a third
highly conserved Cys residue in our model that appears to be too
far from the putative active site to play a role in the zinc-binding
pocket. Although our bioinformatic results strongly indicate that
YG60�METJA and its orthologs are candidates for the missing
archaeal CysRS, a high-resolution crystal structure and biochemical
studies are required to confirm this suggestion. Although this
enzyme appears to specifically bind a cysteinyl-adenylate and a
tRNA acceptor stem, perhaps it is involved in some kind of indirect
aminoacylation pathway, as in the nondiscriminating AspRS, or it
is a pseudosynthetase enzyme involved in Cys biosynthesis, similar
to the class II homolog AsnA, which is involved in Asp biosynthesis
(for a review, see ref. 20).

Conclusion
The QR factorization allows an economy of information in con-
structing profiles at the family and superfamily (see Supporting Text)
levels. Our studies indicate that it is better to build EPs from a
minimal set of sequences that span the evolutionary space, rather
than to iteratively add sequences to a profile until the ‘‘best’’
database search results are found. The appropriate size of the
minimal EP depends on the level of diversity and the number of
major evolutionarily related subgroups in the family. Before super-
family profiles can be developed systematically, the groupings of
superfamily in the SCOP database need to be checked. In all cases,
proteins exhibited such extreme diversity that sequence information
had to be augmented by structural information to obtain a single,
complete EP that could be used for sensitive database searches. The
single EP of the diverse, full class II AARS family contained general
signals of the class II AARS that allowed us to predict the presence
of an elusive archaeal class II CysRS. In addition, the groupings
observed from the database search also imply that the putative
CysRS should group with the PheRS, GlyRS, and AlaRS tetramers.

Our approach to the problem of redundancy in protein sequence
and structure data is based on the observation that the organiza-
tional structure created by the evolutionary process is the very
structure that we seek to define and understand with the tools of
bioinformatics. The molecular components of organisms are not a
bewildering array of nearly endless novelty; rather, their evolution-
ary relationships indicate a smaller set of primordial forms that have
left their imprint throughout the molecular characters of all cellular
life. In this light, we have presented the notion that one way to deal
with the massive amount of biological data is to make use of
evolutionary relationships to motivate a reduction of the data to a
smaller subset or basis set that well represents or characterizes the
evolutionary space.
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20. Woese, C. R., Olsen, G., Ibba, M. & Söll, D. (2000) Microbiol. Mol. Biol. Rev. 64, 202–236.
21. Terada, T., Nureki, O., Ishitani, R., Ambrogelly, A., Ibba, M., Söll, D. & Yokoyama, S.
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