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We present a new algorithm, based on the multidimensional QR
factorization, to remove redundancy from a multiple structural alignment
by choosing representative protein structures that best preserve the
phylogenetic tree topology of the homologous group. The classical QR
factorization with pivoting, developed as a fast numerical solution to
eigenvalue and linear least-squares problems of the form AxZb, was
designed to re-order the columns of A by increasing linear dependence.
Removing the most linear dependent columns from A leads to the
formation of a minimal basis set which well spans the phase space of the
problem at hand. By recasting the problem of redundancy in multiple
structural alignments into this framework, in which the matrix A now
describes the multiple alignment, we adapted the QR factorization to
produce a minimal basis set of protein structures which best spans the
evolutionary (phase) space. The non-redundant and representative profiles
obtained from this procedure, termed evolutionary profiles, are shown in
initial results to outperform well-tested profiles in homology detection
searches over a large sequence database. A measure of structural similarity
between homologous proteins, QH, is presented. By properly accounting
for the effect and presence of gaps, a phylogenetic tree computed using this
metric is shown to be congruent with the maximum-likelihood sequence-
based phylogeny. The results indicate that evolutionary information is
indeed recoverable from the comparative analysis of protein structure
alone. Applications of the QR ordering and this structural similarity metric
to analyze the evolution of structure among key, universally distributed
proteins involved in translation, and to the selection of representatives
from an ensemble of NMR structures are also discussed.
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Introduction

From the complex dynamic interplay of biologi-
cal molecules life somehow emerges and creates
the organizational structures that separate living
organisms from their abiotic environment. Molecu-
lar biology attempts to understand the fundamental
nature of biological organization by addressing
questions concerned with how biological organi-
lsevier Ltd. All rights reserve
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zation is maintained, how it evolved and how it
continues to evolve. William Astbury, one of the
early proponents of this field, argued that molecular
biology “is concerned particularly with the forms of
biological molecules and with the evolution,
exploitation and ramification of these forms in the
ascent to higher and higher levels of organization”.1

The comparative analysis of information derived
from molecular biological form, which includes,
among other characters, the sequence of genes and
genomes and the sequence and three-dimensional
structure of gene products, has taken on a promi-
nent role in understanding the evolution and
function of biological molecules.
Zuckerkandl & Pauling introduced the notion
d.
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that molecular sequences contain evolutionary
information which can be accessed by comparative
analysis.2 Woese and his colleagues were “the first
to fully exploit the full power of molecular
phylogenetics”3 by comparing sequences of the
ubiquitous and slowly evolving small subunit
ribosomal RNA to produce the first reliable uni-
versal phylogeny, depicting the evolutionary
relationships of all life on Earth, and to discover a
third unexpected primary division of life, which
came to be called the Archaea.4 This work restruc-
tured our understanding of the evolution of living
organisms and fulfilled Darwin’s prophetic state-
ment that “the time will come, I believe, though I
shall not live to see it, when we shall have very
fairly true genealogical trees of each great kingdom
of Nature”.5

Initially, molecular phylogenies were based on
pairwise sequence alignments. Feng & Doolittle
introduced the progressive multiple alignment
algorithm and showed that phylogenetic trees
derived from multiple sequence alignments were
in better accord with the expected taxonomic
groupings of higher eukaryotes.6 The structure
and organization of biological form was created
by an evolutionary process, and multiple align-
ments are data types that better represent this
process than pairwise alignments. In the statistical
analysis of proteins from comparative studies, the
paradigm of using a database of pairwise compari-
sons is shifting to using a database of multiple
alignments of evolutionarily related groups.7–9

Gribskov et al.10 were the first to formulate a
statistical representation of a multiple alignment,
known as a profile. In their most basic form, profiles
encode multiple alignments by recording position-
specific amino acid substitution and gap proba-
bilities. With the construction of the Pfam database,
this method was subsequently extended by repre-
senting multiple alignments as hidden Markov
model (HMM) profiles and by providing a compre-
hensive database of multiple alignments and the
resulting HMMs for all known protein domain
families.11 Profile-to-profile alignment techniques
have been very successful in locating unexpected
homologies in protein domain substructure,12,13

and the inclusion of secondary and tertiary struc-
ture information has been shown to give profiles
with increased sensitivity for remote homology
detection.14 Recently, O’Sullivan et al. have devel-
oped an automated method to combine sequence
and structure profiles.15 In the realm of protein
structure prediction, CASP5 clearly showed that a
combination of multiple structure and sequence
alignments and derived profiles most accurately
capture the sequence-structure patterns in related
andespecially indistantly relatedproteingroups.16,17

Multiple alignments reveal patterns of sequence
or structure conservation and variability among
groups of homologous molecules and are useful in
many applications, including: determining which
residues are important for structure,18 stability,
function or folding;19 constructing knowledge-
based potentials for protein structure prediction
and design, for reviews see Hardin et al.20 Russ &
Ranganathan,21 generating profiles for genome
annotation11 and for constructing molecular
phylogenies.

Each of these examples, as well as many others
not mentioned, relies on the composition of the
multiple alignment and derived profiles, but which
and how many sequences or structures should be
included? A key issue in almost every area of
bioinformatics, and especially concerning multiple
alignments, is redundancy. Redundancy in the
molecular data stems from research bias and the
amenability of the system to laboratory conditions.
In the area of genome sequencing, most organisms
that inhabit the biosphere are microbes and most of
those cannot be cultured in the laboratory.22,23

Although environmental sequencing methods are
now beginning to ameliorate this particular source
of research bias,3,24,25 we must continually remind
ourselves that only approximately 1% of extant
microbial organisms have been identified.23

While the emerging, widespread use of multiple
alignments has put bioinformatics on an evolution-
ary footing to some extent, the problem of redun-
dancy and representativeness in multiple
alignments has yet to be addressed in the context
of evolution. What should a non-redundant set
represent? Certainly the set should not merely
represent the database, which we already know to
be biased, rather the non-redundant subset should
best represent the evolutionary history of a group of
homologous molecules; the subset should span the
evolutionary space. In large databases, which serve
to collect and curate structure and sequence data,
redundancy has been addressed by application of
a sequence identity threshold.26–28 The algorithm
implied by a sequence identity threshold typically
involves all-on-all pairwise alignments between
sequences in the database followed by computation
of sequence identity values. Of any pair of
sequences that are above threshold, one of the pair
is arbitrarily chosen, or chosen under the constraint
of some heuristic such as minimum sequence length
or, for protein structures, lowest crystallographic
resolution, and removed. Although an arbitrary
decision at each step of this algorithm is clearly
undesirable, the method is intended to be used with
large collections of sequences or structures in order
to give an approximately non-redundant set of
molecules. Chothia and co-workers recently
showed that a non-redundant database culled at
50% identity has a higher effective information
content than the full database.29 Databases of
multiple alignments, such as HOMSTRAD9 and
Pfam,11 use either sequence identity cutoffs or
sequence weighting to address redundancy and
representativeness. Figure 10 compares the compo-
sition of the non-redundant set or seed alignment of
Pfam to that derived using our evolutionary based
method detailed below for a subclass of aminoacyl-
tRNA synthetases. Note in this example that while
sequence weighting can account for bias due to



Evolutionary Profiles from QR Factorization 3

ARTICLE IN PRESS
over or under-representation, it cannot account for
missing data.

Even though sequence identity cutoff algorithms,
because of their speed, are sensible for a large
database of sequences, the arbitrariness of the
algorithm is particularly problematic in the context
of a multiple alignment. Sequence weighting
methods,30,31 which give proportionally more
weight to outliers and less to more “common”
sequences, suffer from the lack of a general theory
for weighting, and weighting schemes give no
assurance that the representative sequences span
the evolutionary space, see Figure 10. May recently
presented an algorithm which partitions sequences
from a multiple alignment into, typically two,
maximally divergent clusters based on a sequence
entropy measure over aligned regions.32 Although
the method is of interest, ignoring the effect of gaps
is highly undesirable, especially for distantly
related protein groups, and the method is not
readily applicable to treating redundancy among
protein structures.

Here, we present an algorithm which applies
the multidimensional QR factorization to multiple
alignments of protein structures. By equating
redundancy to numerical linear dependence, the
algorithm re-orders the protein structures by
increasing linear dependence, and allows selection
of a non-redundant set of structures with respect to
a user defined similarity threshold, subject to the
constraint that at any threshold the resultant non-
redundant set best represent the evolutionary
history of the protein group. The non-redundant
representative multiple alignments, and derived
statistical representations, which result from this
method are termed evolutionary profiles. After
introducing the theoretical background of the QR
algorithm, we show how the derived structure-
based phylogenies agreewith established sequence-
based phylogenies and how proper comparison of
structures allows investigation of the most distant
evolutionary events; namely, those events that pre-
date the split between the main lines of descent
(bacterial versus archaeal plus eukaryotic)33 as
represented by the root node of the universal
molecular phylogenetic tree. Since the structural
databases do not always allow the formation of
complete evolutionary profiles and because the
association of sequences with structures is at the
core of the structure prediction problem, we
illustrate how multiple alignments of structures
and sequences can be combined in such a way that
the resulting non-redundant sequence-structure
profiles well represent the evolutionary space in
both sequence and structure.
Theory

We begin by introducing the STAMP algorithm
used to superpose protein structures, and then
define a measure of structural similarity between
homologous proteins, QH. As the multiple
alignment of structures and sequences requires a
multidimensional matrix encoding, we will first
demonstrate an algorithm to find a non-redundant
set via a model problem of one-dimensional
proteins. After a brief description of the QR
factorization, we detail how the algorithm is
modified for multidimensional factorization,
and the accompanying parameter search is
carried out to assure the derived subsets best
represent the evolutionary history of the group.
Phylogenetic analysis methods used for construct-
ing protein structure-based dendrograms and a
hierarchical formulation of the multidimensional
QR factorization are also discussed. Although a
brief sketch of some of the techniques was
presented,33 here we present the algorithm in
greater detail.

Structural alignment

Alignments were computed using the multiple
structural alignment program STAMP,34 which uses
a dynamic programming procedure in combination
with linear, least-squares fitting to find the rigid
body rotation that simultaneously minimizes the
Ca–Ca distance and local main-chain conformation
for each pair of aligned proteins. The algorithm
does not include sequence-dependent information.
This program uses a progressive multiple align-
ment procedure in which all possible pairwise
alignments are computed, and then a hierarchical
clustering analysis based on structural similarity is
used to build the multiple alignment. The program
aligns the most similar structures first, and moves
along a structural dendrogram to add groups of
aligned structures to the multiple alignment. The
quality of the resultant multiple structural align-
ment depends to some degree on a set of initial
alignments that STAMP computes by “scanning” a
selected protein domain against all others in the
data set. In difficult alignment cases, e.g. distantly
related or highly symmetrical structures, we
developed a heuristic algorithm to attempt each
scan domain and take the initial alignments from
the scan domain that produced the highest align-
ment scores. The initial alignments were executed
with the following STAMP parameters: -scan true
-npass 2 -slide 5 -scanscore 6. The final multiple
structural alignments were computed with
default parameters. The original version of
STAMP systematically misaligns N and C-terminal
residues, but this fault has been repaired and will
be made freely available through a new multiple
structural alignment feature in the next release of
the molecular visualization program VMD version
1.8.3.35

Structural similarity measure QH

We derive a structural similarity measure
between homologous proteins which is based on
the structural identity measure, Q, developed by
Wolynes, Luthey-Schulten and coworkers36 in the



Figure 1. Illustration of QH,
specifically demonstrating the
effect of the qgap term. The struc-
tural overlap shown is of two
homologous fragments from
d1efwa3 (aspartyl-tRNA synthe-
tase, orange) and d1bbwa2 (lysyl-
tRNA synthetase, blue). The left
panel corresponds to only the
computation of qaln as the insertion
in d1bbwa2 has been removed. As

the insertion increases to its full length (left to right), the value of QH decreases. Notation is explained in Structural
similarity measure QH, and all molecular structures were drawn using VMD.35
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field of protein folding. Our adaptation of Q is
referred to as QH, and the measure is designed to
account for the presence of gaps and how insertions
perturb the aligned core structure:
QH ¼ a
K1½qaln þ qgap�
a is the normalization, specifically given below.
QH is composed of two components. The term qaln is
identical in form to the un-normalized Q-measure
of Eastwood et al.,36 and it computes the fraction of
similar contact distances between the aligned
residues of a pair of proteins.
qaln ¼
X

i%jK2ni0%j0K2

exp K
ðrij Kri0j0 Þ

2

2s2ij

" #
This term computes the fraction of Ca–Ca pair
distances that are the same or similar between two
aligned structures. rij is the spatial Ca–Ca distance
between residues i and j in the protein “a”, and ri 0j 0 is
the Ca–Ca distance between residues i 0 and j 0 in the
protein “b”. This term is restricted to aligned
positions, e.g. where i is aligned to i 0 and j is
aligned to j 0, and the summation is over all unique,
non-nearest neighbor residue pairs (see Figure 1).
The symbol n is an “inclusive or”, which accounts
for the perturbation of insertions to aligned gap
edges (see below).

The normalization, a, accounts for the contri-
butions to QH from both the aligned regions and
from contacts between the gap residues and each
aligned position. In this way, initially gaps are
strictly penalized, but the qgap term reduces this
penalty for smaller gaps that are in closer contact to
the core structure and essentially maintains the
initial penalty for long gaps that wander far from
the core. Insertions that perturb the aligned struc-
ture less are also ascribed a lower penalty. The qgap

term is expressed as:
qgap ¼
XGa
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XNaln

j
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where ga and gb are the residues in insertions in both
protein “a” and protein “b” respectively. As shown
in Figure 1, each insertion residue is associated with
a C-terminal and N-terminal gap edge. The gap
edge is formed by aligned residues on either side of
the inserted residues. In Figure 1, the gap edge
residues are marked with spheres. In constructing
the qgap term, we hypothesized that the more the
gap residues deviated from the nearest gap edge,
the lower the value of structural similarity between
the two proteins. In protein “a”, therefore, the
contact distance, rgaj, between a residue j and the
gap residue ga, is compared with the contact
distances, rg0

aj0 and rg00
a j0 , between residue j 0 of protein

“b”, which is aligned to residue j, and the gap
edges, represented by residues g 0

a and g 00
a in protein

“b”. The “max” function takes whichever gap edge,
g 0

a or g 00
a, that produces a larger contribution to QH.

The outer summation is over all inserted residues in
protein “a”, ga, while the inner summation is over
all non-nearest neighbor aligned residues. The
definition is analogous for insertions in protein “b”.

The normalization and the s2ij terms are computed
as:

a ¼ 1

2
ðNaln K1ÞðNaln K2Þ þ Gð0ÞNaln þ Gð1ÞðNaln K1Þ

þ Gð2ÞðNaln K2Þ þ Ng

s2ij ¼ jiK jj0:15

Naln is the number of aligned residues. The total



Figure 2. A depiction of the Householder transform-
ation. The 2!3 matrix A contains three vectors, a, b and c,
e.g. the x-coordinates of three proteins, each of two
residues in length. As indicated by the algebraic form, the
effect of the Householder transformation, H1, is to reflect
the vector a about the dotted line onto the x-axis. The
dotted line bisects the angle between the vector a and the
x-axis, i.e. the axis of the first unit vector. H1 also has an
effect on vectors b and c, which are concomitantly
reflected about the dotted line. The reflection of a is
referred to as a 0, likewise for vectors b and c. The
transformation reveals which vector, b or c, has the largest
component in common with a. In this simple problem, it
is clear that c is more dissimilar to a than b and that b
would be pivoted to the right.
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number of residues in gaps, in both proteins “a”
and “b”, is equal to G(0)CG(1)CG(2). The number of
residues in gaps with no gap edge residues as
nearest neighbors is G(0). The number of gap
residues with one nearest neighbor in a gap edge
is G(1), and the number of gap residues with two
nearest neighbors that are gap edges, i.e., gaps of
one residue in length, is G(2). These three cases of
gap residues are separately defined because contact
distance comparisons involving residues that are
nearest neighbors are excluded from the compu-
tation of QH. Each of the G(0) residues make Naln

contributions to QH, the G(1) residues, because they
each have one nearest neighbor in an aligned pair,
make only NalnK1 contributions. Similarly, the G(2)

residues each make NalnK2 contributions to QH. In
reference to the qgap formula (above), the total
number of residues in gaps in proteins “a” and
“b” is GaZ(Ga

(0)CGa
(1)CGa

(2)) and GbZ(Gb
(0)CGb

(1)C
Gb
(2)) respectively.
The only exception to the exclusion of counting

nearest neighbor contact comparisons involves the
comparison of the contacts between the four
residues of each gap edge. This additional com-
parison measures the perturbation of the insertion
to the aligned gap edges, and the number of these
contributions to QH is Ng, which sum of the number
of insertions in protein “a”, the number of insertions
in protein “b” and the number of simultaneous
insertions (referred to as bulges or c-gaps37). Gap-
to-gap contacts and intra-gap contacts do not enter
into the computation, and terminal gaps are also
ignored. s2ij is a slowly growing function of
sequence separation of residues i and j, and this
serves to stretch the spatial tolerance of similar
contacts at larger sequence separations. QH ranges
from 0 to 1 where QHZ1 refers to identical proteins.
If there are no gaps in the alignment, then QH

becomes QalnZaqaln, which is identical to the
Q-measure described.36 See Figure 1.
QR factorization of model alignments

An enormous variety of problems in scientific
computing can be mapped onto the eigenvalue
problem, AxZlx, or the least-squares problem,
AxZb. In the 1950s, the emergence of computers
allowed for the possibility of treating large systems
of equations. A key step forward, however, came
with the “recognition that matrices could be
reduced, by orthogonal transformations, in a finite
number of steps, to some special reduced form that
lends itself more efficiently to further compu-
tations”.38 In the case of multiple structural align-
ments, the alignment matrix, A, contains redundant
information and the problem is to find a reduced set
that is most representative of the structural data.
With respect to the eigenproblem and the least-
squares problem, the matrix A can be reduced to a
special form, e.g. upper triangular, after which the
problem can be solved by simple back substitution.
The QR factorization by successive application
of elementary reflectors, called Householder
transformations,39 was quickly recognized as the
most efficient route to triangularizing a matrix.
The QR factorization of the m!n matrix A is

expressed as:

QTðAxÞ ¼ QTðbÞ

QTAx ¼ ~Rx ¼ QTb ¼
c1

c2

� �

where ~RZ ½R 0 �T is introduced as compact nota-
tion, R is an n!n upper triangular matrix and QT is
an orthogonal transformation matrix which trian-
gluarizes A. QT is also applied to the right-hand side
of the least-squares equation. The resulting least-
squares problem, RxZc1 is then solved by back
substitution with a minimum residual Euclidean
norm of kc2k2.
The orthogonal transformation, QT, is a product

of the successive application of Householder
transformations, Hj, such that, QTZHn.H2H1.
Each Householder transformation, Hk, is an
elementary reflector which is designed to reflect
the vector represented in the kth column of A onto
the axis of the kth unit vector while preserving the
length, or more precisely the Euclidean norm, of the
kth column vector. Equivalently, the elementary
reflector, Hk, is designed to zero all entries below
the diagonal of the kth column and to preserve the
Euclidean norm of the kth column by inserting the
annihilated magnitude of the below diagonal
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entries into the diagonal entry. Thus, via successive
application of Hk for kZ1, 2,.n, the matrix A is
reduced to triangular form if mZn or the form of ~R
if mOn. Both the geometric and algebraic interpre-
tations of the Householder transformation are
shown in Figure 2. The Householder transformation
H1 described in Figure 2, is constructed for the
vector a such that H1a ¼ aK ð2vTa=vTvÞv in which
v ¼ ½ 0 a2�

T Ka½ 1 0 �T where aZKsign(a1)ka2k2.
For a detailed description of the Householder
transformation, see the work done by Heath.40

The matrix A may include linearly dependent or
nearly linear dependent columns which contain
redundant data. Golub developed the QR factori-
zation with column pivoting (QRP) algorithm
which orders the columns of A by increasing linear
dependence from left to right, and allows an
approximate solution to the least-squares problem
by only retaining the first r ordered columns of A.41

Prior to the application of Hk, i.e. the kth step of the
QR factorization, the kth column of the matrix A is
exchanged with a column j having maximum sub-
vector Euclidean norm, defined as maxjZk;.;nðs

ðkÞ
j Þ

where:

sðkÞj Z
Xm

iZk

a2ij

 !1=2

The column exchange process is encoded in the
permutation matrix P and the factorization is re-
written as

QTAP Z ~R

The above description implies that the matrix A is
rank deficient, i.e. rank(A)!n. Let A(r)ZHr.H1

AP1.Pr, which represents the matrix A after the rth
step of the QRP algorithm. Note that AðnÞZ ~R, and
due to the pivoting strategy the diagonal entries of
A(n) obey the relationship aðnÞ11 OaðnÞ22 O/OaðnÞnn . This
procedure can be used to numerically determine
rank(A)Zr with respect to the threshold t such that
aðrÞ11OaðrÞ22O/OaðrÞrr OtOaðrC1Þ

rC1rC1/OaðnÞnn . For this
reason, the QRP algorithm is also referred to as
the rank-revealing QR factorization. This strategy is
used to determine the rank of A, and to define a
minimal basis, or maximally linearly independent
set, from the columns of A. Although there are
many standard descriptions of the QR factorization
including Householder’s original paper39 and
Wilkinson’s famous text,42 Heath presents an
accessible and modern treatment of both the QR
and QRP algorithms.40
Matrix encoding of protein structure

Since our goal is to use the QRP algorithm to
define a non-redundant set of protein structures
from a multiple alignment, we encode the data in
the alignment matrix, A which is of dimension
maln!nproteins!d. Each column of A corresponds to
a single protein structure, and the multiple align-
ment is defined by the rows of A. The total length of
the multiple alignment is maln, and nproteins is the
number of proteins in the alignment. The multiple
structural superposition provides a set of rotated
coordinates for each protein in the alignment. The
rotated real space coordinates of the Ca positions
for the proteins are encoded in the first three
components of the d-dimension, giving the matrices
X, Y and Z. Gapped positions are accounted for
by the fourth component, the matrix G, of the
d-dimension, so dZ4. G is a binary matrix in which
zero represents aligned positions and 1 represents
gaps, while ~GZgG is the scaled gap matrix. The
four components of the alignment matrix, A, are
expressed as A(1)ZX, A(2)ZY, A(3)ZZ, Að4ÞZ ~G. The
aligned positions are described by a 4-vector of the
type (xCa, yCa, zCa, 0), while gapped positions are
encoded by the 4-vector (0, 0, 0, g). In the current
application, all gaps are treated with the same
weight, namely the gap scale parameter g which is
defined as:

g Zg
jjXjjF4

C jjYjjF4
C jjZjjF4

jjGjjF4

where g is a constant and one of two parameters
that we determine numerically in a procedure

defined below. The notation jjXjjF4
Z

P
i;j jxijj

4
� �1=4

defines the Frobenius-like matrix 4-norm. The form
of the equation for the gap scale parameter is
motivated by the notion that any gap position
should be weighted equivalently to any real space
position.
Multidimensional QR factorization

The QR factorization, in the classical form, is
designed to operate on an m!n matrix, but the
alignment matrix, which encodes a multiple align-
ment of protein structures, simply cannot be
expressed in fewer dimensions than maln!
nproteins!4. Although there is an effort, based on
knot theory, which is attempting to reduce the
number of dimensions that are required to define
protein topology,43 this formulation of protein
structure appears to be too coarse-grained for
application in the present context. A novel multi-
dimensional QR factorization, however, was
recently formulated by Heck, Olkin & Naghshineh
in the field of active noise control.44,45 The multi-
dimensional QR is, for a matrix of dimension m!
n!d, essentially the simultaneous QR factorization
of d-matrices each of size m!n. The algorithm is
formally expressed as:

QT
ðdÞAðdÞP Z ~RðdÞ

in which the alignment matrix, A, is of the form
A(1)ZX, A(2)ZY, A(3)ZZ, Að4ÞZ ~G.The key point is
that the permutation matrix, P, is independent of
the d-dimension, so that the columns of A, where
each “column” is now actually a matrix represent-
ing an aligned protein, are not scrambled during
pivoting operations. This property is the result of



Figure 3. Allowed (left) and forbidden orderings (right) shown for an example dendrogram.

Table 1. The allowed orderings for the example phylo-
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thepivoting rule,which takes the formof aFrobenius
norm over d-space. At the kth step in the factoriz-
ation, prior to the application of the Householder
transformation, HðkÞ

ðdÞ, for each of the d-matrices, the
permutation P(k) is constructed to exchange the
kth column of A, over each d-dimension simul-
taneously, with the column of maximum Frobenius-
like matrix p-norm, maxjZk;.;nproteins

ðjjajjjFp
Þ where:

jjajjjFp
¼

X4
d¼1

Xmaln

i¼k

jaijdj
p

 !1=p

The integer, p, is a constant and the second of the
two parameters that we optimize numerically in a
procedure defined below. A new alignment matrix
is generated, ~AZAP, in which the proteins in ~A are
ordered by increasing linear dependence from left
to right. Since we assume that redundancy in a
multiple alignment is directly related to linear
dependence between the aligned proteins, trim-
ming proteins from right to left in ~A, to a desired
level of redundancy, gives a reduced set of proteins
which form the non-redundant multiple structural
alignment. We have also implemented this pro-
cedure for generating non-redundant multiple
sequence alignments.46

The QR ordering is used to define a non-
redundant set. Quite often this is done by incre-
mentally including proteins, according to the QR
ordering, until the maximum QH value, or some
other pairwise similarity metric, is greater than a
user-specified threshold. Although the following
procedure is not a necessary part of the algorithm,
in the next section we describe how a threshold can
be naturally defined by computing a phylogenetic
tree.
geny in Figure 3

1 3 2 4 5 2 3 1 4 5 3 2 1 4 5 4 2 1 3 5
1 3 2 5 4 2 3 1 5 4 3 2 1 5 4 4 1 2 3 5
1 4 2 3 5 2 4 1 3 5 3 1 2 4 5 5 2 1 3 4
1 5 2 3 4 2 5 1 3 4 3 1 2 5 4 5 1 2 3 4

If the number of proteins is N, then there are N! total possible
orderings. In this example, of the 120 possible orderings, 16 are
allowed and 104 are forbidden.
Phylogenetic analysis and evaluation of the QR
ordering

Structure-based phylogenetic trees are drawn
using either the neighbor-joining program in
Phylip,47 as in Figures 6–10, or the unweighted
pair group method using arithmetic averages
(UPGMA),48 in Figures 3, 5 and 11, as implemented
in MATLAB 6.5 (Mathworks, Inc.), and the measure
of distance is 1KQH. An example phylogeny of five
protein structures, labeled 1–5, is shown in Figure 3.
In this phylogeny, there are four distinct threshold
partitions where each partition is defined by the
emergence of a new branch. The first partition
ranges from the initial bifurcation, splitting the five
proteins into two subgroups, i.e. (1,2) and (3,4,5), to
the bifurcation splitting protein 1 and protein 2. The
second threshold partition begins with the for-
mation of three groups, namely (1), (2) and (3,4,5),
and ends at the bifurcation between proteins 3 and
proteins (4,5). The third and fourth partitions are
defined similarly. Each partition is associated with
a QH cutoff value, Qcuti , where the ith threshold
separates the proteins into i groups. The thresholds
can be applied to the pre-computed QR ordering
such that the first iproteins in theQRorder represent
each of the i groups defined by the threshold.
Unlike typical pairwise similarity threshold

algorithms, the goal of the QR factorization is not
merely to produce a set of proteins with pairwise
similarity values below a given threshold, but
rather to order the proteins by increasing linear
dependence. Any arbitrary threshold can then be
applied to the precomputed ordering and a “below
threshold” set is produced by simply adding to or
subtracting proteins from the representative set
according to the QR ordering. One advantage of this
algorithm is that rather than search through all
pairwise relationships for values that violate the
threshold each time a new threshold is applied, as is
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the case for typical pairwise similarity threshold
algorithms, one simply follows the QR ordering,
beginning with the first pair, and adds proteins to
the representative set until a kth protein is added
that violates the threshold; the representative set is
then defined as the first kK1 proteins in the QR
order. Since the QR factorization will yield different
orderings given different values of the above
mentioned adjustable parameters, p and g, the QR
must be parameterized to consistently give
“allowed” orderings. The QR ordering is defined
as “allowed” if it satisfies the following criterion:
At each distinct threshold, the QR ordering incor-
porates the maximum number of proteins with
pairwise similarity values less than the specified
threshold. Non-allowed or forbidden orderings will
result if, for example, the gaps are over-weighted
with respect to the Cartesian coordinates, i.e. the
aligned positions.

In Figure 3, the ordering, 2 3 1 4 5, is an example
of an allowed ordering. When Qcut2 is applied to
this ordering, protein 2 represents the (1,2) cluster,
and protein 3 represents the cluster (3,4,5). If the
threshold is set at Qcut2, we expect a minimal set of
two proteins. Applying the threshold Qcut3 would
imply taking the first three proteins in the order,
2 3 1. Note that proteins 4 and 5 should not be
included because they are too similar to protein 3, as
QH3,4

and QH3,5
are both greater than the threshold,

Qcut3. Protein 2 is now representing its own branch,
protein 3 still represents the (3,4,5) cluster and
protein 1 represents itself. Continuing this pro-
cedure for the two remaining thresholds shows that
the ordering, 2 3 1 4 5, is allowed for all distinct
thresholds and is therefore declared to be an
allowed ordering.

On the right hand side of Figure 3, a forbidden
ordering, 3 4 5 2 1, is shown. The above procedure
reveals that this ordering is allowed only, and
trivially so, at Qcut5 while this ordering is forbidden
at all other thresholds. For example, consider the
first two proteins in the order, 3 and 4, and apply the
Figure 4. Result of the parameter search for the aminoacyl-
see Figure 5. Black denotes forbidden QR-factorization orderi
candidate pair of parameters, p and g, 50 random rotations an
and forbidden orderings for these linear transformations are
been scaled such that g0Z2.83g. The parameters used in this
the above plots: gZ1.1 (g0Z0.4) and pZ2.
Qcut2 threshold. Clearly QH3;4
OQcut2, so proteins 3

and 4 are representing only one of the two branches
at the Qcut2 level of similarity. As in this case, a
forbidden ordering occurs when, for a specified
threshold, below threshold branches of the tree are
missed or others are over-sampled. The allowed
orderings, listed in Table 1 for the example
phylogeny in Figure 3, are degenerate, but small
in number, as compared to the possible number of
forbidden orderings.
Hierarchical multidimensional QR factorization

The multidimensional QR can fail to yield an
allowed ordering when the information content of
the alignment matrix, A, diminishes beyond some
lower limit. Although there is not an adequate
theoretical justification for this behavior or for the
value of the lower limit, in practice this can occur in
alignments represented by the phylogeny shown in
Figure 5, where there are very large structural
differences in the same alignment with proteins
displaying very subtle structural differences.
This failure is most simply resolved by application
of a user-specified threshold of allowed redun-
dancy, e.g. a QHcut, and the following hierarchical
QR factorization procedure.

As proteins are added to the non-redundant set,
the pairwise similarity relationships are checked,
and if any of those values exceed the threshold,
QHcut, the factorization halts. The proteins included
in the first non-redundant set are removed and
the remaining components of the alignment matrix,
A, are set to their initial values. The procedure is
repeated until no more proteins remain or until no
sub-sets can be formed which contain pairwise
similarity values below threshold.
Parameter search

Although the classical QR factorization naturally
employs the 2-norm in the pivoting operations, the
tRNA synthetase (AARS) class I and class II training sets,
ngs while white regions mark allowed orderings. For each
d translations were performed, and the average of allowed
plotted above. The abscissa in each of the above plots has
study are chosen from the overlapping allowed regions in



Figure 5. Phylogenies (above) are shown for the aminoacyl-tRNA synthetase (AARS) class I (left) and class II (right)
training sets used in the parameter search. The function of the selected AARSs is indicated by the one-letter amino acid
code, e.g. the branch labeled K2 is occupied by four different crystallographic structures of the class II lysyl-tRNA
synthetase. In those selected AARSs that exhibit the full canonical or basal canonical phylogenetic pattern,50 the letter a
or b indicates that the branch represents the archaeal or bacterial type, respectively, e.g. Eb is the bacterial type glutamyl-
tRNA synthetase. The leaves of the phylogeny are labeled by the seven letter SCOP/ASTRAL domain codes65,66 and by
the placement of that protein structure in the QR ordering. Arrows depict the path of the QR order through the
phylogenies. The dependence of maximum QH in the set is shown (below) versus the QR ordering. If the set is composed
of only the first two proteins in the QR ordering then the maximum QH value is identical with the structural similarity
value between the two proteins. At a set size of three, the QH value plotted is the maximum of all pairwise similarity
values among all three proteins, and so on. The plots show the full QR ordering (red, broken) and the hQR ordering with
QHcutZ0.7 (blue, continuous), which gives four separate non-redundant sets in each case, for the class I (left) and class II
(right) AARS training sets.
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derivation of themultidimensional QR factorization
does not specify a particular p-norm or how to
balance contributions from each matrix across the
d-dimension. The notion that information in the
coordinate and gap matrices should be evaluated
with the same weight suggests the Frobenius-like
matrix p-norm as a pivoting metric. The value of p
is not obvious a priori, so we scale this integer from
pZ1 to pZ10 in the parameter search procedure.
In general, higher p-norms emphasize the outliers
in the structural data.

Olkin et al., who first implemented the multi-
dimensional QR in active noise control problems,
also studied the choice of matrix norm used in the
pivoting operation.44 They were not confronted
with heterogeneous data, namely the combination
of Cartesian coordinates with gap location data, so
there was no need to consider a second scaling
parameter, such as gap scaling parameter, g, defined
above. Since gap position is a binary data type, each
position in the alignment is either a gap or not a
gap, there must be a scaling operation such that the
aligned positions and gap positions both contribute
an appropriate weight to the final ordering of the
multidimensional QRP algorithm. The value gZ1
gave promising initial results, but the occurrence of
forbidden orderings, in some cases, motivated a
larger search of g-space. In the parameter search, g
is varied from 0.017 to 2.8 in increments of 0.017.
Empirically, this space extends from a regimewhere
gaps do not contribute enough to the final ordering,
to a limit where the pattern of gaps completely
dominates the ordering. The two adjustable
parameters in our implementation of the multi-
dimensional QR factorization can only be defined
numerically. For each set of candidate values for
the parameters p and g, a multidimensional QR
factorization is computed. The resulting ordering is
defined as allowed or forbidden by the criteria give
in Phylogenetic analysis and evaluation of the QR
ordering. The results of this parameter search, for
two training sets with totally different fold motifs,
are discussed in Technical analysis of the QR
factorization algorithm (see Figure 4).
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The definition of allowed and forbidden order-
ings is dependent on the method used to construct
the phylogenetic tree. In the case of structure-based
phylogenies, we have thus far employed distance-
based methods, as opposed to maximum-likelihood
or parsimony. Indeed, distance based methods may
be ideal for describing homology among protein
structures, since the similarity metric, QH, is a
comparison measure of physical distances, unlike
sequence “distances” between aligned amino acid
residues which are based on empirical substitution
probabilities. In this work, we fit the adjustable
parameters to agree with phylogenies based on the
QH metric. If a different metric for inferring
structure-based phylogenetic trees is desired, the
parameters can be tuned to produce allowed
orderings for the alternative trees.
Results and Discussion

Technical analysis of the QR factorization
algorithm
Defining the QR parameters

Our implementation of the multidimensional QR
factorization of the alignment matrix, A, depends
on two adjustable parameters, the gap scaling
constant g and the ordering p-norm (see Theory).
In order to determine appropriate parameters for
the QR algorithm, two training sets were used, both
of which exhibit a well-defined phylogenetic
topology, meaning that the branch order is robust
and the structures are sufficiently distinct that the
same groupings would be obtained whether we
used QH or RMSD as a metric or whether we used
UPGMA or neighbor-joining as a tree-drawing
method. Note that this is only the case for the
training sets shown in Figure 5. The phylogenies
shown in subsequence sections are better repre-
sented as neighbor-joining trees. The advantage of
using a group of homologs with well-defined
phylogenies for the training set, is that allowed
and forbidden orderings, which result from the QR
factorization, can be confidently defined. One of the
training sets contains a selection of protein domains
from the AARS class I family, of the Rossmann fold
type, and the proteins in the second set are selected
from the AARS class II family, a novel a–b fold with
anti-parallel b-sheets. The class I and class II AARSs
are unrelated in sequence and structure,33 and
phylogenies for the two training sets are shown in
Figure 5.

The results of the parameter search, in which for
each pair of candidate parameters a QR factoriz-
ation is computed and the ordering is determined to
be allowed or forbidden, are shown in Figure 4. An
additional complication is that the QR factorization
will not necessarily yield the same ordering if linear
transformations, rotations and translations, are
applied to the alignment matrix, and, though the
QR algorithm is algebraically guaranteed to be scale
invariant, numerical error may lead to aberrant
orderings if the alignment matrix is scaled. Since
protein structure crystallization reference frames
are arbitrary, the parameters must be chosen so that
the QR factorization is robust to linear transform-
ations; an allowed ordering is obtained even after
arbitrary linear transformations on the alignment
matrix. For each pair of candidate parameters,
therefore, the alignment matrix was randomly
rotated, translated and scaled 50 times, and for
each of the random linear transformations the QR
factorization was computed. The results in Figure 4
show the average, over the 50 transformations, of
allowed and forbidden orderings. The AARS class I
and class II training sets show a generous overlap
of allowed orderings in the parameter space. The
parameters chosen from this region and used in the
following applications are gZ1.1 and pZ2.
Interpreting the QR ordering in a well-defined
phylogeny

QR ordering of the class I and class II AARS
training sets, which results from applying the above
parameters, is depicted in Figure 5. Note that in
both training sets the QR factorization gives an
allowed ordering (see Theory), which means that
each major branch in the phylogeny is visited once
before it is repeated. In addition, any threshold, or
similarity cutoff in QH, applied to the order will
include the appropriate and maximum number of
structures with all pairwise relationships below
threshold. The advantage of the allowed ordering
generated by the QR factorization is that any
arbitrary similarity threshold can be applied with-
out the need to recompute the factorization. This
feature is in sharp contrast to typical similarity cut-
off algorithms (see Introduction), which do require
a complete re-computation of representative set
members if the similarity threshold is adjusted. For
the QR factorization method, adjusting the simi-
larity threshold just requires adding or subtracting
one or more proteins from the pre-computed
ordering.

While the allowed ordering is observed for the
first five structures in the class I set and the first four
structures in the class II set, after all of the major
groups are visited, the QR ordering begins to break
down. At this point, the partially factorized
alignment matrix has lost too much information to
produce an allowed ordering for the remaining
proteins. This behavior emerges when one repre-
sentative from a group of nearly identical mol-
ecules, i.e. different crystal structures of the same
protein sequence showing very little difference in
conformation, is used to construct a Householder
transformation. Since the copies of the representa-
tive are so nearly identical, and thus have near exact
linear dependence to the representative, the House-
holder transformation has the effect of completely
annihilating the structural information describing
those copies in the alignment matrix. As mentioned
in Hierarchical multidimensional QR factorization,
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this situation is rescued by applying the hierarchical
QR (hQR) factorization, which requires specifica-
tion of a QH threshold value. As soon as the
ordering incorporates a protein which pushes the
maximum QH value of the set above threshold,
the previous proteins in the order are assigned to
the first representative set, and the alignment
matrix is re-initialized, excluding the proteins
assigned to the first representative set. The factori-
zation is then allowed to continue on the re-initial-
ized alignment matrix until the second
representative set is similarly defined, and
additional representative sets are defined until no
more proteins remain. See Figure 5.

Application to the analysis of protein structure
evolution
Congruence of sequence and structure phylogenetic
trees

Since Pauling first discussed the concept of
molecular evolution,49 an enormous field of
research was founded on the idea that the
sequences of nucleic acids and proteins contain a
trace of the evolutionary course of genes and
sometimes organisms.50 Visualizing overlapped
structures evokes a similar idea, that the structure
of a biological molecule contains evolutionary
information. The challenge in recovering the poten-
tial evolutionary information from protein structure
alone is first addressed by deriving a measure of
structural similarity between homologous proteins.
The metric should consider the similarity of the
aligned three-dimensional structure of the mol-
ecules and also account for the effect of gaps, i.e.
insertions and deletions.

We have used such ameasure, QH (see Theory), to
compute structure-based phylogenies for the class I
and class II aminoacyl-tRNA synthetases
(AARSs).33 By showing agreement with maxi-
mum-likelihood sequence-based analysis of the
AARSs,51 we demonstrated that, if the gaps are
properly considered, evolutionary information is
indeed recoverable from protein structure alone,
allowing accurate computation of protein structure-
based phylogenies.33 In Figure 6, we present an
updated structure-based phylogeny for the aspartyl
and asparaginyl-tRNA synthetase (AspRS–AsnRS)
group, with the addition of a newly release
structure, PDB code 1n9w, and make direct com-
parison to the sequence-based phylogeny for the
same group. Structural differences between the
bacterial and archaeal AspRSs are also highlighted.
While the archaeal-eukaryotic structure signatures
are seen mainly in the elongation of helices, features
unique to the bacterial genre of AspRS include a
large inserted domain, a b-loop-b motif and a small
inserted helix. Thermus thermophilus, a member of
the Deinococcus-Thermus phylum, has the “native”
bacterial type AspRS (Deinococcus-Thermus 1) as
well as a second AspRS (Deinococcus-Thermus 2) of
the archaeal genre, acquired through horizontal
gene transfer (HGT). The HGTevent is detectable in
both sequence51 and structure.
In the crystal structure d1n9wb2, 40 residues are

not resolved, which are well conserved in both
sequence and structure in all members of the
AspRS–AsnRS group. Due to the high level of
conservation, the region was straightforwardly
modeled with the Modeler program,52 using
d1b8aa2 and d1asza2 as scaffolds for the unresolved
regions. The original crystal structure still groups
clearly with other structures of the archaeal genre
and has all the archaeal-type structure signatures.
Evolution of structure in aspartyl-tRNA synthetase

Since protein structure contains evolutionary
information and because it is more highly con-
served than sequence,53,54 the comparative analysis
of structures allows the investigation of evolution-
ary events that pre-date the split between the main
lines of descent in the universal phylogenetic tree,33

such as those events marked i and ii in Figure 7.
This appears to correspond to an era of rapid
evolutionary change in which the basic protein
functions were evolved, including most of the
AARS enzymatic specificities,33 and represents the
evolution of the last common ancestral state itself.
The QR algorithm can be used to obtain an

unbiased profile of structural conservation at
different levels of similarity: class, subclass, enzy-
matic specificity, domain-of-life genre and species.33

Based on these profiles, in Figure 7 we constructed
candidate structures for AspRS from the last
common ancestral state of the class II AARSs to
the present enzyme in Escherichia coli and mapped
changes in contacts between the proposed ancestral
structures and the modern cognate tRNA. These
candidate ancestral structures are simply a depic-
tion of the portions of the molecule showing high-
structural conservation, QHO0.4, at the different
levels of diversity. We hypothesize that the common
conserved portions of the molecule are ancestral,
but caution that we cannot depict portions of the
ancestral proteins that have been lost or that are not
well conserved among the modern forms. Accord-
ing to this analysis, tRNA recognition occurred only
through the catalytic domain early in evolution and
only later included the anticodon binding domain
of the OB-fold type.
A representative set of OB-folds involved in
translation

The OB-folds involved in translation participate
in RNA–protein interactions that are part of the core
fabric of the biological cell, as they play important
roles in at least three major components of the
translation machinery, including aminoacylation of
tRNAs, translation initiation and the ribosome
itself. Homologs of the OB-fold anticondon binding
domain observed in AspRS, AsnRS and LysRS are
present in the C-terminal domain of MetRS and
domain B2 of PheRS, though not as anticodon



Figure 6. Congruence between
the sequence51 and structure-based
phylogenies33 for the AspRS–
AsnRS group (both trees are rooted
by LysRS). The deep division
between the archaeal (Da) and
bacterial (Db) genre has been
documented in sequence by the
presence of specific sequence sig-
natures and phylogenetic analysis.
This division is also apparent in
the differences in the protein struc-
tures. The structure signatures
that distinguish the archaeal and
bacterial genres are shown in
structural overlaps below the
phylogenetic trees. A case of HGT
from the archaeal-eukaryotic
group to the Deinococcus-Thermus
group (*) is clear in both sequence
and structure. The structure
d1n9wb2 (Deinococcus-Thermus 2)
is shown in the overlap with other
structures of the archaeal type
(Da), and the structure d1efwa3
(Deinococcus-Thermus 1) is shown
overlapped with the bacterial type
AspRS from E. coli. Structures of
the AspRS–AsnRS catalytic

domains are color-coded by structural conservation. Here and throughout the phyla, organism names are color-
coded according to their respective domain of life as Archaea (blue), Eucarya (gold) and Bacteria (red).

Figure 7. The evolution of aspartyl-tRNA synthetase (AspRS) from E. coli is depicted by showing the most conserved
portions of the structure, QHO0.4, from the class II AARS level to the modern enzyme found in E. coli. At each
evolutionary stage (i–v), the degree of structural conservation is computed based upon a QR-derived representative set
(circled numbers in the QR order). The phylogeny shown above is abbreviated at the class II AARS level of similarity,33

showing only PheRS (Fb), representing subclass IIC, and SerRS (S) and ProRS (Pa), representing subclass IIA. As this
AspRS enzyme “evolves” (i–v), note that contacts with the tRNA become increasingly specific and intricate. The OB-fold
type anticodon binding (ACB) domain is an ancestral feature of subclass IIB, added at point ii, but not of the entire AARS
class II family.
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Figure 8. Structure-based phylo-
geny for OB-folds involved in
translation. The QR ordering for
the first 20 proteins in the order is
indicated by a green number adja-
cent to the SCOP domain code. The
first four structures in the QR order
(circled numbers) are shown next
to their position in the tree. These
structures display the canonical
five-stranded b-barrel topology
observed among other OB-folds,
except ribosomal protein L2,
which is missing b5 and half of
b4. The structures are color-coded
according to structural conserva-
tion among the nine members of
the non-redundant set, and the
overlap of the conserved core
(QHO0.4) is also shown. The neigh-
bor joining tree was computed with
Phylip46 based on a distance matrix
of pairwise 1KQH values. The L2
proteins were used as the
outgroup.
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binding domains in these two AARSs, protein
domains (eIF2a, IF1 and eIF5a) that contribute to
the translation initiation factor (IF) assembly, and
universally distributed ribosomal proteins in both
the large (L2) and small (S12 and S17) ribosomal
subunits. While beyond the scope of our current
investigations, studying the distant evolutionary
relationships between these particular protein
structures may reveal new clues as to how the
complex process of translation evolved from some
simpler state. Since the OB-folds have been
recruited to these various components of the
translation machinery, their evolution may mirror
the evolution of the translation apparatus itself.
Sequence-based analysis in this direction has
already revealed that the rudiments of the trans-
lation initiation complex are indeed universal in
distribution, and thus, already present in the last
common ancestral state of all life.55,56

The phylogeny in Figure 8 depicts the evolution
of structure among OB-fold domains involved in
translation. These proteins are found in all forms of
life, and are responsible for binding and recog-
nizing single-stranded RNA. Most of these pro-
teins show the standard OB-fold topology of five
b-strands wrapped into a b-barrel fold such that b1,
b2 and b3 form a three-strand sheet on one face of
the protein. The opposite face is also a three-strand
sheet formed by b1, which wraps almost completely
around the barrel, b4 and b5. Interestingly, riboso-
mal protein L2 lacks this opposite face, as it only
contains sheets b1, b2, b3 and approximately half of
b4. L2 is one of the smallest OB-folds with only 65
residues, whereas most OB-folds are approximately
100 residues in length. These proteins typically
share a canonical RNA-binding interface, formed
by b2 and b3, that usually binds single-stranded
RNA in a “standard polarity” where the RNA
strands runs 5 0 to 3 0, beginning near b4 and b5 and
ending at b2.57 The RNA-binding face in the OB-
folds is also the most structurally conserved region,
and this and other features of the OB-fold discussed
above are shown in Supplementary Figure 1.
The OB-phylogeny presented here (see Figures 8

and 9) displays nine major branches, which are
represented, in the QR ordering and with repre-
sentative structure labels given in parentheses, as:
(1) initiation factor-1/eukaryotic initiation factor-5a



Figure 9. The above trees depict
the incremental addition ((a)–(e)) of
proteins in the QR factorization-
based ordering for the OB-fold type
proteins of known structure that
are involved in translation. Dark
green branches depict newly added
representatives, light green indi-
cates proteins previously included
in the ordering. Figure 9(a) is but a
skeleton of the complete tree,
which nonetheless spans the
breadth of the evolutionary space,
Figure 9(e) includes the detail of all
known structures. The plot in
Figure 9(f) shows that the set of
proteins becomes increasingly
redundant, with increasing maxi-
mum QH value in the set, as
proteins are added in the QR order.
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group (eIF5a); (2) class II LysRS anticodon binding
domain (K2); (3) PheRS domain B2 (PheRS B2); (4)
ribosomal protein L2 (L2); (5) ribosomal protein S17
(S17); (6) AspRS anticodon binding domain (Da); (7)
eukaryotic initiation factor-2a (eIF2a); (8) MetRS
C-terminal domain (MetRS C-term); and (9) riboso-
mal protein S12 (S12). Some of these major groups
are nearly equidistant in structural similarity, i.e.
they are related to one another via short branchings
in the phylogenetic tree. This indicates that the
OB-fold phylogeny, based solely on the available
structures, is not well defined at all nodes, and
additional structures, such as archaeal examples of
S12 and S17, would likely give better support to the
branching order. The AARS anti-codon binding
domains, the initiation factors (IFs), ribosomal
proteins L2 and the MetRS–PheRS domains do,
however, each form separate and well-defined
clusters.

In such a phylogeny, where several of the major
groups are equidistant, there is no precise way to
define allowed or forbidden QR-based orderings as
in the simple and well-defined training sets (see
Interpreting the QR ordering in a well-defined
phylogeny). We can, however, expect the QR
ordering to visit each of the major branches before
returning to any one of them. With this more
relaxed notion of an appropriate QR ordering, the
result of the QR factorization in the case of the
OB-folds involved in translation can be properly
interpreted. The tree diagrams in Figure 9 are
included to graphically illustrate the effect of
adding proteins in the QR order in this somewhat
complicated phylogeny. Figure 9(a) shows the tree
with just the first six proteins in the QR order, and
these are indeed the six most distantly related of the
nine major groups mentioned above. In other
words, of any subset of six proteins from the entire
set of known structures shown in Figure 8, these six
best span the evolutionary space of the all proteins
in the group. In Figure 9(b), the nine major branches
are completely represented without any being
represented more than once and without missing
one of themajor branches. In the following panels of
the Figure, branches are added which represent
increasing structural similarity to those previously
added. While Figure 9(a) is but a skeleton of the
complete tree, which nonetheless spans the breadth
of the evolutionary space, Figure 9(e) includes the
detail of all known structures.

In summary of the QR order, the first proteins in
the order represent the major functions, followed by
the inclusion of proteins with similar functions to
each representative. The next proteins added are
distantly related species-specific variants of the
major functions, like the addition of the bacterial



Figure 10. (a) A phylogeny of the
evolutionary profile (EP) con-
structed from both sequence (blue,
continuous; dSid is sequence iden-
tity distance) and structure (grey,
broken) information for the sub-
class IA AARSs specific for isoleu-
cine (I), leucine (L), methionine (M)
and valine (V). Two instances of
HGT are indicated (*), as deter-
mined.51 The combined tree reflects
the canonical distribution for IleRS
and LeuRS, and the basal canonical
distribution for MetRS and ValRS.
Both bias and missing data in the
Pfam seed profile of the same
group, Pfam family tRNA-synt_1,
is indicated to the right of the tree.
(b) and (c) Database search ROC
plots show the results from a
homology search over Swiss-Prot,
and compare the effectiveness of
the widely used Pfam profiles
versus the EPs. (b) For the AARS
subclass IA, Pfam outperforms the
EP based only on the structure
representatives, but a complete EP
of ten proteins, including the struc-
ture-based EP supplemented with
four additional sequences, outper-
forms the Pfam profile composed of

20 sequences. (c) Because the class I AARSs, including ten different enzymatic specificities, are sufficiently distantly
related, Pfam requires six separate subclass level profiles to describe the class I AARSs. A single database search using
our combined structure-sequence EP for the class I AARSs gives a result very close to that of the combined results of six
Pfam database searches. The six Pfam database searches find only three additional proteins not found by our single
profile search, and these are small protein fragments.
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versions of AspRS (tenth position in the order) and
L2 (12th position) after the archaeal versions
have already been represented (sixth and fourth
positions, respectively). Closely related species
versions of the major groups are added next, e.g.
additional archaeal structures of eIF5a which are
17th and 18th in the order, and lastly different
crystal structures of an identical, previously repre-
sented protein fill out the complete tree. Some
proteins appear to come out of order with respect to
the general trend described above. Note that after
the AspRS branch is initially represented by the
archaeal type (Da) at the sixth position in the
ordering, the bacterial version (Db) is added at
the tenth position even before IF1 (14th in the order)
has been added at all. Although IF1 does not have
the same function as its closest relative in the group,
namely eIF5a, IF1 has a closely related function to
eIF5a. In fact, IF1 is more closely related to eIF5a
than Da is to Db, even though Da and Db are of the
same function. There are other cases, such as this
one and, for example, the relationship between the
archaeal AspRS and AsnRS (see Figure 6), where
proteins of a different but related function are more
closely related than proteins of the same function
found in different species.
An economy of information from structure-based
evolutionary profiles

The same QR methodology can be applied to a
multiple sequence alignment. Instead of Cartesian
coordinates describing the protein structures in the
alignment matrix, A, protein sequences are
described by an orthogonal encoding, with each
amino acid type assigned to a unit vector in a 21
space (20 amino acid residues and one gap
dimension). This gives an alignment matrix, A,
of dimensions 21!malignment-length!nproteins. The
sequence and structure QR factorization algorithms
can be used in concert to provide profiles from
sequence and structure-based multiple alignments
of representative proteins that best span the
evolutionary space in both sequence and structure.
The complete details of the algorithm are beyond
the scope of the current study and will be presented
elsewhere.
Here, we provide an example of two combined

sequence-structure profiles, the first of which is of
the subclass IA tRNA synthetases, including
AARSs specific for valine, isoleucine, leucine and
methionine. This profile began with a seed struc-
tural alignment of the QR factorization based
representatives of the known structures giving six



Figure 11. The superposition is shown for the 11 NMR
structure models for Small protein B (SmpB), which plays
a crucial role in tagging incompletely translated proteins
in bacteria.67 The QR factorization identifies two major
conformationally distinct groups, one with the loop in a
horizontal position (cyan, first in QR order) and one set of
structures with the loop in a vertical position (purple,
second in QR order) with respect to the b-barrel. The
structure-based dendrogram also indicates the two major
conformational groups.
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representatives, Lb, Ib, Ie, Vb, Ma andMb as labeled
in Figure 10. Because LeuRS and IleRS display the
full canonical phylogenetic pattern, these groups
should each be represented by three sequences, one
from each of the primary domains-of-life, while
MetRS and ValRS, which display the basal canoni-
cal pattern, are best represented by only two
sequences, one bacterial and one archaeal. This
analysis indicates that four additional sequences are
required to complete the EP, representing Le, La, Ia
and Va. Supplemental sequences were added to the
LeuRS, IleRS and ValRS groups by computing a
sequence-based QR factorization on multiple
sequence alignments of the SWISS-PROT sequences
for each of these three groups separately. The
sequences of the structure representatives were
retained and the next sequence in the QR order, in
the cases of IleRS and ValRS, and the next two
sequences in the QR ordering of LeuRS were
retained as the four supplemental sequences. The
second profile encompasses the greater level of
diversity of the class I AARS family, including
synthetases specific for half of the standard amino
acid residues, for a review see the work done
earlier.33 The supplemental sequences for the class I
AARS profile were chosen in a procedure similar to
that outlined above for the subclass IA profile.
Three profiles from both groups were tested in a
homology detection search over the SWISS-PROT
database, one from the Pfam seed alignment, one
of QR factorization based representatives of the
known structures, and a structure-based alignment
supplemented with sequence representatives, see
Figure 10. Although others have recently presented
methods to combined sequence and structure-
based multiple alignments,15,58 our goal is to
provide combined non-redundant sequence-struc-
ture profiles, which we term evolutionary profiles
(EPs), that best span the evolutionary space in both
sequence and structure.

The subclass IA profile is named tRNA-synt_1 in
Pfam, and its composition is shown on the right of
the combined sequence-structure phylogeny of this
subclass in Figure 10. This composite phylogeny
depicts the distances between the QR factorization
based representatives of the available structures in
regions of more distant similarity; namely, in the
so-called “twilight zone” of sequence similarity
(less than 20% sequence identity). Above that level
of similarity, the tree depicts sequence distances in
relationships between orthologs of the same AARS
enzymatic specificity. When using the HMMER
program59 for database searching, the bias in the
Pfam profiles can be ameliorated with sequence
weighting options, but sequence weighting cannot
account for missing data. In the Pfam profile of the
four AARS enzymatic specificities in the subclass
IA, three have phylodomain level representatives
missing, such as the lack of archaeal (La) or
eukaryotic (Le) representatives in the LeuRS
group. Weighting schemes cannot use the bacterial
representative to account for sequence motifs or
signatures that are idiosyncratic to the eukaryotic or
archaeal groups. Default options were used in the
HMMER database search.

An accepted test of the effectiveness of a profile is
to compute the specificity and sensitivity of the
profile in homology searches over large sequence
databases. Sensitivity, the number of true positives
(within the homologous group), is plotted versus the
specificity, the number of false positives (outside of
the homologous group) found in the database by
the profile, and is usually presented as a ROC
(receiver-operating characteristics) plot. In Figure
10, we provide results from a search over the
SWISS-PROT database60 using profiles from the
subclass IA and the full class I AARSs, where
increasingly specific and sensitive profiles find
more true positives before the search hits false
positives. In the case of the subclass IA group,
compared to the Pfam profile7 for the same group of
homologs, we observe improved sensitivity and
specificity with our evolutionary profile (EP) by
supplementing non-redundant structure-based
alignments with an appropriate number of repre-
sentative sequences. These additional sequences
represent major phyletic groups for which there is
no three-dimensional structure available. The per-
formance of such a combined profile is shown in
Figure 10(b). Most of the true positives that the
Pfam profile does not find before hitting false
positives are from the Le and Mb groups, two of
the major phyletic groups that are not represented
in the Pfam profile.

The class I AARSs can only be properly aligned as
a single group with the aid of structural alignments,
and this profile can be used to find all class I AARS
homologs in a sequence database or in unannotated
genomes in a single search. Pfam provides profiles
at the level of the sublcasses for the class I AARSs,
so in order to find all class I AARSs with the Pfam
profiles, six database searches are required. We
tested the search accuracy of the EP for the class I
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AARSs, against that of the combined results of six
database searches with the Pfam profiles. In
comparison with the EPs, the Pfam profiles find
three additional class I AARS sequence fragments,
but at six times the computational expense, see
Figure 10(c). A single evolutionarily well-balanced
profile of combined sequence-structure multiple
alignments performs comparably to a collection of
profiles of the more closely related subclasses.
Interestingly, the EPs perform better than or
comparably with the Pfam profiles, at least in
these initial results, but do so with many fewer
sequences. Finally, note that the representatives of
the EPs were chosen based on the results from the
combined sequence-structure QR factorization pro-
cedure, without adding additional sequences in an
iterative attempt to improve the database search
accuracy.
Further applications of the QR algorithm
Representative structures of an NMR ensemble

In addition to the utility of the QR factorization
for choosing representatives in structure or
sequence which best span an evolutionary space,
the algorithm can also be used to generate a
representative set of structures which best span a
conformational space, such as that explored in an
molecular dynamics simulation or from a number
of conformers in an NMR ensemble. Sutcliffe
investigated the usefulness of representing an
NMR structure ensemble by a single structure,
either a minimized average structure or a single
most representative structure, and the study con-
cluded that it is often best to study the ensemble as a
whole.61 The result from the QR factorization
presented here, see Figure 11, indicates that NMR
ensembles can be adequately represented, not by
a single structure, but by some small number or
subset of representative structures which well span
the conformational space. Such subsets should be
considered when generating an average structure
or set of averaged structures for use in a protein
structure prediction application or analysis of the
conformations observed in an NMR structure
determination experiment. The essential dynamics
method of Amadei and colleagues62 uses a diag-
onalization of a covariance matrix of atomic
fluctuations to separate large-scale conformational
changes from small fluctuations. The method is
similar in spirit to the QR factorization when
applied to NMR structures or MD trajectories, but
it is not clearly generalizable to treat the presence of
gaps in multiple structural alignments as in the
evolutionary applications mentioned above. The
advantage of the QR algorithm, therefore, is that it is
a single technology that is able to deal with
conformational or evolutionary changes or both
simultaneously.
Incorporating the QR factorization in other
bioinformatics applications

The multidimensional QR factorization method
described here can also be applied to previously
established bioinformatic algorithms. Below, we
briefly discuss how the QR algorithm could be used
to enhance two recently developed bioinformatics
algorithms, the evolutionary trace and the 3dHMM
methods. Cohen and colleagues recognized that
there are different patterns of sequence conserva-
tion at different levels of sequence diversity. While
molecules that have the same function in different
species should show species-specific differences,
two homologous proteins with different functions
should show conservation patterns that reflect the
changes in, say, active site residues. The evolution-
ary trace method63 was designed to automatically
categorize such differences by dividing a phyloge-
netic tree into some number of evolutionary stages,
according to functional classifications or a set of
evenly spaced sequence identity thresholds. At the
border between each evolutionary stage, consensus
sequences, i.e. patterns of sequence conservation,
are compiled. As the number and size of the
partitions of the phylogenetic tree are arbitrarily
chosen, this method could be enhanced by selecting
the partitions directly from the QR ordering, i.e.
adding a new sequence from the order adds a
representative of the next partition or evolutionary
stage. The number of partitions could then simply
be defined by a single upper limit sequence or
structural similarity threshold.
Gerstein and co-workers recently developed a

hidden Markov model (HMM) method to compute
a profile for a multiple alignment of protein
structures, 3dHMM.64 In their method, each aligned
position is represented by a gaussian function,
centered at the mean position of the aligned Ca

atoms, and gaps are treated as insertion and
deletion states, as in typical sequence-based
HMMs. The principal application of 3dHMM is to
search structure databases for structural relatives to
the group of proteins described by the structure-
based profile. The QR factorization could be applied
to the set of structures used to train the HMM, thus
giving an unbiased model for database searching.
Conclusion

We have presented here a method to obtain
evolutionary profiles (EPs) from the multidimen-
sional QR factorization of structural alignments. We
have described how the QR factorization can be
used to select a spanning set of representatives in a
structure, sequence or combined sequence-struc-
ture profile and also in an NMR or molecular
dynamics conformational ensemble. In addition, by
applying a structural similarity measure which
accounts for the presence of gaps, an interesting
congruence between sequence and structure-based
phylogenies results in the AspRS–AsnRS group.
While there is widespread agreement that there is
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a need for representative and non-redundant sets
of protein sequences and structures, we assert that
evolution should be the basis or organizational
framework for this type of bioinformatic analysis
and, perhaps, for bioinformatics in general. By
removal of biasing from the “data deluge” resulting
from genome sequencing and structural genomics
projects, the EPs offer not only an economy of
information but promise to improve the perform-
ance of structure and sequence profiles used in
database searches. As the EPs are multiple align-
ments of evolutionarily related groups, they also
allow researchers to investigate evolutionary ques-
tions. Often structures needed to obtain distant
evolutionary profiles are missing, and while we
have illustrated how appropriately selected
sequences can be incorporated to complete the EP,
we hope that the incomplete profiles will motivate
the structure determination of the missing proteins
that represent major evolutionary transitions.

On a final note, this work has been carried out at
the domain level, which is the appropriate length
scale because the protein domain is the largest
common evolutionarily shared segment between
the proteins we investigated. As we look into more
recent evolutionary events we should move to the
multi-domain level, while the most distant evolu-
tionary events, yet to be probed, may be better
addressed on a length scale smaller than even that
of the single domain.
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