
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group
Computational Biophysics Workshop

Shape-Based Coarse
Graining

Anton Arkhipov

Ying Yin

Danielle Chandler

Jen Hsin

Kirby Vandivort

A current version of this tutorial is available at

http://www.ks.uiuc.edu/Training/Tutorials/

http://www.ks.uiuc.edu/Training/Tutorials/

CONTENTS 2

Contents

1 Coarse-graining an atomic structure 8
1.1 Coarse-graining of a BAR domain monomer. 9
1.2 Mapping the coarse-grained monomer structure onto a different

copy of the monomer. 13

2 Parameterizing SBCG force field 16
2.1 Non-bonded interaction parameters. 16
2.2 Obtaining initial guess for bonded interaction parameters from

all-atom simulations. 19
2.3 Iterative refinement of bonded interaction parameters. 21

3 Building a shape-based coarse-grained membrane 27
3.1 Generate a patch of coarse-grained membrane. 28
3.2 Add charged lipids to the membrane patch. 29

4 Combining proteins and membrane for a simulation 30

5 Running a coarse-grained simulation 32
5.1 Preparing a configuration file. 32
5.2 Simulation outputs. 34

CONTENTS 3

Introduction

In this session, we will learn about coarse-grained (CG) molecular dynamics
(MD) simulations. Coarse-graining refers to making a simplified model of a
molecular system, e.g., reducing groups of atoms to point masses (“beads”). As
a result, systems too large and processes too slow for all-atom MD simulations
with current computing resources still can be studied using CG models. Of
course, this comes at a price of reduced accuracy.

This tutorial presents one CG method that has been quite successful in a
number of applications, termed shape-based coarse-graining (SBCG; see Arkhipov
et al., Structure, 14:1767, 2006; Biophys. J., 95:2806, 2008). In this method,
a small number of CG beads are used to represent overall shapes of proteins
or lipid membranes, with typical ratio of 200-500 atoms per bead. The tuto-
rial introduces tools for SBCG modeling that are provided in VMD as plugins
(http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools/).

Figure 1: Atomic structure of a BAR domain dimer. Left, charged residues are shown in blue
(positive) and red (negative). Right, a BAR domain bending negatively charged membrane
in an all-atom MD simulation.

For exercises, we will use proteins called BAR domains (Peter et al., Science,
303:495, 2004). BAR domains are α-helical bundles capable of forming homod-
imers, featuring a high density of positively charged residues on their curved
surface. Accordingly, they can bind to and bend negatively charged membrane,
which makes them key players in membrane remodeling processes in cells. In ex-
periments, multiple BAR domains are often observed acting in concert, forming
regular lattices on the membrane surface, which enhances membrane bending.
Due to the large size of a lattice involving multiple BAR domains, and long
time scales needed to observe membrane bending, all-atom MD falls short of
revealing many important characteristics of the process, and one has to employ
CG approaches, such as SBCG (Arkhipov et al., Biophys. J., 95:2806, 2008).

Since CG approaches employ greatly simplified models of molecules, one
should be very careful in applying them. The SBCG method represents shapes
of large molecules consisting of thousands of atoms with a small number of
beads, typically 10 to 50. Furthermore, the arrangement of the beads is tuned
to reproduce the shape of the molecule, such as that available from an X-ray
crystal structure; assemblies of beads representing individual molecules behave

http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools/

CONTENTS 4

as near-rigid, although elastic, bodies. Thus, processes where significant changes
in structures of individual molecules may happen, or where fine atomic-level
interactions are important, are not good candidates for SBCG studies.

The SBCG model has been designed to permit handling of SBCG structures
and simulations in the same way as it is done for all-atom structures and MD
simulations. That is, operating in an SBCG representation, one uses VMD
and NAMD without any changes in comparison with the all-atom case, and
works with the same file types as for all-atom modeling, such as PSF and PDB
for structures, and topology, parameter, and configuration files for simulations
(see VMD and NAMD tutorials, http://www.ks.uiuc.edu/Training/Tutorials/).
However, these SBCG PSF, PDB, parameter and topology files first need to be
created according to the all-atom model that one desires to coarse-grain. In this
tutorial, we will learn how to use the SBCG plugins of VMD to build such files,
and to refine parameters of the SBCG models for subsequent simulations.

One should keep in mind that with the sizes of systems that are typically
addressed using SBCG models, limitations of PDB/PSF file formats (how large
a number the file can hold in the coordinate, mass, and charge fields) may
easily become an issue. For example, the coordinate field in PDB files only
allows values less then 10, 000 Å, or 1µm. If a larger system is considered, in
cases when PSF/PDB files are necessary one should scale (diminish) coordinates
to reduce the system size, while for actual NAMD simulations or for work with
VMD one should use binary file formats, such as those of .coor or .dcd formats,
which do not have size limitations. In this tutorial, we will not have such a
problem as we consider a relatively small system for the exercises.

http://www.ks.uiuc.edu/Training/Tutorials/

CONTENTS 5

Required Programs

The following programs are required for this tutorial:

• VMD: The tutorial assumes that you already have a working knowledge
of VMD, which is available at http://www.ks.uiuc.edu/Research/vmd/
(for all platforms). The VMD tutorial is available at
http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/

• NAMD: In order to perform simulations with the CG model in this tu-
torial, NAMD should be correctly installed on your computer. For instal-
lation instructions, please refer to the NAMD Users’ Guide. The NAMD
tutorial is available in both Unix/MacOSX and Windows versions:
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/

• Plotting Program: Under Unix/MacOSX, one can use program xm-
grace, available at http://plasma-gate.weizmann.ac.il/Grace/ (Free down-
load), or gnuplot, http://www.gnuplot.info/ (Free download). Under Win-
dows, one can use Microsoft Excel, available at
http://office.microsoft.com/en-us/FX010858001033.aspx (Purchase required),
or scilab, available at http://www.scilab.org/ (Free download). Other
useful graphing programs, with versions available for both Unix/MacOSX
and Windows, are Mathematica, http://www.wolfram.com/ (Purchase re-
quired) and Matlab, http://www.mathworks.com/ (Purchase required).

Most of the exercises in the tutorial are performed using Shape-Based Coarse-
Graining (SBCG) Tools in VMD. The Tools are implemented as a set of plugins
available with their Graphical User Interfaces (GUIs) through VMD menu:

Extensions → Modeling → CG Builder

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/
http://www.ks.uiuc.edu/Research/namd/current/ug/
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-win-html/
http://plasma-gate.weizmann.ac.il/Grace/
http://www.gnuplot.info/
http://office.microsoft.com/en-us/FX010858001033.aspx
http://www.scilab.org/
http://www.wolfram.com
http://www.mathworks.com/

CONTENTS 6

Figure 2: Main Graphical User Interface for the CG Builder Tools in VMD. Available are
several tools for two CG models, one of which is the SBCG model addressed in this tutorial.

CONTENTS 7

Getting Started

If you are performing this tutorial at a Computational Biophysics Workshop
offered by the Theoretical and Computational Biophysics Group, a copy of the
files needed for this tutorial have been set up for you. They can be found in
your home directory, under the path ∼/Workshop/sbcg-tutorial/files/.

• Unix/Mac OS X Users: In a Terminal window type:

cd <path to the directory sbcg-tutorial/files/ >

You can list the content of this directory by using the command ls.

• Windows Users: Navigate to the sbcg-tutorial → files directory
using Windows Explorer.

If you downloaded the tutorial from the web you will also need to download
the appropriate files, unzip them, and place them in a directory of your choosing.
You should then navigate to that directory in a similar manner as described
directly above. The files for this tutorial are available at
http://www.ks.uiuc.edu/Training/Tutorials/

In the figure below, you can see the structure of the directory containing
files for each of the tutorial exercises.

Figure 3: Directory Structure for tutorial exercises. Sample output for each exercise is
provided in an “example-output” subdirectory within each folder. When possible, exemplary
output files from one exercise are used as exemplary input files for the next exercise; they can
be found in “example-input” subdirectories.

http://www.ks.uiuc.edu/Training/Tutorials/

1 COARSE-GRAINING AN ATOMIC STRUCTURE 8

1 Coarse-graining an atomic structure

We will work with the amphiphysin BAR domain dimer from Drosophila (Peter
et al., Science, 303:495, 2004). It is a homodimer, i.e., it consists of two identical
monomers. It is natural to employ exactly the same SBCG model for each
monomer, which can be done by coarse-graining one monomer first, and then
copying the resulting SBCG model and aligning it with the orientation and
position of the second monomer. In this section, we will learn how to use SBCG
VMD plugins for both steps.

Figure 4: BAR domain homodimer. The two monomers are shown in green and purple. The
all-atom structure is shown on the left, and an example of a SBCG structure is shown on the
right. Both all-atom and SBCG structures are shown from the top and from the side.

Mapping an SBCG structure created for one protein onto other copies of that
protein is a common task in coarse-graining of large macromolecular assemblies,
which often contain multiple copies of one protein. A good example are viral
capsids, the protein shells enclosing genetic material of viruses. Most known
viral capsids are highly symmetric (e.g., icosahedral) structures, composed of
multiple copies of a few proteins (see, e.g., Arkhipov et al., Structure, 14:1767,
2006).

Navigate to the directory 1 build cg model/. You can examine the whole
dimer in VMD (files dimer.pdb and dimer.psf in 1 build cg model/). One
monomer is designated as segname P1, and the other as segname P2. You can
save each monomer from VMD to separate PDB files using the writepdb com-
mand for atom selections segname P1 or segname P2, and a PSF using the
writepsf command (one PSF file will work for either monomer, since they
are identical except for the atoms’ positions). Such PDB and PSF are already
created: see monomer.psf, monomer.pdb and monomer-2.pdb in the directory
1 build cg model/. Note that both dimer.psf and monomer.psf contain in-

1 COARSE-GRAINING AN ATOMIC STRUCTURE 9

formation about individual atoms and bonds between them, but not about
angles, since they were created using the VMD command writepsf (not to be
confused with the psfgen command writepsf), and VMD does not store infor-
mation about angles, dihedrals, etc. Because of that, these PSF files cannot be
used for MD simulations, but they are sufficient for SBCG conversions.

1.1 Coarse-graining of a BAR domain monomer.

Let us now coarse-grain a BAR domain monomer.

1. Start VMD and load the all-atom monomer structure (load monomer.psf
and monomer.pdb into the same molecule).

2. Open the CG Builder in VMD (Extensions → Modeling → CG Builder),
and choose the option “Create SBCG Model”. This will bring you to the SBCG
Builder GUI.

3. Make sure that in the GUI you choose “Molecule”, and not “Electron
Density Map”. The latter allows one to construct a SBCG model from a den-
sity map in CITUS or .dx format (such maps can be obtained from cryo-electron
microscopy).

4. Choose the monomer from the dropbox for “Molecule”.

5. We do not need to specify the mass of the molecule, since VMD obtains that
information from the PSF file you loaded. Without a PSF, VMD makes a good
guess of atomic masses based on atom names in the PDB file, but quality of
the guess can be compromised if the PDB file contains non-conventional atom
names. Thus, it is usually better to specify the mass of the molecule if the PSF
is not available, and especially in case you are working with a density map.

6. Set “Number of CG Beads” to 25. This corresponds to approximately 150
atoms per CG bead. Commonly used ratios in SBCG applications are 150 to
500 atoms per CG bead.

1 COARSE-GRAINING AN ATOMIC STRUCTURE 10

Figure 5: SBCG Builder GUI.

1 COARSE-GRAINING AN ATOMIC STRUCTURE 11

Learning parameters in the SBCG Builder. In SBCG models, CG
beads are distributed in space occupied by the all-atom protein using
a self-organizing neural network. A few parameters, such as “eps”
and “Lambda” are used by the network to go through iterations
of the learning algorithm (see Arkhipov et al., Structure, 14:1767,
2006). The SBCG Builder will adjust values of those parameters
automatically for optimal convergence, depending on the number
of CG beads requested by the user, but the user can also modify
them, if desired. The learning algorithm is stochastic, i.e.,
each time it is used to create a CG model of the same
all-atom structure, the result will be slightly different.
However, the overall shape of the protein is maintained each time.

7. Once CG bead positions are assigned, the algorithm connects some of them
by bonds. By default, a bond between two beads is established if the parts
of the protein represented by each bead are directly connected by the protein
backbone (“Determine Bonds From All Atom”). Toggle the other switch on,
Provide Bond Cutoff, and set the cutoff value to 18. Now, a bond between
two beads will be established if the beads are within 18 Å of one another. Which
of the two options to choose depends on the application. Choosing connectivity
according to the protein backbone is more realistic, but for the exercise with
BAR domains this choice does not matter much for the end result.

8. Change the “CG Residue Name” to “BAR”, and “CG Name Prefix” to “A”.
Names of the CG beads will be “A1”, “A2”, “A3”, and so on, up to “A25”.

9. Hit the “Build Coarse Grain Model” button. Completion of the SBCG
algorithm will take a few moments.

10. The main result of running the algorithm is the production of output files
that are written on the hard drive, namely the SBCG topology, parameter, and
PDB files, and an all-atom reference PDB file. If you want to have specific
names for those files, they can be changed in the SBCG Builder GUI before
hitting “Build Coarse Grain Model” button. The output PDB file containing
the newly constructed SBCG model is automatically loaded in VMD as a new
molecule, overlapped with the original all-atom model.

1 COARSE-GRAINING AN ATOMIC STRUCTURE 12

SBCG Builder in the text mode. All SBCG tools in VMD can also
be used in the text mode, which is very convenient for employing
these tools in scripting. For a single-time use, source the tools
in the VMD Tk Console. First, make sure that the SBCG tools
package is loaded, by typing in the Tk Console

> package require cgtools

The command to run SBCG Builder has the following syn-
tax:

> ::cgnetworking::networkCGMolecule statusProc

inMolId cgResName cgPrefix outPDB outAllAtom outTop

outParm numBeads numSteps epsInit epsFinal lambdaInit

lambdaFinal bondCutMethod bondCutDist massValue

Here, statusProc tells the program where to write the com-
ments, e.g., set it to puts if you want all comments printed
out in the Tk Console. The other variables mostly correspond
to the fields in the SBCG Builder GUI that we have just used.
The variable inMolId tells the SBCG Builder which molecule
from those loaded in VMD to use for the coarse-graining;
bondCutMethod should be set 0 to use backbone connectivity,
or 1 to use the cutoff distance for assigning bonds; massValue

defines the total mass of the molecule, and if it is negative, the
masses of atoms are used directly from VMD. The exemplary
usage, corresponding to what we just did with the GUI, is as follows:

> ::cgnetworking::networkCGMolecule puts 0 BAR

A cg monomer.pdb aa ref monomer.pdb cg monomer.top

cg monomer.par 25 5000 0.3 0.05 5.0 0.01 1 18.0 -1

If you want to suppress the log messages, define an empty
procedure, e.g.,

> proc ps logText

and use “ps” instead of “puts”.

11. Sometimes, the SBCG algorithm does not converge well during the allo-
cated learning steps, or the obtained CG model does not look as you like. One
common problem may be that the algorithm did not assign positions to all the
beads, in which case one or more beads are left “empty” (a warning will appear
in the bottom part of the SBCG Builder GUI if this is the case). The simplest
solution is just to re-run the SBCG Builder, which usually solves such problems
immediately.

12. The SBCG output PDB and topology files determine the structure of the
coarse-grained protein model. To obtain the complete structure for display in

1 COARSE-GRAINING AN ATOMIC STRUCTURE 13

VMD, or for subsequent simulations, we need to make a PSF file. This can be
done the same way as commonly achieved for all-atom files, namely, using a
PSFgen script or employing the AutoPSF VMD plugin. An example PSFgen
script is provided: build.tcl. Just run the following command in the VMD
Tk Console: source build.tcl. Note that the script uses the SBCG PDB and
topology files you have just created, cg monomer.pdb and cg monomer.top; if
you did not place these files in the directory where build.tcl is located, you
will need to edit build.tcl and specify correct paths to the files. If you choose
to employ the AutoPSF plugin (Extensions → Modeling → Automatic PSF
Builder), remember to delete the default topology file from the list of topolo-
gies in the plugin, and add the CG topology file that you created.

SBCG Builder output files. Sample SBCG Builder output files are pro-
vided in the folder 1 build cg model/example-output, including also the out-
put files from running the PSFgen script build.tcl. Note that all these output
files are generally going to be somewhat different from those you create, due to
the probabilistic nature of the SBCG algorithm. The SBCG parameter file cre-
ated by the SBCG Builder is rather a template for the parameter file and needs
modification before being used for simulations. The bond lengths, equilibrium
angles, and Lennard-Jones radii provided for CG beads in this file are based
on a quite reasonable estimate, but the energy constants for bonds, angles, and
non-bonded interactions, are set uniformly as constants. For serious CG appli-
cations, the latter values should be refined, which is a relatively time-consuming
procedure that may involve all-atom simulations used for input, and multiple
iterations of CG simulations. We will learn basics of this procedure later in the
tutorial.

Please also note that if you are creating a CG structure using a density map
as an input, there is usually much less information available to parameterize the
CG force field than in the case of an all-atom structure used as an input. For
a density map, one usually does not know, for example, the charge distribution
over the map. One would have to guess and tune most of the CG force-filed
parameters based on some assumptions about, e.g., the structure stiffness, which
is usually unknown. In the case of an all-atom structure, many characteristics,
e.g., charge distribution, can be obtained easily. Such characteristics as the
structure stiffness can be estimated using all-atom simulations and employed to
parameterize the SBCG force field, as shown in the next section.

1.2 Mapping the coarse-grained monomer structure onto
a different copy of the monomer.

We will now create the CG model for the second BAR domain monomer, which
is structurally identical to the CG model of the first monomer, by mapping the
first model onto the position and orientation of the second monomer.

1 COARSE-GRAINING AN ATOMIC STRUCTURE 14

1. In the CG Builder window, go back from the SBCG Builder GUI to the main
CG menu, by hitting the button “Back To Previous Screen”.

2. Choose the option “Map A Previously Generated SBCG Model To An All-Atom
Model”, and hit the button Next->.

3. The Mapping GUI requires you to choose the original CG model, refer-
ence all-atom structure, and the all-atom model to map onto from the list
of molecules currently loaded into VMD. For the Coarse-Grained Molecule,
choose cg monomer.pdb that you have just created (you can load it to VMD or
use the one that has been already loaded automatically after running the SBCG
Builder).

Figure 6: Mapping the SBCG structure of one BAR domain monomer onto the position and
orientation of the other monomer. The all-atom structure of the second monomer is shown as
a transparent purple surface.

4. For the Reference Molecule, load into VMD and choose in the Mapping
GUI aa ref monomer.pdb, which was created by the SBCG Builder. This so-
called reference all-atom PDB file is very important for mapping and for fine-
tuning the SBCG parameter file (see next section). The reference PDB file
contains the same all-atom structure that was used as an input for the SBCG
Builder, but its beta-field is filled with numbers that show for each atom, which
CG bead it belongs to. Thus, the reference PDB file provides the information
about direct mapping of atoms to CG beads for the specific instance of the
coarse-graining; a reference all-atom PDB file is always created by the SBCG
Builder when a new SBCG model is constructed.

5. For the All-Atom Molecule To Map Onto, load into VMD and choose in the
Mapping GUI monomer-2.pdb, the all-atom PDB file for the second monomer.

6. Set the Output PDB Filename to cg monomer-2.pdb.

7. Hit the Map Model button. The program will produce the file cg monomer-2.pdb,
which will be automatically loaded into VMD. You can create a PSF/PDB pair

1 COARSE-GRAINING AN ATOMIC STRUCTURE 15

for this second monomer’s CG model in the same way as was done for the first
monomer. Use the same CG topology file. If you want to use the PSFgen script
build.tcl, do not forget to change cg monomer.pdb to cg monomer-2.pdb
there, and call output files differently, e.g., cg monomer-2-psfgen.psf and
cg monomer-2-psfgen.pdb.

SBCG Mapping in the text mode. The mapping command has
the following syntax:

> ::cgtools::mapCGMolecule statusProc AAId CGId refId

outPDB

(see explanation for the SBCG Builder in the text mode,
above). AAId, CGId, and refId are the IDs of the molecules loaded
in VMD, for the all-atom structure that we want to map the CG
structure to, the CG structure, and the all-atom reference file,
respectively. For the mapping example above, we would use the
following line:

> ::cgtools::mapCGMolecule puts 2 1 3 cg monomer-2.pdb

2 PARAMETERIZING SBCG FORCE FIELD 16

2 Parameterizing SBCG force field

As we mentioned above, the original coarse-graining procedure creates an SBCG
parameter file, but the energies associated with various interactions are assigned
uniformly and arbitrarily. Refining these interaction parameters to the extent
where they realistically reproduce general properties of the original all-atom
system is the most important, and perhaps the most difficult, part of the coarse-
graining. In this section, we will learn basic techniques for refining the CG
parameters, using information about the original static all-atom structure, or
an MD simulation of this structure, as an input.

Navigate to the directory 2 parameters/. Most files that serve as input for
this section have been prepared at the steps described in the previous section
(check the contents of the folder example-input). Remember that the sample
CG PDB, PSF, topology and parameter files provided in example-input will
not be compatible with your own analogous files, because each run of the SBCG
Builder contains stochastic elements, so that the final distribution of CG beads
in the SBCG model is never exactly the same.

2.1 Non-bonded interaction parameters.

In the SBCG model, non-bonded interactions are represented by the Coulomb
and 6-12 Lennard-Jones (LJ) potentials, just as it is commonly done for all-
atom simulations. Since each CG bead inherits the mass and charge of the
group of atoms it represents, the charges are already assigned, and we do not
need to worry about Coulomb interactions. The LJ interactions appear to be a
more complex issue. In early applications of the SBCG model, the interaction
strength of the LJ potential was set to a uniform value (see Arkhipov et al.,
Structure, 14:1767, 2006; Biophys. J., 91:4589, 2006). Later (Arkhipov et al.,
Biophys. J., 95:2806, 2008), the procedure was extended to introduce more
specificity for each CG bead. In NAMD, the LJ energy constant εij for the pair
of beads i and j is computed as εij = √

εiεj , where εi and εj are the strengths
for each bead. In the SBCG model, the value of εi is assigned for each bead i
based on the hydrophobic solvent accessible surface area (SASA) for the protein
domain represented by the bead,

εi = εmax

(
SASAhphob

i

SASAtot
i

)2

, (1)

where SASAhphob
i and SASAtot

i are the hydrophobic and total SASA of the
domain i; εmax is the user-defined constant. SASA for an all-atom domain is
computed in the context of the whole protein, i.e., atoms that are at the surface
between two domains, but are buried inside the protein, do not contribute to
the computed value. The idea behind using the SASA to determine εi is to
let hydrophobic beads aggregate and hydrophilic beads dissolve in the solvent,
which is only implicitly present in SBCG simulations. For a pair of completely
hydrophilic beads, εij = 0, in which case the two beads are free to dissociate

2 PARAMETERIZING SBCG FORCE FIELD 17

unless they are bound to other particles; εij for two completely hydrophobic
beads is εmax, which should be tuned to represent hydrophobic aggregation
realistically. For 150 atoms per CG bead, an appropriate value is approximately
εmax = 10 kcal/mol.

The formula and parameter values used here (such as εmax = 10 kcal/mol)
were found to be optimal for certain SBCG applications (Arkhipov et al., Bio-
phys. J., 95:2806, 2008). For SBCG applications to significantly different sys-
tems, one may need to modify the formula or parameters, or both, which can
be done by editing the plugin scripts that are delivered together with VMD.

Figure 7: GUI for assigning parameters for non-bonded (LJ) interactions for the SBCG
model.

Assigning these parameters is easily done with another GUI in the VMD CG
tools.

1. Start VMD if you have closed it, and load the reference all-atom monomer
PDB aa ref monomer.pdb.

2. Start the SBCG LJ GUI in VMD: Extensions → Modeling → CG Builder
→ Assign Lennard-Jones Params For CG Model From All-Atom.

3. In the field “Original CG Param File”, provide the path to the CG pa-
rameter file, cg monomer.par, that was created when you ran SBCG Builder.
The easiest way is to copy this file directly in the folder you are working in,
2 parameters/. Then, you can just type “cg monomer.par” in the correspond-
ing field in the GUI (make sure that VMD’s working directory is 2 parameters/
- you can check it by using the command “pwd” in the VMD’s Tk Console, and
if necessary navigate to the right directory using command “cd”). Otherwise,

2 PARAMETERIZING SBCG FORCE FIELD 18

provide the full path in the GUI’s field.

4. For “All Atom Structure”, choose the molecule aa ref monomer.pdb.

5. “Max energy for LJ well depth” is the aforementioned εmax; set it to
10 kcal/mol.

6. The LJ radius σij for the interaction between beads i and j is obtained in
NAMD by default as σij = (σi + σj)/2, where σi and σj are radii associated
with each atom. In SBCG model, each σi is obtained as a radius of gyration of
the groups of atoms represented by the CG bead, increased by a constant value
∆σ, which accounts for the fact that each atom has a radius (typically, 1-2 Å).
This value is chosen by the user in the GUI field “Addition to LJ radius”. Set
∆σ = 1 Å.

7. Choose the Output Parameter filename” to be cg monomer updated LJ.par
and hit the “Assign Parameters” button.

8. Compare entries for non-bonded interactions in the originally produced pa-
rameter file cg monomer.par with those in the new file, cg monomer updated LJ.par.
The LJ radii σi are very similar between the two files, because the original SBCG
Builder algorithm uses almost the same procedure as we just employed to assign
these values (∆σ = 1 Å in both cases). However, LJ energies in cg monomer.par
are set uniformly to 4 kcal/mol by the SBCG Builder, and now they are changed
significantly in the updated file, accounting for the choice εmax = 10 kcal/mol
and for the specificity of each CG bead.

Assigning LJ Parameters in the text mode. The syntax for this
command is

> ::cgtools::sasa LJ networking statusProc par CG

pdbrefID f out ELJ RLJ

For the example that we have just considered, we would
need to run this command using the following values:

> ::cgtools::sasa LJ networking 0 cg monomer.par 0

cg monomer updated LJ.par 10.0 1.0

Make sure that you are using the correct VMD molecule ID
for the all-atom reference file!

2 PARAMETERIZING SBCG FORCE FIELD 19

2.2 Obtaining initial guess for bonded interaction param-
eters from all-atom simulations.

The terms for bonded interactions in the SBCG method are described by po-
tentials Vbond(r) = Kb(L−L0)2 and Va(θ) = Ka(θ− θ0)2 for bond length L and
angle θ, where Kb, L0,Ka, and θ0 are the force-field parameters. The procedure
for extracting the values for these parameters from an all-atom simulation is
based on the concept of the so-called Boltzmann inversion: for each variable x
(such as i-th bond length Li), one obtains the distribution ρ(x) from the all-
atom simulation, and uses the Boltzmann relation ρ(x) = ρ0 exp [−V (x)/kBT]
to obtain V (x). This procedure can be illustrated by the simple example of a
one-dimensional harmonic oscillator, with a particle moving along the x coor-
dinate in the potential V (x) = f(x − x0)2 (note that there is no 1/2 factor,
according to the CHARMM force-field notation). With the system in equilib-
rium at temperature T , the average position 〈x〉 is equal to x0, and the root
mean square deviation of x (RMSD) is given by 〈x2〉 − 〈x〉2 = kBT/(2f) (kB is
the Boltzmann constant). Using an MD simulation, one can compute 〈x〉 and
the RMSD, thus obtaining x0 and f ; note that in this case it is not necessary
to compute complete ρ(x). These formulas are used in the SBCG method to
obtain an initial guess for Kb, L0,Ka, and θ0.

Figure 8: Extracting bonds and angles for the CG model from an all-atom simulation. The
GUI is shown on the left. An example of analyzing a CG bond is shown on the right. L is
the distance between the centers of mass of all-atom domains (blue and red) that correspond
to the two CG beads being analyzed (green).

The procedure consists of computing positions of centers of mass for each
all-atom domain that is represented by one CG bead, at each time frame from
the all-atom trajectory. Then, for each pair of beads that forms a bond, or triple
of beads that form an angle, the distance L or angle θ between the respective
centers of mass is computed and averaged over all time frames; RMSDs are also
calculated.

2 PARAMETERIZING SBCG FORCE FIELD 20

To obtain the initial guess for the bonded CG parameters, we need to per-
form the following actions.

1. Start the SBCG Bonds GUI in VMD: Extensions → Modeling → CG
Builder → Extract Bond/Angle Params of CG Model from All-Atom Simulation.

2. In the GUI, provide the path to the CG PSF and PDB files, cg monomer-psfgen.psf
and cg monomer-psfgen.pdb. Those are the files that you created after coarse-
graining the BAR domain monomer. For convenience, you may want to copy
these files directly into the folder you are working in, 2 parameters/. Then,
you can just type, e.g., “cg monomer-psfgen.psf” in the respective field of
the GUI. If you want to do this, make sure that VMD’s working directory is
2 parameters/, as in the previous example. Otherwise, provide the full path in
the GUI’s field.

3. The all-atom trajectory is provided: 2 parameters/aa ref-monomer-noh.dcd.
Add this file name to the GUI’s field “AA DCD File”.

4. To save space, the all-atom trajectory contains only heavy protein atoms,
i.e., no hydrogen atoms. To match this with a reference PDB file, we need to
rid it of hydrogen atoms as well. This can be easily done in VMD by loading
the full reference all-atom PDB, aa ref monomer.pdb, which you created at the
first stage of the coarse-graining, and saving only non-hydrogen atoms (selection
“noh”) in a new PDB file (using either File → Save Coordinates or the Tk
Console command writepdb). Call this new file aa ref monomer-noh.pdb, and
add its name to the corresponding field in the GUI.

5. Set Simulation Temperature to 310K (this is the temperature at which
the all-atom simulation was run).

6. Set Output Parameter Filename, and filenames for the bond and an-
gle datafiles, to from-aa.par, from-aa-bonds.dat, and from-aa-angles.dat.
The latter two files are for analysis purposes only. They contain the same
parameters for bonds and angles that the output parameter file does, but in
addition they also contain the corresponding values of average L for each bond,
its RMSD, and the same for angles. All these values are conveniently organized
in columns, which makes it easy to visualize the values of interest using plotting
programs. This may become necessary for further refinement of the parameters
(see below).

7. Hit the Extract Parameters button. Since we have not provided a parame-
ter file as an input, the output file from-aa.par does not contain any other infor-
mation besides the parameters for bonds and angles. To rectify this, just append
the entries for the non-bonded parameters from the file cg monomer updated LJ.par
to from-aa.par.

2 PARAMETERIZING SBCG FORCE FIELD 21

Extracting Bond and Angle Parameters in the text mode. For
bond and angle parameters, one should run the following command
in the Tk console:

> ::cgnetworking::all ba statusProc psf CG pdb CG

pdb ref dcd ref T f out dat bond dat angle

For the example above, this becomes

> ::cgnetworking::all ba puts cg monomer-psfgen.psf

cg monomer-psfgen.pdb aa ref monomer-noh.pdb

aa ref monomer-noh.dcd 310.0 from-aa.par

from-aa-bonds.dat from-aa-angles.dat

2.3 Iterative refinement of bonded interaction parame-
ters.

The Boltzmann relation for a single variable x, which we used in the previous
step, holds only if x is an independent variable not affected by other potentials.
For a network of bonds, which is often the case for SBCG protein models, the
bond lengths and angles are not independent, and when parameters for each
of them are derived individually using Boltzmann inversion, the stiffness of the
structure may be overestimated. Therefore, the direct Boltzmann inversion can
be used only to obtain the initial values for force constants Kb and Ka, which
need to be further adjusted until the stiffness of the CG model becomes closer to
that of the all-atom model. In this section, we will learn an exemplary (and sim-
plified) procedure used to adjust Kb and Ka. For the equilibrium bond length
L0 and angle θ0, Boltzmann inversion usually provides a very good guess, so
that these parameters do not require any further modification.

1. Let us first run a SBCG simulation using the initial guess for bonds and
angles in the parameter file from-aa.par. This will be our iteration 1. We
will use NAMD for the simulation. Set up a folder iteration1, similar to that
found in 2 parameters/example-output/.

2. In your folder iteration1, create an empty folder output, and a folder
input; fill the latter one with the files that you created at previous steps:
cg monomer-psfgen.pdb, cg monomer-psfgen.psf, and from-aa.par. Copy
the NAMD configuration file iteration1.conf from 2 parameters/example-output/iteration1/
to your folder iteration1. Check the contents of the configuration file. You
will see that many settings are similar to those used for all-atom simulations,
but others are different. For example, the time step used is 100 fs, instead of 1 fs
commonly used for all-atom simulations. These parameters can be, in principle,
changed depending on what you want to simulate.

3. Now, use NAMD to run the simulation.

2 PARAMETERIZING SBCG FORCE FIELD 22

4. We will now use the SBCG Bonds GUI to analyze the SBCG simulation
trajectory and obtain RMSDs of bonds and angles, just the same way as we did
before for an all-atom trajectory. The SBCG Bonds GUI requires a reference
PDB file (see above), where the beta-values of atoms are assigned according to
the number of CG bead that the atom corresponds to. Here, the structure we an-
alyze is the same as the SBCG model. Thus, the beta-values for each CG bead in
the reference PDB file should be the same as the number of that bead. Note that
this number starts from 1, i.e., it is offset by one from the bead index in VMD,
which starts from 0. You can copy your CG PDB file cg monomer-psfgen.pdb
to create the reference PDB, cg monomer-beta.pdb; fill the beta fields in the
file using a text editor (see the example in the folder example-input/). Alter-
natively, you can use the simple script, example-input/beta.tcl, to do this
automatically.

5. Employ the SBCG Bonds GUI as you did before for an all-atom simulation.
Use cg monomer-psfgen.psf and cg monomer-psfgen.pdb for CG PSF and
PDB files. For the trajectory to analyze (“AA DCD File”), use the CG trajec-
tory that you just obtained from the simulation: iteration1/output/iteration1.dcd.
For the reference file, type the name of the just created CG reference PDB,
cg monomer-beta.pdb. Set Simulation Temperature to 310 K. Set Output
Parameter Filename, and filenames for the bond and angle datafiles, to iteration1/from-iter1.par,
iteration1/from-iter1-bonds.dat, and iteration1/from-iter1-angles.dat.
Hit the Extract Parameters button.

6. The extracted parameters are in the folder iteration1. We can ignore
the file from-iter1.par. Let us look at the files from-iter1-bonds.dat and
from-iter1-angles.dat, which contain columns of data obtained from the CG
simulation, in the following order. For the file from-iter1-bonds.dat: name
of bead 1, name of bead 2, average distance between the two beads, its RMSD,
and the bond spring constant obtained from the RMSD using Boltzmann inver-
sion (see above). For the file from-iter1-angles.dat: name of bead 1, name
of bead 2, name of bead 3, average angle between the three beads, its RMSD,
and the angle spring constant similarly obtained from the RMSD.

7. We can now compare these data with those obtained from the all-atom simu-
lation using a plotting program (e.g., compare iteration1/from-iter1-bonds.dat
with from-aa-bonds.dat). One can see that average bond lengths and angles,
which for CG simulation are mainly defined by L0 and θ0 in the CG parameter
file, are essentially the same in the all-atom and CG simulations. Thus, the
original assignment of L0 and θ0 is appropriate, and we do not need to tune
them further.

8. We can further compare the RMSDs of bonds and angles, which demonstrate
the structure flexibility. However, practically it is more convenient to compare
inverse RMSDs, which, in Boltzmann inversion procedure, are proportional to
Kb and Ka. Thus, we can compare the last columns of the *dat files for bonds

2 PARAMETERIZING SBCG FORCE FIELD 23

and angles obtained from the CG simulation with those from the all-atom simu-
lation. Note again the difference: what we compare is not the parameter values
used in the two simulations, but stiffnesses of bonds and angles observed in
those simulations.

Figure 9: Comparison of bond and angle strengths, Kb and Ka, obtained using Boltzmann
inversion from simulations with successively scaled parameter file entries. Since the Boltz-
mann procedure is used, the values of Kb and Ka are inversely proportional to the RMSDs
of corresponding bond lengths and angles, as observed in simulations. Thus, essentially, here
we compare stiffnesses of the structure in simulations with different parameters. Comparing
RMSDs directly is not as informative as comparing their inverses, or Kb and Ka. Left: bonds;
right: angles. Black circles: from all-atom simulation. Red squares: from SBCG, iteration 1.
Green diamonds: from SBCG, iteration 2. Blue triangles: from SBCG, iteration 3. The iter-
ation numbers correspond to the files provided in the folder 2 parameters/example-output/.

9. You will see that the protein structure is much stiffer in the SBCG simulation
than it was in the all-atom simulation (i.e., bond and angle RMSDs are smaller,
or, inverse RMSDs are higher). This is due to the strong interconnection be-
tween beads in the SBCG model, which makes the direct Boltzmann inversion
procedure not quite adequate, as mentioned above. To overcome this, we need
to decrease Kb and Ka in our parameter file. One can change these parameters
one-by-one, and run many CG simulations to find the set of values that gives the
right stiffness for every bond and angle; this is, however, very tedious, and, for
such coarse model as ours, is probably unnecessary. Below, we follow a simpler
approach, where Kb and Ka are scaled uniformly over all bonds and angles, to
match the structure stiffness roughly.

10. To scale Kb and Ka, we will use the Scaling GUI in the SBCG tool set (en-
titled “Scale Bond/Angle Spring Constants”). Note that this GUI can be used
for any CHARMM-style parameter file, not necessarily for CG only. Remem-
ber, the parameter file we want to scale is the one we used for the simulation
in iteration 1, i.e., the file from-aa.par. Do not make a mistake of scaling the
file iteration1/from-iter1.par; parameters in this file reflect the properties
of the CG model in iteration 1, while we are interested in reproducing the prop-

2 PARAMETERIZING SBCG FORCE FIELD 24

erties of the all-atom simulation.

Figure 10: GUI for scaling bonds and angles in a parameter file.

11. Set the Input Parameter File in the GUI to from-aa.par. Set scaling con-
stants, for example, to 0.3 for both Bond Spring Constant Scaling and Angle
Spring Constant Scaling.

12. The problem with the direct Boltzmann inversion is that it usually makes
the CG structure too stiff, i.e., bond and angle spring constants are too large.
However, we can see that for some of the spring constants that have relatively
small values, the results of the all-atom simulation and of the CG one in itera-
tion 1 agree quite well. It is, therefore, counterproductive to scale Kb and Ka

for such weak bonds and angles, since that would make them much weaker than
we want. Thus, we do not want to apply scaling to the bonds and angles for
which Kb and Ka are below certain threshold. This can be achieved by setting
the cutoff level for scaling in the GUI, for example, setting the Bond Spring
Constant Cutoff to 3.5 kcal/(mol Å2) and Angle Spring Constant Cutoff
to 170 kcal/(mol rad2). You should choose the actual values for scaling and
cutoffs according to the agreement between your CG and all-atom simulations.

13. Make a new folder, iteration2, for the new CG simulation. Add the
same files and subfolders into this folder as you did for iteration1. The only
difference is that we will need to replace the parameter file from-aa.par in
folder iteration2/input by the one with scaled Kb and Ka. In the GUI, set
Output Parameter File to iteration2/input/scaled1.par, and hit the Scale
Values button.

2 PARAMETERIZING SBCG FORCE FIELD 25

(You must again copy the LJ parameters into the new file.)
14. We can now run the new CG simulation in the folder iteration2. After
it is done, analyze the CG trajectory using the SBCG Bonds GUI, as in the
step 5 above (you can reuse the SBCG reference PDB file that you created ear-
lier). This procedure will give you the following files in the folder iteration2:
from-iter2.par, from-iter2-bonds.dat, and from-iter2-angles.dat. Plot
the data from these files and compare them with the data from the all-atom
simulation and from iteration 1. The bond and angles stiffness in interaction 2
should be closer to those observed in the all-atom simulation than the stiffness
from iteration 1.

15. The scaling steps should be repeated several times, possibly, separately for
bonds and angles. Usually, for the next iteration it is convenient to scale the
values from the previous iteration, e.g., scale values from the file from-aa.par to
obtain scaled1.par, then scale values from scaled1.par to obtain scaled2.par,
and so on.

16. The final stiffness of CG bonds and angles does not have to be exactly
the same as that from the all-atom simulation. If the average deviation is
±25 %, this already can be considered a reasonable agreement for such a coarse
model. In the example-output, we performed three iterations. In iteration 1,
the original file from-aa.par, with parameters obtained directly from the all-
atom simulation, was used. For iteration 2, the values in from-aa.par were
scaled as described in steps 11-12, to yield scaled1.par. For iteration 3,
the Bond Spring Constant Scaling was set to 1.0, Bond Spring Constant
Cutoff to 100.0 kcal/(mol Å2), Angle Spring Constant Scaling to 0.7, and
Angle Spring Constant Cutoff to 300 kcal/(mol rad2), i.e., bonds were not
scaled.

17. Now the SBCG protein structure is established and the protein force-field
is fully parameterized. We can run production SBCG simulations! Note that,
depending on the stiffness of the bonds and angles in the resulting model, the
time step for simulations can be larger or smaller. The time step of 100 fs, which
we used during the parameterization run, can be potentially increased, resulting
in faster simulations.

2 PARAMETERIZING SBCG FORCE FIELD 26

Scaling Bond and Angle Spring Constants in the text mode.
To scale bonds and angles, run the following command in the Tk
console:

> ::cgnetworking::scaleParameterConstants statusProc

bondScaleFactor bondCutoff angleScaleFactor

angleCutoff outParFilename

For the example of scaling considered above, namely, the
scaling after iteration 1, this becomes

> ::cgnetworking::scaleParameterConstants puts

cg monomer.par 0.3 3.5 0.3 170.0 scaled1.par

3 BUILDING A SHAPE-BASED COARSE-GRAINED MEMBRANE 27

3 Building a shape-based coarse-grained mem-
brane

A building block of the SBCG lipid model consists of two beads - a “head”
bead and a “tail” bead - connected by a harmonic bond. This is the simplest
representation that preserves the elongated shape of a real lipid molecule as
well as the separation of hydrophobic and hydrophilic parts. Even so, if we
were to represent a single all-atom lipid, which contains less than 150 atoms,
in this way, the resulting beads would be too light to accommodate the long
timesteps desired in a SBCG simulation. We therefore have to view SBCG
lipid “molecules” in a more abstract sense, allowing that one SBCG “molecule”
represents a small patch of all-atom lipids, rather than one real all-atom lipid
molecule.

At this level of coarse-graining, the differences between lipids of different
types (e.g. POPE vs. POPC or DOPC) become almost negligible. However,
SBCG lipids can be matched to all-atom simulations by considering qualities
such as the bilayer thickness and area per lipid. Since the lipid bilayer thickness
is approximated to be 50 Å, each bead therefore has a diameter of 12.5 Å. One
SBCG lipid occupies then a cross-sectional area of approximately 156 Å2. In
this tutorial, we will be working mainly with DOPC, which occupies 72.5 Å2

per lipid. One SBCG DOPC lipid must then represent approximately 2.2 all-
atom DOPC lipids. The mass of the 2.2 lipids is divided equally among the
“head” and the “tail” beads, meaning that the “head” bead actually represents
both the head groups of the lipids and some portion of the tails, and the “tail”
bead represents the remainder of the lipid tails. Since one DOPC lipid contains
138 atoms, 2.2 lipids corresponds to ∼300 atoms, or ∼150 atoms per SBCG
bead, consistent with the level of coarse graining used for the BAR domain
proteins. In many circumstances, one will want to include charged as well as
neutral lipids. We therefore will also define negatively charged SBCG lipids to
represent DOPS to use in a mixed DOPC/DOPS membrane. Since DOPC is
the main lipid, and we have already determined that one SBCG lipid represents
2.2 all-atom lipids, this convention is kept for DOPS. Since DOPS is slightly
heavier, the extra mass is added to the DOPS “head” bead so that the “tail”
beads of the two lipids can remain identical. The DOPS “head” bead is given
a charge of -2.2 to account for the fact that it incorporates 2.2 all-atom DOPS
lipids. All these characteristics are reflected in the provided topology file for
SBCG lipids, 3 cg membrane/lipid-ion.top.

The bond parameters and nonbonded parameters for the SBCG lipids were
chosen to consistently reproduce the bilayer thickness and area per lipid values
in all-atom simulations, as described in detail in Arkhipov et al., Biophys. J.,
95:2806, 2008. Since we do not run simulations in this section, a parameter file
is not necessary at this point. We will need the parameter file later, when we
run a CG simulation of a combined lipid-protein system.

3 BUILDING A SHAPE-BASED COARSE-GRAINED MEMBRANE 28

Figure 11: Shape-based coarse-grained lipid bilayer. Each SBCG lipid is comprised of a
“head” bead (blue) and a “tail” bead (gray) connected by a bond. The diameter of one bead
is 12.5 Å, and the thickness of the bilayer is 50 Å.

3.1 Generate a patch of coarse-grained membrane.

In this section, we will create a patch of SBCG DOPC lipids. The script
3 cg membrane/generate patch.tcl is provided for this task. The usage of
this script is
generate patch Nx Ny dx dy hname tname rname outPDB
where Nx and Ny are the number of lipids in the x and y directions, dx and
dy are the lipid spacings in the x and y directions (which will be 12.5 for our
case), hname is the name of the head bead (PCH), tname is the name of the tail
bead (DOT), rname is the residue name of the lipid (DOPC), and outPDB is the
desired name of the output PDB file.

1. To build a patch of DOPC lipids with this script, navigate to the folder
3 cg membrane and type the following in the VMD Tk Console:
> source generate patch.tcl
> generate patch 37 9 12.5 12.5 PCH DOT DOPC dopc.pdb
This will create a 37 × 9 DOPC patch to be used later in this tutorial.

2. To create a corresponding psf file, use the provided psfgen script 3 cg membrane/build-dopc.tcl
by typing the following into the Tk Console:
> source build-dopc.tcl

3. One may alternatively use the AutoPSF plugin in VMD to create a psf file. To
do this, navigate to Extensions → Modeling → Automatic PSF Builder.
In Step 1, check that dopc.pdb is set as the input molecule, and set the desired
output file name. Under “topology files” delete the default all-atom topology
and then add the SBCG topology file lipid-ion.top by clicking “Add” and
selecting lipid-ion.top. In Step 2, Select “Everything” and click “Guess

3 BUILDING A SHAPE-BASED COARSE-GRAINED MEMBRANE 29

and split chains using current selections”. In Step 3, click “Create
Chains” to create the psf file.

4. Load the resulting pdb and psf files into VMD. You should see a 37 × 9
array of SBCG lipids.

3.2 Add charged lipids to the membrane patch.

We will now create a combined DOPC/DOPS membrane by changing some of
the DOPC lipids to DOPS. The provided script 3 cg membrane/mutate-to-dops.tcl
selects 30% of the lipids at random and changes them to DOPS.

1. To use this script, type the following into the Tk Console:
> source mutate-to-dops.tcl

2. Now create a psf file either by using the provided psfgen script 3 cg membrane/build-mixture.tcl
by typing
> source build-mixture.tcl
or by using the AutoPSF plugin.

3. Load the resulting pdb and psf files into VMD - you should see that about
30% of the lipids are now DOPS lipids. For example, you can color lipids by
resname to distinguish between DOPC and DOPS.

You will need this mixed DOPC/DOPS membrane patch for the simulations
in following sections.

4 COMBINING PROTEINS AND MEMBRANE FOR A SIMULATION 30

4 Combining proteins and membrane for a sim-
ulation

In this section, you will build a system containing 6 BAR domain dimers on top
of a planar membrane. A prepared tcl script, build.tcl, which is located at
directory 4−combine will be used to generate this system. In the previous sec-
tions, you have generated the building blocks of this system: the BAR domain
dimer and the lipid membrane patch. You will also need ions to neutralize the
total charge of the system.

1. In a Terminal window in your 4 combine directory, copy the input files that
you have created while working on the previous sections, using the following
commands:

> cp ../1 build cg model/cg monomer.pdb .
> cp ../1 build cg model/cg monomer-2.pdb .
> cp ../1 build cg model/cg monomer.top .
> cp ../3 cg membrane/mixture.pdb .
> cp ../3 cg membrane/lipid-ion.top .

The last input files needed is a pdb of ions, ions.pdb, which is located at
your current directory 4 combine/example-input.

How ions are treated in SBCG. Here “ions” are SBCG beads
carrying a charge of +2.2|e| and mass of 1,000 amu, representing
8 ions of mixed nature (such as both Na+ and Cl−), with their
hydration shells. Such choice is made to match the coarse-graining
of the charged lipids. Other schemes of introducing charges that
represent ions in the SBCG model are possible, and the choice of
the charge and mass of an SBCG “ion” is done by the researcher,
depending on the specifics of the simulated system.

2. Start VMD and in the VMD Tk Console window, type the following com-
mand:

> source build.tcl

This command calls the script build.tcl, which will replicate six copies of
BAR domain dimers and combine the BAR domains, lipids and ions together.

3. The output of the script build.tcl will be a psf file (6bar.psf) and a pdb
file 6bar.pdb containing six BAR domain dimers on top of a membrane patch,
neutralized by ions.

4 COMBINING PROTEINS AND MEMBRANE FOR A SIMULATION 31

4. Take a look at build.tcl. This script contains the following steps: (1)
Load the two monomers of a BAR domain dimer. (2) Move the monomers to
appropriate locations, to form a lattice. (3) Call VMD plugin psfgen and input
SBCG topology files for BAR domains, lipids and ions. (4) Input coordinates
of the six BAR domain dimers, lipid membrane, and ions. (5) Generate psf and
pdb files for the combined system. More detailed descriptions of the commands
are included in build.tcl as comments beginning with “#”. You can view the
commands and comments in build.tcl using any text editor, or, e.g., using ls
command in the VMD Tk Console.

5. Load the output system into VMD using the following command in the Tk
Console:

> mol load psf 6bar.psf pdb 6bar.pdb

Figure 12: Combining proteins and membrane for a simulation. Ions are not shown for
clarity.

6. Measure the center and dimension of the system by following commands:

> set sel [atomselect top all]
> measure center $sel
> measure minmax $sel

Record the above values for use in the next section.

5 RUNNING A COARSE-GRAINED SIMULATION 32

5 Running a coarse-grained simulation

We are now almost ready to simulate the system of SBCG BAR domains with
SBCG membrane. In this section we will discuss first how to write a NAMD
configuration file for an SBCG system. We will then perform the simulation,
and discuss the file outputs and simulation result.

To perform exercises, navigate to the folder 5 simulation/.

5.1 Preparing a configuration file.

Since SBCG was designed to be compatible with NAMD, an SBCG configura-
tion file looks similar to a normal, all-atom, NAMD configuration file that you
might have used before.

1. A sample configuration file sim.conf has been prepared for you in the di-
rectory example-output/. Copy it to the folder where you want to run the
simulation, and open it with a text editor. Remember to create in the same
folder subfolder output and input, and add you CG files to the folder input
analogously to how it is done in example-output/. Note that you will need
here an SBCG parameter file for lipids, which we have not used before. For this
purpose, copy the file example-output/input/lipid-ion.par to your input
folder.

2. The configuration file contains many options (entries in the first column),
followed by their parameters (entries in the second column) specifically cho-
sen for the simulated system. Assuming readers already have experience with
NAMD simulations, here we will only go through those options that require
special adjustments for an SBCG system. New NAMD users are encouraged to
consult the NAMD Tutorial and NAMD User’s Guide.

3. In the text editor displaying the content of sim.conf, scroll down to the
section # Force-Field Parameters. Note all lines beginning with # are com-
ments ignored by NAMD.

Under # Force-Field Parameters, you will find six simulation options that
might need different parameters than those of an all-atom simulation. These
options define how you want the interactions between beads to be computed.
Since each SBCG bead represents a cluster of atoms, parameters such as cutoff,
switchdist, and pairlistdist would typically have bigger values than those
for an all-atom simulation. The values listed here have been tested to work
well for the SBCG BAR domain system, and can be used as starting values for
other SBCG systems. Note, however, the cutoff parameter should always be
bigger than the longest bond length in your simulation system, otherwise your
simulation will crash.

5 RUNNING A COARSE-GRAINED SIMULATION 33

4. Scroll down to the section # Integrator Parameters.

The parameter timestep has a value of 100.0, implying that the integration
timestep of the simulation is 100 fs/step. A typical all-atom simulation uses 1
or 2 fs/step, hence the SBCG gives a speedup of 100 from the choice of inte-
gration timestep alone. The choice of the timestep depends on how fast beads
are moving in the simulation, and, thus, the maximal timestep possible (so that
the simulation does not crash) is determined by the strength of interactions,
e.g., stiffness of bonds, as mentioned above. If your simulation crashes with a
timestep of 100 fs/step, starting the simulation with a shorter timestep might
fix the problem. Then timestep can be increased when the system becomes
stable later in the simulation.

5. In the cellBasisVector1, cellBasisVector2, cellBasisVector3, and
cellOrigin parameters, one specifies the periodic boundary of the system.
Compare these values to the system size you have measured in the previous
section.

You should see that only cellBasisVector2 matches the y-dimension of
your system, while cellBasisVector1 and cellBasisVector3 are both much
larger than the x- and z-dimension of the system. This is because we only want
the system to be continuous in the y-direction, while in the other two directions
we want to allow the membrane to bend freely.

6. Constant temperature is maintained in this SBCG simulation using Langevin
dynamics, as usually done in all-atom simulations. You can take a look at these
parameters under # Constant Temperature Control. In addition to the tem-
perature control, the Langevin dynamics provides means to simulate the solvent
effect implicitly. Namely, the Langevin dynamics introduces viscous drag and
random forces acting on each CG bead, which can be used to mimic the viscosity
of the solvent and the Brownian motion due to random hits from the molecules
of the solvent. A single parameter, langevinDamping, is used to account for
these effects. Here, langevinDamping is set to 2 ps−1, as this value was found
to reproduce the viscosity of water for the coarse-graining level used (150 atoms
per CG bead).

7. In the last few lines of sim.conf, you can see that the simulation is designed
to be minimized by 1000 steps, and then to run for 50,000,000 steps. This cor-
responds to 50,000,000 steps × 100 fs/step = 5 µs simulation time.

8. Close the text editor displaying sim.conf. Run the simulation by typing
namd2 sim.conf > sim.log in a terminal window.

5 RUNNING A COARSE-GRAINED SIMULATION 34

5.2 Simulation outputs.

On a one-processor machine, this simulation will take about eight days to com-
plete, but actually we do not need to run the full 5 µs. The general trend is
obvious already after about the first 10 ns, which can be achieved within half an
hour or so. If you do not wish to run the simulation yourself, you can use the
files provided in example-output/ for the following discussion on file outputs
and results.

1. Open the logfile of the simulation, sim.log, with a text editor. If you did
not run the simulation, use example-output/sim.log.

The logfile of a simulation contains useful information. When your simula-
tion crashes, checking the logfile for the error message is the first step of fixing
the problem. The logfile can also give you an estimate on how long a simulation
will run. Find the words “Benchmark time” in sim.log, here you can find the
speed of the simulation. Now let’s examine the system via VMD.

2. Close the text editor. Open VMD, and load the psf file of the system,
6bar.psf. If you did not run the simulation, make sure you use the provided
example-output/input/6bar.psf.

3. Load the output dcd file, sim.dcd. If you did not run the simulation,
use example-output/output/sim.dcd. In this case, you will have 150 frames
loaded in VMD, one frame for each nanosecond of the simulation.

Use VMD to take a look at the simulation result. The BAR domain system
originally sits on a flat membrane, and after 150 ns of simulation time, the mem-
brane is curved into an arch. A simple SBCG simulation used here demonstrates
very well how BAR domain proteins perform their job of sculpting membrane
shape. For more information on BAR domain-induced membrane curvature,
please see Arkhipov et al., Biophys. J., 95:2806, 2008.

Figure 13: Simulation result of the BAR domain system. Left: beginning of the simulation.
Right: system at 150 ns.

4. In your VMD session, use the VMD animation tool to display the last frame,
which should show a highly curved BAR domain/membrane system. Open the

5 RUNNING A COARSE-GRAINED SIMULATION 35

Graphical Representations window via Graphics → Representations, and
choose the Periodic tab in the lower half of the GUI window. Check on the
box of +X.

This step should create an additional periodic image of the system in the +x-
direction. In the VMD OpenGL window, you can see that you now have two sys-
tems separated by a large distance. This is the result of giving cellBasisVector1
a value much larger than the actual x-dimension of the system. This was done to
cut off the system from its x-direction periodic neighbors, such that the system
is effectively isolated in this direction, making simulation of curvature formation
feasible. Same thing was done in the z-direction.

5. Uncheck the box of +X, and check +Y, and increase the value in “Number of
images” on the bottom of the Graphical Representations window to, for exam-
ple, 10.

The y-direction is continuous, hence you can see in the VMD OpenGL win-
dow a long membrane patch, curved as to form a membrane tube.

Figure 14: Periodic image in the y-direction.

6. This is the end of the tutorial. You are now ready to use SBCG!

5 RUNNING A COARSE-GRAINED SIMULATION 36

Acknowledgements

Development of this tutorial was supported by the National Institutes of Health
(P41-RR005969 - Resource for Macromolecular Modeling and Bioinformatics).

	Coarse-graining an atomic structure
	Coarse-graining of a BAR domain monomer.
	Mapping the coarse-grained monomer structure onto a different copy of the monomer.

	Parameterizing SBCG force field
	Non-bonded interaction parameters.
	Obtaining initial guess for bonded interaction parameters from all-atom simulations.
	Iterative refinement of bonded interaction parameters.

	Building a shape-based coarse-grained membrane
	Generate a patch of coarse-grained membrane.
	Add charged lipids to the membrane patch.

	Combining proteins and membrane for a simulation
	Running a coarse-grained simulation
	Preparing a configuration file.
	Simulation outputs.

