
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group
Computational Biophysics Workshop

Bionanotechnology Tutorial

Alek Aksimentiev

Jeffrey Comer

May 2007

A current version of this tutorial is available at
http://www.ks.uiuc.edu/Training/Tutorials/

Join the tutorial-l@ks.uiuc.edu mailing list for additional help.

http://www.ks.uiuc.edu/Training/Tutorials/

CONTENTS 2

Contents

1 Simulation setup and protocols 6
1.1 Building a crystal . 6
1.2 Constructing synthetic nanopores 11
1.3 Generating the structure file . 19
1.4 Calibrating the force field . 21
1.5 Solvating the nanopore . 27
1.6 Measuring ionic current . 29

2 Simulations of DNA permeation through nanopores 37
2.1 Manipulating DNA . 37
2.2 Combining DNA and the synthetic nanopore 40
2.3 Measuring ionic current with DNA 41
2.4 Simulating DNA translocation 42

3 Appendix 44

CONTENTS 3

Introduction

This tutorial is designed to guide users of VMD and NAMD in all the steps
required to set up a molecular dynamics (MD) simulation of a bionanotechnol-
ogy device. The tutorial assumes that you already have a working knowledge
of VMD and NAMD. For the accompanying VMD and NAMD tutorials go to:
http://www.ks.uiuc.edu/Training/Tutorials/
This tutorial has been designed specifically for VMD 1.8.5, and should take about
4 hours to complete in its entirety.

Structure building for biomolecules is likely familiar to most VMD and NAMD
users and the interested reader is referred to the in-depth treatment given in
the other VMD and NAMD tutorials. Constructing models of solid-state in-
organic systems, however, requires a slightly different approach. Therefore, we
begin in the first unit by learning how to build models of synthetic devices,
starting with only a crystal unit cell. We’ll then add solution and end by sim-
ulating ionic current through a nanoscale pore in a crystalline membrane. The
second unit will guide you through combining a biomolecule (DNA) with a
crystalline membrane and simulating the resulting system. Many of the steps
in this tutorial depend on the results of previous steps. If some steps are not
completed and you would like to move on, exemplary output is available in
bionano-tutorial-files/example-output/.

Throughout the text, some material will be presented in separate “boxes”.
These boxes include information complementary to the tutorial, such as details
of the systems used in bionanotechnology research, tips or technical details, and
suggestions for more in-depth simulations.

If you have any questions or comments on this tutorial, please email the TCB
Tutorial mailing list at tutorial-l@ks.uiuc.edu. The mailing list is archived at
http://www.ks.uiuc.edu/Training/Tutorials/mailing list/tutorial-l/.

High-throughput DNA sequencing. This tutorial will focus on the
interaction of DNA and a Si3N4 nanopore about 2 nm in diameter,
which is the key element in proposed technology for high-throughput
DNA sequencing. Currently, two months and approximately ten
million dollars are required to determine a human genome to the
desired 99.99% accuracy—obviously too slow and too costly for use
in personal medicine. A nanopore device, along with an integrated
semiconductor detector, has promise to reduce the time and expense
of genome sequencing by orders of magnitude (For example, see
Heng et al., Bell Labs Technical Journal 10, 5–22 (2005)).

http://www.ks.uiuc.edu/Training/Tutorials/mailing_list/tutorial-l/

CONTENTS 4

Required programs

The following programs are required for this tutorial:

• VMD: Available at http://www.ks.uiuc.edu/Research/vmd/ (for all plat-
forms)

• NAMD: Available at http://www.ks.uiuc.edu/Research/namd/ (for all
platforms)

Getting Started

You can find the files for this tutorial in the bionano-tutorial-files direc-
tory. Below you can see in Fig. 1 the directory structure for this tutorial.

To start VMD type vmd in a Unix terminal window, double-click on the VMD
application icon likely located in the Applications folder in Mac OS X, or click
on the Start → Programs → VMD menu item in Windows.

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/namd/

CONTENTS 5

bionano-tutorial-files

example-output

1_build

2_calibrate

3_solvate

4_current

5_manipulate_dna

6_current_dna

7_translocate

cutHexagon.tcl
drillBranchedPore1.tcl
drillBranchedPore.tcl
drillPore.tcl
replicateCrystal.tcl
siliconNitridePsf.tcl
unit_cell_alpha.pdb

constrainSilicon.tcl
dipoleMomentZDiff.tcl
eq1.namd
eq2.namd
field.namd
null.namd
par_silicon_ions_NEW0.1.inp

addIons.tcl
addWater.tcl
cutWaterHex.tcl
top_all27_prot_lipid_pot.inp

constrainSilicon.tcl
cornell.prm
current.vmd
electricCurrentZ.tcl
eq0.namd
eq1.namd
eq2.namd

combine.tcl
convertDnaToCharmm.tcl
dsDnaAmber.pdb
dsDnaAmber.psf
removeResidues.tcl
sculptor.tcl
ssDnaLong.pdb

addIons.tcl
addWater.tcl
cornell.prm
cutWaterHex.tcl
electricCurrentZ.tcl
par_silicon_ions_NEW5.inp
run0.namd

constrainSilicon.tcl
cornell.prm
electricCurrentZFrame.tcl
eq0.namd
eq1.namd
eq2.namd
par_silicon_ions_NEW5.inp

sample.xscpar_silicon_ions_NEW5.inp
run0.namd
sample1.0.pdb
sample.coor
sample.pdb
sample.psf
sample.vel

ssDnaLong.psf

sample1.0.pdb
sample.coor
sample.pdb
sample.psf
sample.vel
sample.xsc
top_all27_prot_lipid_pot.inp

pore+dna.pdb
pore+dna.psf
run0.namd
top_all27_prot_lipid_pot.inp
trackPositionZ.tcl
translocate.dcd
translocate.pdb

translocate.psf
translocate.xsc
ubiquitin.pdb
ubiquitin.psf

...

Figure 1: Directory structure of bionano-tutorial-files.

1 SIMULATION SETUP AND PROTOCOLS 6

1 Simulation setup and protocols

In this unit you will learn to construct synthetic systems and simulate the pas-
sage of ions through a nanopore device.

1.1 Building a crystal

In this section, we’ll learn how to build a crystalline membrane from its unit cell.

1 Let’s take a look at the unit cell in VMD. If you have not already opened
VMD, do so now. Open the Tk Console by selecting Extensions → Tk
Console. Open the directory with the files for this section and load the
unit cell by entering the following:

cd ‘‘your working directory’’

cd bionano-tutorial-files
cd 1 build
mol new unit cell alpha.pdb

Next, select Graphics → Representations. . . . In the Graphical Representa-
tions window, set the Drawing Method to CPK. Now we can clearly see
the configuration of atoms in the unit cell. This configuration of eight
nitrogen atoms and six silicon atoms will form the basis for our extended
Si3N4 crystal.

Figure 2: Process of modeling a silicon nitride device. First the unit cell is
replicated to form a crystal membrane. This membrane is then cut to a more
convenient geometry. Finally, a pore is produced in the membrane by the re-
moval of atoms.

To generate a crystal membrane from the unit cell, we will execute a script
included with this tutorial. The main steps in the script are as follows. First,
we open an output PDB and write REMARK lines specifying the geometry of the
crystal. Next, we read the unit cell PDB, extracting the records for each atom.
We then generate the crystal by repeatedly writing the atom records from the
unit cell PDB to the output PDB, albeit with new positions that are displaced

1 SIMULATION SETUP AND PROTOCOLS 7

by periodic lattice vectors. In the following part of the tutorial, the script,
replicateCrystal.tcl, we will use to generate the crystal is presented. Each
portion of the script is preceded by text describing how it works. If you’d like
to move on with the tutorial without examining the details of the script, simply
skip ahead to page 12.

As will be common to most of the scripts presented in this tutorial, the
first section of the script defines variables that act as the arguments of the
script. The names of input and output files will often appear here, as in the
case below, where the name of the PDB file containing the crystal’s unit cell is
stored in unitCellPdb and that of the resultant PDB is stored in outPdb. The
variables n1, n2, and n3 determine the number of times that the unit cell will be
replicated along the respective crystal axis. The remaining variables describe
the geometry of the unit cell. The unit cell is a parallelepiped with sides of
lengths l1, l2, and l3 along directions given by the unit vectors basisVector1,
basisVector2, and basisVector3. Thus, the set of vectors {a1, a2, a3}, where
ai = li basisVectori, generates the translational symmetry of the lattice.

replicateCrystal.tcl

Read the unit cell of a pdb and replicate n1 by n2 by n3 times.
Input:
set unitCellPdb unit_cell_alpha.pdb
Output:
set outPdb membrane.pdb
Parameters:
Choose n1 and n2 even if you wish to use cutHexagon.tcl.
set n1 6
set n2 6
set n3 6
set l1 7.595
set l2 7.595
set l3 2.902
set basisVector1 [list 1.0 0.0 0.0]
set basisVector2 [list 0.5 [expr sqrt(3.)/2.] 0.0]
set basisVector3 [list 0.0 0.0 1.0]

The two following Tcl procedures extract data from the PDB. The first
returns a list of 3D vectors corresponding to the {x y z} coordinates of each
atom in the unit cell. The second simply extracts each line atom record from
the PDB and returns it as a list.

Return a list with atom positions.
proc extractPdbCoords {pdbFile} {

set r {}

Get the coordinates from the pdb file.
set in [open $pdbFile r]
foreach line [split [read $in] \n] {

1 SIMULATION SETUP AND PROTOCOLS 8

if {[string equal [string range $line 0 3] "ATOM"]} {
set x [string trim [string range $line 30 37]]
set y [string trim [string range $line 38 45]]
set z [string trim [string range $line 46 53]]

lappend r [list $x $y $z]
}

}
close $in
return $r

}

Extract all atom records from a pdb file.
proc extractPdbRecords {pdbFile} {

set in [open $pdbFile r]

set pdbLine {}
foreach line [split [read $in] \n] {

if {[string equal [string range $line 0 3] "ATOM"]} {
lappend pdbLine $line

}
}
close $in

return $pdbLine
}

Given the coordinates of all atoms in the unit cell, the displaceCell pro-
cedure shifts them by a lattice vector. In other words, this procedure is where
the crystal is actually replicated—the basis on which the rest of the script rests.

Shift a list of vectors by a lattice vector.
proc displaceCell {rUnitName i1 i2 i3 a1 a2 a3} {

upvar $rUnitName rUnit
Compute the new lattice vector.
set rShift [vecadd [vecscale $i1 $a1] [vecscale $i2 $a2]]
set rShift [vecadd $rShift [vecscale $i3 $a3]]

set rRep {}
foreach r $rUnit {

lappend rRep [vecadd $r $rShift]
}
return $rRep

}

The procedure makePdbLine is essential to the correct formation of the out-
put PDB. The lines of the unit cell PDB obtained by extractPdbRecords are

1 SIMULATION SETUP AND PROTOCOLS 9

altered to reflect the new coordinates of the translated unit cells.

Construct a pdb line from a template line, index, resId, and coordinates.
proc makePdbLine {template index resId r} {

foreach {x y z} $r {break}
set record "ATOM "
set si [string range [format " %5i " $index] end-5 end]
set temp0 [string range $template 12 21]
set resId [string range " $resId" end-3 end]
set temp1 [string range $template 26 29]
set sx [string range [format " %8.3f" $x] end-7 end]
set sy [string range [format " %8.3f" $y] end-7 end]
set sz [string range [format " %8.3f" $z] end-7 end]
set tempEnd [string range $template 54 end]

Construct the pdb line.
return "${record}${si}${temp0}${resId}${temp1}${sx}${sy}${sz}${tempEnd}"

}

The final procedure drives the script. The series of puts commands near the
top of the procedure store the geometry of the crystal in REMARK lines in the
output PDB. These lines will be needed later when we modify the shape of the
crystal. The lattice vectors are defined by

R(i, j, k) = ia1 + ja2 + ka3,

where i, j, and k are integers. The main loop iterates through all unique (i,j,k)
for 0 ≤ i < n1, 0 ≤ j < n2, and 0 ≤ k < n3, producing a crystal.

Build the crystal.
proc main {} {

global unitCellPdb outPdb
global n1 n2 n3 l1 l2 l3 basisVector1 basisVector2 basisVector3

set out [open $outPdb w]
puts $out "REMARK Unit cell dimensions:"
puts $out "REMARK a1 $a1"
puts $out "REMARK a2 $a2"
puts $out "REMARK a3 $a3"
puts $out "REMARK Basis vectors:"
puts $out "REMARK basisVector1 $basisVector1"
puts $out "REMARK basisVector2 $basisVector2"
puts $out "REMARK basisVector3 $basisVector3"
puts $out "REMARK replicationCount $n1 $n2 $n3"

set a1 [vecscale $l1 $basisVector1]
set a2 [vecscale $l2 $basisVector2]

1 SIMULATION SETUP AND PROTOCOLS 10

set a3 [vecscale $l3 $basisVector3]

set rUnit [extractPdbCoords $unitCellPdb]
set pdbLine [extractPdbRecords $unitCellPdb]
puts "\nReplicating unit $unitCellPdb cell $n1 by $n2 by $n3..."

Replicate the unit cell.
set atom 1
set resId 1
for {set k 0} {$k < $n3} {incr k} {

for {set j 0} {$j < $n2} {incr j} {
for {set i 0} {$i < $n1} {incr i} {

set rRep [displaceCell rUnit $i $j $k $a1 $a2 $a3]

Write each atom.
foreach r $rRep l $pdbLine {

puts $out [makePdbLine $l $atom $resId $r]
incr atom

}
incr resId

if {$resId > 9999} {
puts "Warning! Residue overflow."
set resId 1

}
}

}
}
puts $out "END"
close $out

puts "The file $outPdb was written successfully."
}

main

1 SIMULATION SETUP AND PROTOCOLS 11

2 To execute the script, enter source replicateCrystal.tcl in the VMD
Tk Console.

3 We will now edit the script replicateCrystal.tcl in order to make a
thicker Si3N4 block. Open the file replicateCrystal.tcl in your text
editor of choice, e.g., by typing nedit replicateCrystal.tcl & in the
terminal window. First, change the line 8 to set outPdb block.pdb.
Next change the value of n3 by altering line 13 to read set n3 16. Save
the file and exit the text editor.

4 To generate this thicker block of Si3N4, execute the modified script by
entering source replicateCrystal.tcl as before.

5 We’ve now created two Si3N4 crystals. To view the first, type the following
in the Tk Console window:
mol delete all
mol new membrane.pdb

This is the membrane that we will use for ionic current measurement and
DNA translocation. Notice that the cross section of the system in xy-plane
is parallelogram.

6 Similarly, open the thicker block, which we’ll use in Task 1. Enter the
following:

mol delete all
mol new block.pdb

1.2 Constructing synthetic nanopores

Now we’ll construct a nanopore in our Si3N4 membranes.

Our subsequent MD simulations will use periodic boundary conditions, so
the shape of our system must be such that the Si3N4 lattice matches at the
system’s boundaries. A hexagonal prism shape can match this lattice and is
more convenient than the parallelpiped we just created for housing a nanopore
with a roughly circular cross section. In the script for this purpose, we first
obtain the crystal geometry from the REMARK lines in the PDB and write a file
describing the hexagonal periodic boundary conditions. Next, for convenience,
we shift the crystal so that its centroid coincides with the origin of the coordinate
system. We finally copy the atom records from the input PDB to the output
PDB, skipping those that do not lie within the hexagonal prism. If you’d like
to skip the details of this script, move on to page 16.

The first section again contains what serves as arguments to the script. To
save time when the script is altered to act on different files, a file name prefix
is defined which gives the output files systematic names based on the name
of the input file. In addition to cutting the system to a hexagonal prism, the
script cutHexagon.tcl also produces a boundary file (with a .bound extension)

1 SIMULATION SETUP AND PROTOCOLS 12

that contains the periodic simulation cell vectors needed to form bonds between
atoms at the boundaries and run simulations in NAMD.

cutHexagon.tcl

Remove atoms from a pdb outside of a hexagonal prism
along the z-axis with a vertex along the x-axis.
Also write a file with NAMD cellBasisVectors.

set fileNamePrefix membrane
Input:
set pdbIn ${fileNamePrefix}.pdb
Output:
set pdbOut ${fileNamePrefix}_hex.pdb
set boundaryFile ${fileNamePrefix}_hex.bound
set pdbTemp tmp.pdb

This procedure executes VMD’s measure center method to center the sys-
tem at the origin, which is done for convenience.

Write a pdb with the system centered.
proc centerPdb {pdbIn pdbOut} {

mol new $pdbIn
set all [atomselect top all]
set cen [measure center $all]
$all moveby [vecinvert $cen]
$all writepdb $pdbOut
$all delete
mol delete top

}

The procedure readGeometry extracts the crystal geometry from the REMARK
lines we added to the PDB in last script and writes the boundary file mentioned
above.

Read the geometry of the system and write the boundary file.
Return the radius of the hexagon.
proc readGeometry {pdbFile boundaryFile} {

Extract the remark lines from the pdb.
mol new $pdbFile
set remarkLines [lindex [molinfo top get remarks] 0]
foreach line [split $remarkLines \n] {

if {![string equal [string range $line 0 5] "REMARK"]} {continue}
set tok [concat [string range $line 7 end]]

set attr [lindex $tok 0]
set val [lrange $tok 1 end]
set remark($attr) $val

1 SIMULATION SETUP AND PROTOCOLS 13

puts "$attr = $val"
}
mol delete top

Deterimine the lattice vectors.
set vector1 [vecscale $remark(basisVector1) $remark(a1)]
set vector2 [vecscale $remark(basisVector2) $remark(a2)]
set vector3 [vecscale $remark(basisVector3) $remark(a3)]

foreach {n1 n2 n3} $remark(replicationCount) {break}
set pbcVector1 [vecadd [vecscale $vector1 [expr $n1/2]] \
[vecscale $vector2 [expr $n2/2]]]
set pbcVector2 [vecadd [vecscale $vector1 [expr -$n1/2]] \
[vecscale $vector2 [expr $n2]]]
set pbcVector3 [vecscale $vector3 $n3]

puts ""
puts "PERIODIC VECTORS FOR NAMD:"
puts "cellBasisVector1 $pbcVector1"
puts "cellBasisVector2 $pbcVector2"
puts "cellBasisVector3 $pbcVector3"
puts ""

set radius [expr 2.*[lindex $pbcVector1 0]/3.]
puts "The radius of the hexagon: $radius"

Write the boundary condition file.
set out [open $boundaryFile w]
puts $out "radius $radius"
puts $out "cellBasisVector1 $pbcVector1"
puts $out "cellBasisVector2 $pbcVector2"
puts $out "cellBasisVector3 $pbcVector3"
close $out

return $radius
}

Here, in the procedure cutHexagon, we read each atom record from the input
PDB and extract the serial number and coordinates. The record is then written
to the output PDB if and only if the position of the atom is within a hexagon
of radius R in the xy-plane, centered at the origin, which has a vertex along the
x-axis. All three of the following geometric criteria must hold:

−
√

3
2 R < y <

√
3

2 R,√
3(x−R) < y <

√
3(x + R),√

3(−x−R) < y <
√

3(−x + R).

1 SIMULATION SETUP AND PROTOCOLS 14

proc cutHexagon {r pdbIn pdbOut} {
set sqrt3 [expr sqrt(3.0)]

Open the pdb to extract the atom records.
set out [open $pdbOut w]
set in [open $pdbIn r]
set atom 1
foreach line [split [read $in] \n] {

set string0 [string range $line 0 3]

Just write any line that isn’t an atom record.
if {![string match $string0 "ATOM"]} {

puts $out $line
continue

}

Extract the relevant pdb fields.
set serial [string range $line 6 10]
set x [string range $line 30 37]
set y [string range $line 38 45]
set z [string range $line 46 53]

Check the hexagon bounds.
set inHor [expr abs($y) < 0.5*$sqrt3*$r]
set inPos [expr $y < $sqrt3*($x+$r) && $y > $sqrt3*($x-$r)]
set inNeg [expr $y < $sqrt3*($r-$x) && $y > $sqrt3*(-$x-$r)]

If atom is within the hexagon, write it to the output pdb
if {$inHor && $inPos && $inNeg} {

Make the atom serial number accurate if necessary.
if {[string is integer [string trim $serial]]} {

puts -nonewline $out "ATOM "
puts -nonewline $out \
[string range [format " %5i " $atom] end-5 end]
puts $out [string range $line 12 end]

} else {
puts $out $line

}

incr atom
}

}
close $in
close $out

}

1 SIMULATION SETUP AND PROTOCOLS 15

In the main part of the script, we extract the radius of the hexagon and
write the boundary file, center the crystal, and finally cut the crystal into a
hexagonal prism.

set radius [readGeometry $pdbIn $boundaryFile]
centerPdb $pdbIn $pdbTemp
cutHexagon $radius $pdbTemp $pdbOut

1 Enter source cutHexagon.tcl in the Tk Console. The script acts on
membrane.pdb, producing the file membrane hex.pdb. We also need to
cut block.pdb to a hexagonal prism.

2 Open cutHexagon.tcl in your text editor. Change line 7 to read set
fileNamePrefix block and save the file. Execute the script by reentering
source cutHexagon.tcl in the Tk Console.

3 Let’s look at our system in VMD to make sure it has been cut into a
hexagonal prism correctly. Type:
mol delete all
mol load pdb membrane hex.pdb

4 Also, look at the second system. Enter mol delete all and mol load
pdb block hex.pdb in the Tk Console.

Now we’ll shape our crystals into nanopore devices. The script drillPore.tcl
has been designed for this purpose. We’ll produce a pore with the shape of
two intersecting cones, which has hourglass-like cross sections in the xz- or yz-
planes. First, we read the length of the pore along the z-axis from the boundary
file. Subsequently, we remove atoms from the PDB file that are within the pore.
You can skip the details of this script by turning to page 19.

The parameters radiusMin and radiusMax define the minimum and maxi-
mum radius of the double-cone pore.

drillPore.tcl
Cut a double-cone pore in a membrane.

Parameters:
set radiusMin 8
set radiusMax 15
Input:
set pdbIn membrane_hex.pdb
set boundaryFile membrane_hex.bound
Output:
set pdbOut pore.pdb
set boundaryOut pore.bound

This procedure extracts the length of the pore along the z-axis, which is
necessary for defining the geometry of the double cone pore.

1 SIMULATION SETUP AND PROTOCOLS 16

Get cellBasisVector3_z from the boundary file.
proc readLz {boundaryFile} {

set in [open $boundaryFile r]
foreach line [split [read $in] \n] {

if {[string match "cellBasisVector3 *" $line]} {
set lz [lindex $line 3]
break

}
}
close $in
return $lz

}

In a membrane of thickness lz, the cylindrical coordinate s that corresponds
to the radius of the pore at height z for a double cone with a center radius of
smin and a maximum radius of smax is given by

s(z) = smin + 2
smax − smin

lz
|z| .

Whether the point (x, y, z) is within the pore is determined by

x2 + y2 < s(z)2.

Later, in Task 1, you will modify a similar procedure to produce a topologically
more complicated pore.

Determine whether the position {x y z} is inside the pore and
should be deleted.
proc insidePore {x y z sMin sMax} {

Get the radius for the double cone at this z-value.
set s [expr $sMin + 2.0*($sMax-$sMin)/$lz*abs($z)]

return [expr $x*$x + $y*$y < $s*$s]
}

The final procedure is nearly identical to the cutHexagon procedure in
cutHexagon.tcl. It writes only lines satisfying geometrical constraints, this
time given by the result of the procedure insidePore.

proc drillPore {sMin sMax lz pdbIn pdbOut} {
set sqrt3 [expr sqrt(3.0)]

Open the pdb to extract the atom records.
set out [open $pdbOut w]
set in [open $pdbIn r]
set atom 1
foreach line [split [read $in] \n] {

1 SIMULATION SETUP AND PROTOCOLS 17

set string0 [string range $line 0 3]

Just write any line that isn’t an atom record.
if {![string match $string0 "ATOM"]} {

puts $out $line
continue

}

Extract the relevant pdb fields.
set serial [string range $line 6 10]
set x [string range $line 30 37]
set y [string range $line 38 45]
set z [string range $line 46 53]

If atom is outside the pore, write it to the output pdb.
Otherwise, exclude it from the resultant pdb.
if {![insidePore $x $y $z $sMin $sMax]} {

Make the atom serial number accurate if necessary.
if {[string is integer [string trim $serial]]} {

puts -nonewline $out "ATOM "
puts -nonewline $out \
[string range [format " %5i " $atom] end-5 end]
puts $out [string range $line 12 end]

} else {
puts $out $line

}

incr atom
}

}
close $in
close $out

}

set lz [readLz $boundaryFile]
drillPore $radiusMin $radiusMax $lz $pdbIn $pdbOut

1 SIMULATION SETUP AND PROTOCOLS 18

5 In the Tk Console, enter source drillPore.tcl.

6 Let’s examine the pore we just created in VMD. Enter mol delete all
and mol load pdb pore.pdb in the Tk Console. Setting the Drawing
Method to VDW and the Selected Atoms edit box to abs(y) < 5 should
make the double pore cross section apparent.

7 The file produced, pore.pdb, needs an accompanying boundary file. In
the Tk Console, enter cp membrane hex.bound pore.bound.

Double-cone pore. The membrane is drilled using geometrical cri-
teria which result in a pore shaped like two intersecting cones. This
pore resembles those sculptured in silicon nitride by high-energy
electron beam (See Heng et al., Biophysical Journal 87, 2905–2911
(2004)).

1 SIMULATION SETUP AND PROTOCOLS 19

Task 1: Branching pore. Now let’s produce a device with a more
complex topology. The following criteria define the interior of a
Y-shaped branched pore, which one could possibly encounter in a
nanofluidic application:

if z < 0, x2 + y2 < r2
0

if z > 0, y2 + 1
5
(z − 2x)2 < r2

1 OR y2 + 1
5
(z + 2x)2 < r2

1 (1)

For z < 0, the pore is defined by a single cylindrical region, which
runs parallel to the z-axis. At the xy-plane, the pore branches;
moreover, for z > 0, the pore is defined by two cylindrical regions
oblique to the z-axis.

Open drillBranchedPore.tcl in your text editor. To drill
the pore described above, we need to complete the Tcl procedure
insidePore that begins on line 12. The procedure accepts the
atomic coordinates {x y z} and returns 1 if the atom is inside
the pore and needs to be removed and returns 0 otherwise. The
first portion of the conditional is done for you and defines the
shape of the pore for z < 0. Using this as your guide, your
assignment is to alter the expr commands in lines 21 and 22 to
correspond to the two criteria (1) that define the two branches for
z > 0. Note that line 23 returns the logical OR of the two cri-
teria; therefore, you do not need to include this in your modification.

Execute your modified script by entering source

drillBranchedPore.tcl. In VMD, delete any molecules
you have open and open the branched pore (branch.pdb). In the
Graphical Representations window, set the Drawing Method to
MSMS. Setting the Selected Atoms edit box to abs(y) < 5 reveals
the pore’s cross section. Does it look how you expected? Compare
your pore to the figure below. Did you apply the geometric criteria
correctly?

1.3 Generating the structure file

We’ve constructed two crystalline membranes and, from them, two nanopores;
however, we have only generated atom coordinates. We have not defined bonds
of any sort between the atoms. In this section, we’ll construct a PSF file that
describes the bonds (connections between two atoms) and angles (connections
between three atoms) in our systems as well as other items needed for subse-
quent MD simulations. To do this we’ll use the script siliconNitridePsf.tcl.
This script is somewhat longer than those we have seen thus far, so its descrip-

1 SIMULATION SETUP AND PROTOCOLS 20

tion has been left to the appendix.

A quick synopsis of the script’s operation is as follows. The first step is to find
bonds simply by searching for atoms that are within some threshold distance
of one another. However, this step misses bonds that exist across the periodic
boundaries. To find these, we displace the system by the periodic cell vectors
and find bonds between the original system and its periodic image (Fig. 3).
Next we determine the angles and then finally write all of the information to a
PSF file.

Periodic cell vector

Periodic image

Bonding to
periodic image

Periodic image

“internal” bond

Figure 3: Bonding to periodic images. The periodic image is produced by trans-
lating the system by a periodic cell vector. To find bonds across the periodic
boundary, a distance search is performed between the original coordinates of
the atoms and those in each periodic image.

You may be used to calling upon psfgen to produce the structure files for
proteins and other biomolecules. This would be possible for Si3N4 as well.
However, due to the nature of the material, it is somewhat more straightforward
to generate the PSF directly as we do with this script.

1 We’ll now build the PSF structure file for our membrane. Type source
siliconNitridePsf.tcl in the Tk Console. The structure information
for our pore is now contained in pore.psf.

2 Let’s also build the structure for the pristine membrane. Change line 5 of
siliconNitridePsf.tcl to set fileNamePrefix membrane hex. Since

1 SIMULATION SETUP AND PROTOCOLS 21

we will use the pristine membrane to calibrate the dielectric constant of
the silicon nitride, we do not want any surfaces. Change line 16 to read
set zPeriodic 1. Save the script and then execute it.

3 Take a look at the system in VMD by entering mol delete all and mol
load psf pore.psf pdb pore.pdb in the Tk Console. Select Graphics →
Representations. . . . Notice that there appear to be bonds crisscrossing the
pore. This occurs because VMD can’t correctly display bonds across the
periodic boundaries. Set the drawing method Drawing Method to VDW,
which does not illustrate bonds. The pore should now be clearly visible.

Charge neutrality. The script drillPore.tcl operates by remov-
ing atoms defined by geometric constraints. In doing this, it is
likely that the ratio of the number of Si atoms to that of N atoms
is no longer exactly 3:4. To perform MD simulations with PME
electrostatics, the total charge of the simulated system needs to be
adjusted to zero. To accomplish this, the charges on all of the ni-
trogen atoms are tuned by the equation qN = −NSi qSi

NN
where Ni

and qi are the number and charge of each species, respectively. For
this pore, the adjustment to qN is less than 2% times its absolute
value, which is negligible for most purposes.

1.4 Calibrating the force field

Bionanotechnology enters uncharted territory by placing together biomolecules
and synthetic materials that have rarely been studied in contact. In addition,
simulations of inorganic solids such as Si3N4 usually employ vastly different
methods than those used in computational molecular biology. Thus, simulating
systems with both synthetic and biomolecular constituents is challenging and,
in general, an unsolved problem. Because much research in bionanotechnology
involves electrostatic interactions between biomolecules and silicon-based ma-
terials, we’ll focus on getting our Si3N4 model to reproduce experimental data
for just one property: the dielectric constant. With this model we can expect
to have a realistic electric field within the pore.

To determine the dielectric constant, we will apply an electric field to a
block of Si3N4 with no free surfaces and measure the electric dipole moment.
Hence, we will use the structure membrane hex.psf that we generated in the
last section, for which we generated bonds along all three lattice directions.

1 Type cd ../2 calibrate/ in the Tk Console.

2 Open the parameter file par silicon ions NEW0.1.inp in your text edi-
tor. Notice that the file has three sections. The first two give energy func-
tion parameters for harmonic bonds and harmonic angle bending between
two bonds, respectively. The last gives the parameters for the non-bonded
interactions. You may close the file now.

1 SIMULATION SETUP AND PROTOCOLS 22

We take the non-bonded parameters, as well as the values for the partial
charges on the Si and N atoms in siliconNitridePsf.tcl, from quantum me-
chanical calculations using the biased Hessian method (John A. Wendell and
William A. Goddard III, Journal of Chemical Physics 97, 5048–5062 (1992)).
However, the bonded interactions from the same source lead to a dielectric
constant that is practically the same as a vacuum (1.0). To overcome this,
we set the bonded interaction constants to be much lower than those given in
the reference. In this section, we’ll set them to 0.1 kcal/(mol Å). To match
the experimental dielectric constant we include in our force field harmonic re-
straints, which can easily be applied in NAMD, that pull each atom of Si3N4

towards its equilibrium position in the Si3N4 crystal. It is the spring constant
associated with these constraint forces that we will calibrate to reproduce the
experimentally-determined dielectric constant of Si3N4.

Silicon nitride parameters. To change the bonded and van der
Waals interaction parameters, you need only to modify the param-
eter file par silicon ions NEW0.1.inp. However, note that the
atomic charges of the Si3N4 are defined in the PSF file. If you’d
like to alter these, you must change the variable chargeSi in the
PSF generating script (See Appendix).

3 The Tcl script constrainSilicon.tcl produces PDB files where the
spring constant is placed in the B (known in VMD as beta) column of
the PDB. Open the script in your text editor. A constraint PDB will be
produced for each spring constant (kcal/(mol Å2)) in the list defined in
line 7. We’ll determine the dielectric constant for values 1.0 and 10.0.
Hence, change line 7 of the script to set betaList {1.0 10.0}. Execute
constrainSilicon.tcl, whose contents follow.

constrainSilicon.tcl

Add harmonic constraints to silicon nitride.

Parameters:
Spring constant in kcal/(mol A^2)
set betaList {1.0}
set selText "resname SIN"
set surfText "(name \"SI.*\" and numbonds<=3) \
or (name \"N.*\" and numbonds<=2)"
Input:
set psf ../1_build/membrane_hex.psf
set pdb ../1_build/membrane_hex.pdb
Output:
set restFilePrefix siliconRest

mol load psf $psf pdb $pdb
set selAll [atomselect top all]

1 SIMULATION SETUP AND PROTOCOLS 23

Set the spring constants to zero for all atoms.
$selAll set occupancy 0.0
$selAll set beta 0.0

Select the silicon nitride.
set selSiN [atomselect top $selText]

Select the surface.
set selSurf [atomselect top "(${selText}) and (${surfText})"]

foreach beta $betaList {
Set the spring constant for SiN to this beta value.
$selSiN set beta $beta
Constrain the surface 10 times more than the bulk.
$selSurf set beta [expr 10.0*$beta]
Write the constraint file.
$selAll writepdb ${restFilePrefix}_${beta}.pdb

}
$selSiN delete
$selSurf delete
$selAll delete
mol delete top

4 Since the silicon atoms are already in their equilibrium positions, we’ll
forgo the energy minimization step in the usual simulation sequence. In-
stead, we’ll start by raising the temperature gradually to 295 K. During
this time, we’ll use constraints of 1.0 kcal/(mol Å2).

Before we start, however, we need to put the system dimensions in the
NAMD configuration file eq1.namd. Open it and 1 build/membrane hex.bound
(if you did not use InorganicBuilder), which we generated in Section 1.2, in
your text editor. If you used InorganicBuilder, refer instead to the vectors
you recorded. Copy the values of cellBasisVector1, cellBasisVector2,
and cellBasisVector3 into lines 8, 9, and 10, respectively, of the con-
figuration file. Also, examine the constraint parameters at the bottom of
the file. Save the configuration file and exit the text editor.

5 Enter namd2 eq1.namd > eq1.log to raise the system’s temperature. This
may take a couple of minutes.

6 To equilibrate the system at constant temperature, enter namd2 eq2.namd
> eq2.log.

7 Next we compute the dielectric constant for each constraint value. To
do this, we calculate the difference between the dipole moments of iden-
tical systems with and without an applied electric field. Open the files

1 SIMULATION SETUP AND PROTOCOLS 24

field.namd and null.namd in your text editor. Modify line 2 to read set
constraint 1.0. First simulate the system without the applied electric
field by entering namd2 null.namd >! null1.0.log and then with a
field of 16 kcal/(mol Å e) by entering namd2 field.namd >! field1.0.log.
Do the same for the other constraint value, i.e., alter the variable constraint
in field.namd and null.namd and run NAMD.

8 We’ll now compute the electric dipole moment for each run and from
these calculate the dielectric constant for the material. Open the script
dipoleMomentZDiff.tcl in your text editor. The script operates by load-
ing DCD trajectory files for the system with and without an applied field.
We then compute the dipole moment for each frame and write the time
(ns) in the first column and the difference in the dipoles (e Å) in the second
column of a text file.

The values of dcdFreq and timestep, taken from the NAMD configuration
file, allow us to determine the time between the frames of the DCD trajectory
file. We’ll set the variable startFrame to 4 to give the system 500 fs to equilbrate
before computing the dipole moment. The electric dipole moment is computed
by VMD’s measure dipole command which employs the following formula.
For a set of N atoms with partial charges qi and positions ri the electric dipole
moment is

p =
N∑

i=1

(qi − q0)ri,

where q0 = 1
N

∑N
i=1 qi. Subtraction of q0, the monopole component, makes the

result independent of the choice of the origin. Finally, the script computes the
average of the difference in the dipole moments and the associated standard
error.

dipoleMomentZDiff.tcl

Calculate dipole moment of the selection
for a trajectory.

set constraint 10.0
set dcdFreq 100
set selText "all"
set startFrame 0
set timestep 1.0

Input:
set psf ../1_build/membrane_hex.psf
set dcd field${constraint}.dcd
set dcd0 null${constraint}.dcd
Output:
set outFile dipole${constraint}.dat

1 SIMULATION SETUP AND PROTOCOLS 25

Get the time change between frames in femtoseconds.
set dt [expr $timestep*$dcdFreq]

Load the system.
set traj [mol load psf $psf dcd $dcd]
set sel [atomselect $traj $selText]
set traj0 [mol load psf $psf dcd $dcd0]
set sel0 [atomselect $traj0 $selText]

Choose nFrames to be the smaller of the two.
set nFrames [molinfo $traj get numframes]
set nFrames0 [molinfo $traj0 get numframes]
if {$nFrames0 < $nFrames} {set nFrames $nFrames}
puts [format "Reading %i frames." $nFrames]

Open the output file.
set out [open $outFile w]

Start at "startFrame" and move forward, computing
the dipole moment at each step.
set sum 0.
set sumSq 0.
set n 1
puts "t (ns)\tp_z (e A)\tp0_z (e A)\tp_z-p0_z (e A)"
for {set f $startFrame} {$f < $nFrames && $n > 0} {incr f} {

$sel frame $f
$sel0 frame $f

Obtain the dipole moment along z.
set p [measure dipole $sel]
set p0 [measure dipole $sel0]
set z [expr [lindex $p 2] - [lindex $p0 2]]

Get the time in nanoseconds for this frame.
set t [expr ($f+0.5)*$dt*1.e-6]

puts $out "$t $z"
puts -nonewline [format "FRAME %i: " $f]
puts "$t\t[lindex $p 2]\t[lindex $p0 2]\t$z"

set sum [expr $sum + $z]
set sumSq [expr $sumSq + $z*$z]

}
close $out

1 SIMULATION SETUP AND PROTOCOLS 26

Compute the mean and standard error.
set mean [expr $sum/$nFrames]
set meanSq [expr $sumSq/$nFrames]
set se [expr sqrt(($meanSq - $mean*$mean)/$nFrames)]

puts ""
puts "********Results: "
puts "mean dipole: $mean"
puts "standard error: $se"
mol delete top
mol delete top

9 Execute the script dipoleMomentZDiff.tcl twice, setting constraint (in
line 6 of the script) to each of the values in our simulations. Be sure to
write down the mean dipole and standard error for each.

10 Plot the time versus dipole moment data stored the resulting files dipole10.0.dat
and dipole1.0.dat. You should see that the dipole moments are chang-
ing little with time by the end of the simulation and that the values are
significantly different for the two different constraint parameters.

11 To calculate the dielectric constant we apply the formula

κ = 1 +
∆p

ε0EV
,

where ∆p is the magnitude of the difference in the dipole moment between
identical systems with and without an electric field, E is the magnitude
of the applied electric field, and V is the volume of the system dielectric
material (See Dong Xu, et al., The Journal of Physical Chemistry 100,
12108–12121 (1996) for further discussion). The permittivity of free space
is given in NAMD units by ε0 = 2.398× 10−4 (mol e2)/(kcal Å). We can
calculate the volume of our hexagonal prism by

V =
3
√

3
2

R2lz,

where R is the radius of the hexagon and lz is the height of the prism.
Obtaining R and lz from membrane hex.bound, we find V = 23485 Å3.
Given that E = 16.0 kcal/(mol Å e) calculate the dielectric constants for
the two constraint values using the mean dipole values. Note that you can
use the form Tk Console as a calculator by typing expr commands. Is the
difference in the dielectric constant between the two significant?

This section is only meant to be a demonstration of how the calibration is
performed. Sampling the entire parameter space takes a good deal of time, but
you should now have a good understanding of how to calibrate the constraints
to reproduce the experimental dielectric constant. In subsequent sections, we
will use a parameter file with the bond constants set to 5.0 kcal/(mol Å2) and
a constraint file with constants of 1.0 kcal/(mol Å2), which have been found to
be optimal by the procedure above.

1 SIMULATION SETUP AND PROTOCOLS 27

1.5 Solvating the nanopore

Now that we’ve demonstrated how to calibrate the force field of our Si3N4

model, we’re ready to prepare our nanopore for simulations.

1 In the Tk Console, type cd ../3 solvate/.

All biological systems rely on water to function. If our synthetic device is to
interact with them, it must be immersed in water.

2 Open the system we wish to solvate by entering mol load psf ../1 build/pore.psf
pdb ../1 build/pore.pdb in the Tk Console.

3 To open the Solvate plugin, select Extensions → Modeling → Add Solvation
Box from the VMD menu.

4 You should already see ../1 build/pore.psf and ../1 build/pore.pdb
in the edit boxes labeled PSF and PDB, respectively. Set Output to
pore solv. Since we wish to have water above and below the membrane,
set the minimum and maximum Box Padding in the direction z to 20.

5 Press Solvate.

6 Notice that the Solvate plugin adds the water in a right rectangular prism,
which does not conform to our hexagonal prism periodic boundary condi-
tions. Type mol delete all in the Tk Console.

We’ll now remove water from outside of the hexagonal boundaries with the
script cutWaterHex.tcl. It uses VMD’s atom selection interface to obtain the
set {segname, resid, name}, which uniquely specifies each atom, for all atoms
violating the geometric constraints that we used in Section 1.2 to cut a hexagon
from our crystal. Then by applying the psfgen command delatom, violating
atoms are deleted. We estimate the radius of the hexagon with the measure
minmax command provided by VMD.

cutWaterHex.tcl

This script will remove water from psf and pdf outside of a
hexagonal prism along the z-axis.
package require psfgen 1.3

Input:
set psf pore_solv.psf
set pdb pore_solv.pdb
Output:
set psfFinal pore_hex.psf
set pdbFinal pore_hex.pdb

1 SIMULATION SETUP AND PROTOCOLS 28

Parameters:
The radius of the water hexagon is reduced by "radiusMargin"
from the pore hexagon. The distance is in angstroms.
set radiusMargin 0.5
This is the stuff that is removed.
set waterText "water or ions"
This selection forms the basis for the hexagon.
set selText "resname SIN"

Load the molecule.
mol load psf $psf pdb $pdb

Find the system dimensions.
set sel [atomselect top $selText]
set minmax [measure minmax $sel]
$sel delete
set size [vecsub [lindex $minmax 1] [lindex $minmax 0]]
foreach {size_x size_y size_z} $size {break}
This is the hexagon’s radius.
if {[expr $size_x > $size_y]} {

set rad [expr 0.5*$size_x]
} else {

set rad [expr 0.5*$size_y]
}
set r [expr $rad - $radiusMargin]

Find water outside of the hexagon.
set sqrt3 [expr sqrt(3.0)]
Check the middle rectangle.
set check "($waterText) and ((abs(x) < 0.5*$r and abs(y) > 0.5*$sqrt3*$r) or"
Check the lines forming the nonhorizontal sides.
set check [concat $check "(y > $sqrt3*(x+$r) or y < $sqrt3*(x-$r) or"]
set check [concat $check "y > $sqrt3*($r-x) or y < $sqrt3*(-x-$r)))"]
set w [atomselect top $check]
set violators [lsort -unique [$w get {segname resid}]]
$w delete

Remove the offending water molecules.
puts "Deleting the offending water molecules..."
resetpsf
readpsf $psf
coordpdb $pdb
foreach waterMol $violators {

delatom [lindex $waterMol 0] [lindex $waterMol 1]
}

1 SIMULATION SETUP AND PROTOCOLS 29

writepsf $psfFinal
writepdb $pdbFinal
mol delete top

7 Enter source cutWaterHex.tcl to remove water outside of the hexagonal
boundaries.

8 Open the new structure by entering mol load psf pore hex.psf pdb
pore hex.pdb. Does the system now conform to a hexagonal prism?

Many biomolecules are sensitive to the ionic strength of the surrounding
solvent; therefore, salt is added to the solutions used in experiments to mimic
physiological conditions. In addition, ions facilitate measurements of small cur-
rents in nanopore systems by substantially increasing the conductivity of the
solution.

9 To open the Autoionize plugin, select Extensions → Modeling → Add Ions
from the VMD menu.

10 You should already see pore hex.psf and pore hex.pdb in the edit boxes
labeled PSF and PDB, respectively. Set Output to pore all. Since we wish
to have a 2 mol/kg KCl concentration, set Concentration to 4. Set both
Min. distance from molecule and Min. distance between ions to 2. Also,
because we are using a KCl solution instead of NaCl, select the checkbox
labeled Switch to KCl instead of NaCl.

11 Execute the Autoionize plugin by pressing Autoionize.

12 For convenience, copy the solvated structure into the directory for the next
section by typing cp pore all.psf ../4 current/ and cp pore all.pdb
../4 current/.

1.6 Measuring ionic current

In experiment, ionic current is a macroscopic quantity that gives insight into
nanoscale processes. Ionic current measurements are used to characterize single
nanopores and their interactions with biological molecules. In this subsection,
we’ll learn to simulate our nanopore system with an applied voltage and calcu-
late the ionic current from the trajectory.

1 Enter cd ../4 current/ in the Tk Console to change to the directory
for this subsection. Be sure that you have copied the files pore all.psf
and pore all.pdb into this directory as instructed at the end of the last
subsection.

2 First we need to generate the constraint file using the parameters that
reproduce the experimental dielectric constant. In the Tk Console, enter
source constrainSilicon.tcl.

1 SIMULATION SETUP AND PROTOCOLS 30

3 Now we need to equilibrate our system. We’ll start by performing energy
minimization. Take a look at the NAMD configuration file eq0.namd in
your text editor. The values given for cellBasisVector1 and cellBasisVector2
match those given in ../1 build/membrane hex.bound. If you used In-
organicBuilder to generate the pore, you should replace values with your
own. The third basis vector is dependent on the size of the water box
we added. To determine it, in the Tk Console window (Extensions → Tk
Console) type the following commands:

mol delete all
mol load psf pore all.psf pdb pore all.pdb
set all [atomselect top all]
set minmax [measure minmax $all]
set lz [expr [lindex $minmax 1 2]-[lindex $minmax 0 2]]
$all delete

The value of lz gives us the size (Å) of the system along the z-axis. We
don’t want to put this value directly into the NAMD configuration file,
however.

It is better for a few water molecules to be crowded at the ends at this point
than risk introducing a vacuum region at the ends. While the minimization
step can easily rearrange water molecules that have been placed too close
together due to wrapping at the periodic boundaries, small regions of
vacuum can cause inaccuracies in simulations, especially those performed
at constant pressure, that can be difficult to catch.

For this reason, we set cellBasisVector3 to lz minus about 5 Å. Since we
get about 55.9 Å for lz, line 13 of eq0.namd should read cellBasisVector3
0.0 0.0 51.0.

4 While we have our system open in VMD, let’s take a look at it. Select
Graphics → Representations. . . . In the Graphical Representations window,
set Selected Atoms to resname SIN to see only the Si3N4. Set the drawing
method Drawing Method to VDW. Now create a new representation (by
pressing Create Rep) with Selected Atoms set to ions. The K+ and Cl−

ions within the pore should be visible. When you are finished examining
the system, enter mol delete all in the Tk Console.

5 To perform energy minimization, enter namd2 eq0.namd > eq0.log in
the terminal window. This may take a few minutes to execute. During
this time you may want to take a look at the next step in the equilibration
process eq1.namd. When the minimization completes, check the end of
log file eq0.log to be certain that the simulation completed successfully.

1 SIMULATION SETUP AND PROTOCOLS 31

NAMD script steps description
eq0.namd 201 energy minimization
eq1.namd 500 raise temperature from 0 to 295 K, constant V
eq2.namd 1000 equilibrate, constant p and Langevin thermostat
run0.namd 1000 apply 20 V, constant V

The table above summarizes the NAMD runs we will perform in this section.
It consists of three equilibration stages and one run with an applied field. Stages
such as these are used in most production simulaions.

6 Enter namd2 eq1.namd > eq1.log to gradually raise the system’s tem-
perature from 0 K to 295 K at constant volume.

7 Examine the NAMD configuration file eq2.namd in your text editor. No-
tice the block of commands below the comment # pressure control.
These set the parameters for the Langevin piston Nosé-Hoover method im-
plemented in NAMD to maintain atmospheric pressure. Close the text ed-
itor and equilibrate the system by entering namd2 eq2.namd > eq2.log.

8 Constant pressure simulations allow the volume of the system to change.
As a necessary condition for equilibrium, the volume should fluctuate
about a mean value. Select Extensions → Analysis → NAMD Plot from
VMD’s menu. In the NAMD Plot window, select File → Select NAMD
Log File, highlight eq2.log, and press Open. Select for VOLUME for the
y-axis data. Now, plot the system volume versus time step by selecting
File → Plot Selected Data. You should notice a significant downward trend
in the volume. At equilibrium, the volume fluctuates about a mean value
for an NpT system such as this. Hence, we have not equilibrated long
enough. Since our time in this tutorial is limited, a system that has been
equilibrated for 0.5 ns is included in this directory.

9 We are now ready to apply an electric field and simulate the flow of ionic
current. Because the total current is more simply related to voltage than
the electric field magnitude, we are going to apply a potential difference of
20 V along the −z-axis of our system. The corresponding uniform electric
field is calculated by Ez = −U/lz, where U is the potential difference and
lz is the size of the system along the z-axis. The NAMD unit for electric
field is kcal/(mol Å e); thus, the appropriate conversion factor for U in V
and lz in Å is 23.0605492. That is,

eFieldz/

(
kcal

mol Å e

)
= −23.060549

U/V
lz/Å

.

To obtain the value of lz, open the NAMD extended system configuration
file sample.xsc in your text editor. Write down c z, the tenth number
in the row of system parameters. Using V = 20 V and lz = −c z Å,
calculate eFieldz. Note that since the potential difference is applied the
along −z-axis, eFieldz is positive.

1 SIMULATION SETUP AND PROTOCOLS 32

10 Now open run0.namd. At the bottom of the file you will see the following
lines:
eField on
eField 0.0 0.0 0.0

Change the third component of eField to the value of eFieldz that you
calculated. Before you close the run0.namd, note that the pressure con-
trol lines are absent. Applying an electric field to a pressure-controlled
system will distort it, leading to erroneous results. In addition, note that
the Langevin temperature control is only applied to the silicon nitride.
Applying Langevin forces to the ions, whose motion due to the electric
field we are trying to measure, could lead to a subtle bias in the current.

11 Begin the simulation by entering namd2 run0.namd > run0.log in the
terminal window. The simulation may require a couple minutes. Feel free
to read ahead while it runs.

12 We are using a very high applied electric field due to the time constraints of
this tutorial. If you analyze the temperature of the simulation versus time
step using the VMD plugin NAMD Plot (whose use was described during
the equilibration phase of this section), you’ll see that the temperature
rises above 450 K, because of the large ionic current. Such temperatures
would render a production simulation invalid. In real simulations, we
would be using a much smaller electric field.

13 Load the VMD save state by selecting File → Load State. . . and then the
file current.vmd. Step through your trajectory and you should notice
that the K+ ions (in red) move upward, while the Cl− (in blue) ions move
downward. Enter mol delete all in the Tk Console.

14 The parameter dcdFreq is set to 100 in the NAMD configuration file. As
you may already know, this means that NAMD writes the coordinates of
every atom to a DCD file every 100 simulation steps. To calculate the
ionic current, we will execute the Tcl script electricCurrentZ.tcl. It
computes the ionic current by

I(t + ∆t/2) =
1

∆t lz

N∑
i=1

qi(zi(t + ∆t)− zi(t)),

where zi and qi are respectively the z-coordinate and charge of ion i and
∆t is the simulation time represented by dcdFreq. Execute the script by
entering source electricCurrentZ.tcl.

1 SIMULATION SETUP AND PROTOCOLS 33

Figure 4: Complete silicon nitride nanopore (grey) including water and potas-
sium (red) and chloride (blue) ions.

electricCurrentZ.tcl

Calculate the current for a trajectory.
Results are in "time(ns) current(nA)"

set dcdFreq 100
set selText "ions"
set startFrame 0
set timestep 1.0

Input:
set pdb sample.pdb
set psf sample.psf
set dcd run0.dcd
set xsc run0.restart.xsc
Output:
set outFile curr_20V.dat

Get the time change between frames in femtoseconds.
set dt [expr $timestep*$dcdFreq]

Read the system size from the xsc file.
Note: This only works for lattice vectors along the axes!

1 SIMULATION SETUP AND PROTOCOLS 34

set in [open $xsc r]
foreach line [split [read $in] "\n"] {

if {![string match "#*" $line]} {
set param [split $line]
puts $param
set lx [lindex $param 1]
set ly [lindex $param 5]
set lz [lindex $param 9]
break

}
}
puts "NOTE: The system size is $lx $ly $lz.\n"
close $in

Load the system.
mol load psf $psf pdb $pdb
set sel [atomselect top $selText]

Load the trajectory.
animate delete all
mol addfile $dcd waitfor all
set nFrames [molinfo top get numframes]
puts [format "Reading %i frames." $nFrames]

Open the output file.
set out [open $outFile w]
#puts $out "sum of q*v for $psf with trajectory $dcd"
#puts $out "t(ns) I(A)"

for {set i 0} {$i < 1} {incr i} {
Get the charge of each atom.
set q [$sel get charge]

Get the position data for the first frame.
molinfo top set frame $startFrame
set z0 [$sel get z]

}

Start at "startFrame" and move forward, computing
current at each step.
set n 1
for {set f [expr $startFrame+1]} {$f < $nFrames && $n > 0} {incr f} {

molinfo top set frame $f

Get the position data for the current frame.
set z1 [$sel get z]

1 SIMULATION SETUP AND PROTOCOLS 35

Find the displacements in the z-direction.
set dz {}
foreach r0 $z0 r1 $z1 {

Compensate for jumps across the periodic cell.
set z [expr $r1-$r0]
if {[expr $z > 0.5*$lz]} {set z [expr $z-$lz]}
if {[expr $z <-0.5*$lz]} {set z [expr $z+$lz]}

lappend dz $z
}

Compute the average charge*velocity between the two frames.
set qvsum [expr [vecdot $dz $q] / $dt]

We first scale by the system size to obtain the z-current in e/fs.
set currentZ [expr $qvsum/$lz]
Now we convert to nanoamperes.
set currentZ [expr $currentZ*1.60217733e5]
Get the time in nanoseconds for this frame.
set t [expr ($f+0.5)*$dt*1.e-6]

Write the current.
puts $out "$t $currentZ"
puts -nonewline [format "FRAME %i: " $f]
puts "$t $currentZ"

Store the postion data for the next computation.
set z0 $z1

}
close $out
mol delete top
}

15 The script electricCurrentZ.tcl produces an output file curr 20V.dat,
which has two columns that record the time (ns) and the current (nA).
Open the file curr 20V.dat in a text editor. Is the current steady? What
is its mean value?

Challenge: Ionic current in branched pore. Measure the ionic
current of the branched pore (or another pore of your design). First,
use siliconNitridePsf.tcl to generate the structure branch.psf
for branch.pdb. Next, follow the steps in Section 1.3 to solvate the
branched pore. Then equilibrate the system and run it with an
applied electric field as described in this section. How does the
current compare to double-cone pore?

1 SIMULATION SETUP AND PROTOCOLS 36

Detecting single molecules by the measurement of ionic current.
When DNA is driven into a pore, be it a natural protein channel
or synthetic nanopore, large changes in the ionic current can be
measured experimentally. While within the pore, the molecule often
causes a transient reduction in the ionic current. The duration of this
current reduction has been found to be proportional to the length of
the DNA molecule and sensitive to single nucleotide substitution in
DNA hairpins (See Kasianowicz et al., Proceedings of the National
Academy of Sciences 93, 13770–13773 (1996) and Bezrukov et
al., Nature 370, 279–281 (1994)). Thus, measurement of ionic
current through a nanopore can be used to detect and study single
molecules.

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 37

2 Simulations of DNA permeation through nanopores

In the second unit, you will learn how to manipulate DNA molecules and simu-
late their permeation through a synthetic nanopore.

2.1 Manipulating DNA

1 Enter cd ../5 manipulate dna/ to start this section.

2 In the Tk Console type

mol load psf dsDnaAmber.psf pdb dsDnaAmber.pdb In the Graph-
ical Representations window, set the Drawing Method to Licorice and the
Coloring Method to ResName.

3 You should now see an 8-basepair molecule of double-stranded DNA (ds-
DNA), colored by the residue names ADE, CYT, GUA, and THY; which
correspond respectively to the bases adenine, cytosine, guanine, and thymine.
(See Fig. 5. Try setting Selected Atoms in the Graphical Representations
window to resname ADE, resname CYT, resname GUA, and resname THY
in turn. Which colors correspond to which bases?

Figure 5: Double-stranded DNA colored by base type.

4 To determine the base sequence for the first strand, type the following in
the Tk Console:

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 38

set a [atomselect top "segname ADNA and name C1’"]
puts [$a get {resid resname}]
$a delete

What is the sequence of the first strand (segment name ADNA)? What is
the sequence of its complementary strand (segment name BDNA)?

5 There are several sets of parameters available for molecular modeling of
DNA. We’ll use the AMBER topology given in cornell.rtf and the inter-
action parameters given in cornell.prm. Another popular model of DNA
uses the Charmm topology and parameter set. The script convertDnaToCharmm.tcl
can produce a Charmm model from our AMBER model. The script
applies patches using psfgen to change the topology from that of the
AMBER model to that of the Charmm model using the Charmm topol-
ogy file top all27 prot na.inp. Execute this script by typing source
convertDnaToCharmm.tcl in the Tk Console.

6 In the Tk Console, enter
mol load psf dsDnaCharmm.psf pdb dsDnaCharmm.pdb. Set the Draw-
ing Method to Licorice, the Coloring Method to Molecule, and Selected
Atoms to all for both the AMBER DNA that we loaded earlier and the
Charmm DNA. No difference in structure between the AMBER model
and the Charmm model should be apparent. In the Tk Console, enter mol
delete all.

7 Now we would like to produce single-stranded DNA (ssDNA) from dsDnaAmber.psf
and dsDnaAmber.pdb. The script removeResidues.tcl deletes the residues
of all atoms in a given selection. Open the script in your text editor. The
first and second DNA strands have the segment names ADNA and BDNA,
respectively. Set the value of selText in line 6 to segname BDNA so that
the script will delete the second DNA strand. Save your changes and
execute the script.

8 Let’s check that we produced the ssDNA correctly. Enter mol load psf
ssDna.psf pdb ssDna.pdb in the Tk Console. After examining your
8-mer ssDNA, type mol delete all.

ssDNA is much more flexible than dsDNA and easily bends into various
conformations. The details of these conformations can be important for ap-
plications of bionanotechnology. For example, if ssDNA is to pass through a
nanopore device, such as is proposed for a means of fast sequencing, it must be
aligned somewhat along the axis of the pore. Molecules lying in the plane of the
membrane or contorted in certain ways can make translocation more difficult or
impossible. For this reason, we want the ability to easily generate any desired
DNA conformation in silico.

9 Here we will use the VMD script sculptor.tcl to shape ssDNA to our
will. In the Tk Console, enter the following lines to load a 110-mer ssDNA
molecule and open Sculptor:

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 39

Figure 6: Shaping single-stranded DNA. (a) The DNA begins in a straight
conformation. (b), (c) Bending the DNA with Sculptor using two different
paths as described in the text.

mol load psf ssDnaLong.psf pdb ssDnaLong.pdb
source sculptor.tcl
sculptorGui

The Sculptor window should open. The script will map any long molecule
aligned along the z-axis to a cubic spline whose form is given by the
points in Path. If we are careful, the cubic spline allows us to bend the
ssDNA smoothly, leading to conformations, that with some equilibration,
could occur in nature. However, using Sculptor on structures that are not
relatively straight along the z-axis, applying a tortuous path, or pressing
the Sculpt button more than once without undoing the last operation will
result in highly distorted and unphysical conformations. If this happens,
simply reload the molecule.

10 Let’s start by bending ssDNA into an L-shape. Delete the contents of
Path, and type {0 0 1} {0 0 0} {1 0 0}. Press Sculpt. Rotate the
molecule a bit and then press Undo. Your result should look like Fig. 6(b).

11 Now we’ll bend the ssDNA in a U-shape. Delete the contents of Path
and type {0 1 2} {0 1 0} {0 -1 0} {0 -1 2}. Imagine the positions
of these coordinates in space. You should see that they form three sides
of a rectangle. Production of a cubic spline from these control points will

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 40

yield a U-shape as shown in Fig. 6(c). Press Sculpt. Undo this and then
produce a few conformations of your own. Close Sculptor when you are
finished. Then enter mol delete all.

2.2 Combining DNA and the synthetic nanopore

1 We now will combine our 8-mer ssDNA molecule with the Si3N4 nanopore.
Execute the script combine.tcl, which will create pore+dna.psf and
pore+dna.pdb. As shown below, the script combines the pore we created
in Section 1.2 with the ssDNA using psfgen. The script is rather general,
but can run into problems if segment names are duplicated between the
scripts.

combine.tcl

Input:
set psf0 ../1_build/pore.psf
set pdb0 ../1_build/pore.pdb
set psf1 ssDna.psf
set pdb1 ssDna.pdb
Output:
set finalPsf pore+dna.psf
set finalPdb pore+dna.pdb

Load the topology and coordinates.
package require psfgen
resetpsf
readpsf $psf0
coordpdb $pdb0
readpsf $psf1
coordpdb $pdb1

Write the combination.
writepdb $finalPdb
writepsf $finalPsf

2 We’ve added the ssDNA without regard for the position of the pore. We
now need to adjust the position of the molecule so that it is in a rea-
sonable position for our translocation simulation. What is the charge of
DNA? Which way will it move in an electric field pointing along the z-
axis? Enter mol load psf pore+dna.psf pdb pore+dna.pdb in the Tk
Console. Examine the system in the VDW representation. Using selection
text like segname ADNA and within 4.0 of resname SIN allows us to
see where the DNA has been placed too close to the Si3N4.

Type the following commands into the Tk Console:

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 41

set sel [atomselect top "segname ADNA"]
$sel moveby {4 1 7}
set all [atomselect top all]
$all writepdb pore+dna.pdb
$sel delete
$all delete

VMD will not automatically update a selection defined by within com-
mands after the ssDNA has been moved. To see the changes, simply
change one letter in the Selected Atoms box, change it back, and press
Enter. When you are convinced that the ssDNA is not too close to the
Si3N4, enter mol delete all.

Task 2: A different conformation. Load your combined system by
entering mol load psf pore+dna.psf pdb pore+dna.pdb. By
applying Sculptor to just the DNA (by setting Selection Text in the
Sculptor window) and moving the DNA with moveby commands,
create situation where DNA is blocking the pore, but with a sub-
stantially different conformation than before. Save the result as
pore+dna other.pdb.

2.3 Measuring ionic current with DNA

1 We’ve been running a lot scripts in our VMD session, some of which may
have large global variables. This might be a good time to exit VMD and
start a new VMD session to free any memory in these variables.

2 Enter cd ../6 current dna/ in the Tk Console. Execute the solvation
scripts addWater.tcl, cutWaterHex.tcl, and addIons.tcl in sequence.

3 To save the time it takes to equilibrate the system, we’ve included an
equilibrium system (sample*) with which you can continue.

4 Calculate the value of eField necessary to apply 20 V along the −z-axis
of the system with data from sample.xsc as you did in Section 1.6. Place
this value in the configuration file run0.namd and execute NAMD with
this file.

5 Execute the script electricCurrentZ.tcl to determine the ionic current.
How does it compare with what you measured with no DNA in the system?

Task 3: Comparing ionic currents. Plot the ionic current as func-
tion of time for the DNA-free system of Section 1.6 and the system
from this section. How does the presence of DNA affect the current?

Challenge: Dependence of ionic current on the conformation.
By changing the input files to the solvate scripts, solvate the system
you created in Task 2, defined in the files pore+dna other.pdb and
pore+dna.psf. Equilibrate the system and calculate the ionic cur-
rent as in the previous section. Does the difference in conformation
change the results?

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 42

Enhanced ionic current. In some situations, the presence of DNA
in the pore leads to an increase rather than a decrease in ionic
current. There appear to be two competing mechanisms whose
dominance depends on the bulk ion concentration. First, the DNA
mechanically blocks the pore, excluding ions in the volume it oc-
cupies. However, because DNA is charged, the concentration of
ions in its vicinity is greater than in the bulk. These ideas are dis-
cussed further in Chang et al., Nano Letters 4, 1551–1556 (2004)
and Smeets et al., Nano Letters 6, 89–95 (2006).

2.4 Simulating DNA translocation

1 Enter cd ../7 translocate/. In production simulations, translocation
would be performed in solution. However, due to time constraints, we’ll
perform the translocation simulation in vacuum and then analyze the pro-
vided trajectory for a similar simulation in solution. We will also be using
only short-range electrostatics (with a 12 Å cutoff) instead of PME elec-
trostatics because the vacuum system has a nonzero charge. Electrostatic
cutoffs are not recommended for most production simulations.

2 Execute constrainSilicon.tcl.

3 Run the NAMD configuration scripts shown in the table below sequen-
tially. If you generated the pore with InorganicBuilder, you need to
change cellBasisVector1 and cellBasisVector2 in eq0.namd to those
you recorded. The final simulation may take several minutes to run, so if
you are short on time you may want to skip this step and the one that
follows.

NAMD script steps description
eq0.namd 201 minimization
eq1.namd 500 raise temperature from 0 to 295 K at constant V
eq2.namd 1000 constant p and Langevin thermostat
run0.namd 8000 electric field 150 kcal/(mol Å e) at constant V

4 View the resulting trajectory in VMD by entering mol delete all and
mol load psf pore+dna.psf dcd run0.dcd. Change the representation
to VDW. Does the ssDNA translocate from one side of the pore to another?

5 Since your simulation was performed in a vacuum, we cannot analyze the
ionic current. For this reason, the trajectory translocate.dcd along with
the structure translocate.psf and extended system translocate.xsc
has been provided. The data is from a 6 V translocation simulation of
dsDNA. Execute electricCurrentZFrame.tcl to calculate the ionic cur-
rent for this trajectory. Unlike the script of a similar name we used pre-
viously, electricCurrentZFrame.tcl records the time in DCD frames,
instead of nanoseconds, to facilitate comparision with the trajectory. The
results are placed in the file curr 6V.dat.

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES 43

6 The script trackPositionZ.tcl operates in much the same way as
electricCurrentZFrame.tcl except that it determines the center of mass
of the DNA relative to the center of the pore instead of the current. En-
ter source trackPositionZ.tcl. The z-position of the center of mass is
stored as a function of frame number in pos 6V.dat.

7 Open the trajectory in VMD with the following commands:

mol delete all
mol load psf translocate.psf dcd translocate.dcd

In the Graphical Representations window, change Selected Atoms to resname
SIN and y > 0. Change the Drawing Method to Beads. Create a new
representation with the selection segname ADNA BDNA and the drawing
method VDW.

8 Now plot current versus frame (curr 6V.dat) and center-of-mass position
versus frame (pos 6V.dat) and compare it with the events that take place
in the trajectory. How does the passage of the DNA change the current?

Challenge: Protein translocation. Perform the translocation sim-
ulation with the protein ubiquitin instead of DNA using the files
ubiquitin.psf and ubiquitin.pdb.

3 APPENDIX 44

3 Appendix

Here we describe in detail the operation of the script siliconNitridePsf.tcl,
which is used to generate the structure file for our synthetic subsystems in sec-
tion 1.3.

Looking below, you’ll see that the script siliconNitridePsf.tcl has a
number of parameters. Besides having the usual input and output files, we
have three flags which determine whether the script should search for angles
(findAngles), whether bonds should be formed across hexagonal periodic bound-
aries in the xy-plane (hexPeriodic), and whether bonds should be formed be-
tween the hexagonal faces at the top and bottom (zPeriodic). We want to
determine the angles and bond across the periodic boundaries; however, we
wish to have water above and below the membrane, so we do not bond the top
of the membrane to its bottom.

The next important parameter to note is bondDistance. It is the threshold
distance between atoms below which bonds are created. The remaining pa-
rameters define the properties of the silicon and nitrogen atoms—such as their
masses and charges. NAMD matches the atom type to values in the parameter
files that give the bond and non-bonded force constants between atoms. We
take a look at one of these parameter files in section 1.4.

siliconNitridePsf.tcl

Make a psf file for Si3N4.

set fileNamePrefix membrane
Input:
set pdbFile ${fileNamePrefix}.pdb
set boundaryFile ${fileNamePrefix}.bound
Output:
set psfFile ${fileNamePrefix}.psf
set surfPdb surf.pdb
Parameters:
Should angles be calculated in addition to bonds?
set findAngles 1
set hexPeriodic 1
set zPeriodic 0
"bondDistance" is used to determine whether a bond exists between atoms.
set bondDistance 2.0
Si parameters
set nameSi "SI.*"
set massSi 28.085500
set chargeSi 0.7710
set typePrefixSi SI_
set numBondsSi 4
N parameters

3 APPENDIX 45

set nameN "N.*"
set massN 14.00700
chargeN is determined by neutrality.
set chargeN 0.
set typePrefixN N_
set numBondsN 3

The main procedure is the driver for the script. Note that it determines the
nitrogen charge to enforce charge neutrality in the system. See the box “Charge
neutrality” in section 1.3 for more information.

proc main {} {
global pdbFile boundaryFile psfFile surfPdb
global findAngles hexPeriodic zPeriodic
global bondDistance
global nameSi massSi chargeSi typePrefixSi numBondsSi
global nameN massN chargeN typePrefixN numBondsN

set selTextSi "name \"${nameSi}\""
set selTextN "name \"${nameN}\""

Load the pdb.
mol load pdb $pdbFile
set nAtoms [molinfo top get numatoms]

Get the number of nitrogen and silicon atoms.
set silicon [atomselect top $selTextSi]
set numSilicon [$silicon num]
$silicon delete
set nitrogen [atomselect top $selTextN]
set numNitrogen [$nitrogen num]
$nitrogen delete

Determine the nitrogen charge.
set chargeN [expr -$chargeSi*$numSilicon/$numNitrogen]
puts "Charge on nitrogen atoms: $chargeN"

The procedure first calls bondAtoms to find bonds between internal atoms
and then finds bonds across the periodic boundaries by bonding to periodic
images with bondPeriodic (Fig. 3). The location of the periodic images are
obtained by extracting information from the boundary file with readRadius
and readLz. To save time, we do not attempt to bond all atoms to the peri-
odic images, only those that did not receive a complete set of bonds (defined
by numBondSi and numBondsN) during the first bonding step. To accomplish
this, a temporary PDB file, surf.pdb, is created in which all the atoms that
are incompletely bonded are marked 0.0 in the B column of the PDB. The pro-
cedure bondPeriodic is used to search for the bonds. If both hexPeriodic

3 APPENDIX 46

and zPeriodic are not true, then some atoms will never have a complete set
of bonds. These are the true surface atoms—those that will be in contact with
water molecules in the simulations. Next we put the bond lists in a more con-
venient form. We then call findAngles and finally write the PSF file with
manifestPsf.

Find the internal bonds.
puts "Bonding internal atoms..."
set bond [bondAtoms all $bondDistance]
puts "Internal bonds: [expr [llength $bond]/4]"

Bond to periodic images.
if {$hexPeriodic || $zPeriodic} {

Create the surface atom pdb.
set all [atomselect top all]
$all set beta 1.0
puts "Searching for surface atoms..."
set nSurfSi [markSurface $bond $selTextSi $numBondsSi]
set nSurfN [markSurface $bond $selTextN $numBondsN]
puts "Number of surface silicons: $nSurfSi"
puts "Number of surface nitrogens: $nSurfN"
$all writepdb $surfPdb
$all delete

Load it up.
mol delete top
mol load pdb $surfPdb

if {$hexPeriodic} {
puts "The system has hexagonal periodic boundary conditions."
set radius [readRadius $boundaryFile]
puts "Hexagon radius: $radius"

Determine the centers of the image hexagons.
set pi [expr 4.0*atan(1.0)]
set hexCen {}
set d [expr sqrt(3.)*$radius]
for {set i 0} {$i < 6} {incr i} {

set theta [expr $pi/6.*(2*$i-1)]
lappend hexCen [list [expr $d*cos($theta)] \
[expr $d*sin($theta)] 0.]

}
puts "Periodic image displacements: $hexCen"

Find the bonds on the periodic boundaries.
puts "Bonding to the periodic image..."

3 APPENDIX 47

foreach r $hexCen {
set bond [concat $bond \
[bondPeriodic all $bondDistance $r]]

}
}

if {$zPeriodic} {
puts "The system is periodic along the z-axis."
set lz [readLz $boundaryFile]
puts "Period in z: $lz"
set zCen [list [list 0 0 -${lz}] [list 0 0 $lz]]

Find the bonds on the periodic boundaries.
puts "Bonding to the periodic image..."
foreach r $zCen {

set bond [concat $bond \
[bondPeriodic all $bondDistance $r]]

}
}

}
mol delete top

puts "Counting bonds on each atom..."
countBonds count $bond $nAtoms
puts "Reorganizing bond lists..."
set bond [reorganizeBonds $bond]
puts "Removing redundancy..."
set bond [removeRedundantBonds $bond]
set totalBonds [llength $bond]
puts "Number of bonds: $totalBonds"

set angle {}
if {$findAngles} {

puts "Determining the angles..."
set angle [findAngles $bond]
set totalAngles [llength $angle]
puts "Number of angles: $totalAngles"

}

puts "Writing psf file..."
manifestPsf $psfFile $pdbFile $nAtoms bond angle count
puts "The file $psfFile was written successfully."

}

The procedure bondAtoms uses VMD’s atom selection interface to find other

3 APPENDIX 48

atoms within bondDistance of each atom. Because the procedure searches for
neighbors of each atom, the resulting list contains each bond twice, since a bond
between atom 1 and atom 2 is the same as a bond between atom 2 and atom 1.
Note that the algorithm has a quadratic growth rate in the number of atoms.
For the small systems in this tutorial, the method used here should be fast
enough. However, by effecting a spatial decomposition of the system, we could
reduce the growth rate to linear in the number of atoms.

Find bonds between internal atoms and return them.
proc bondAtoms {selText bondDistance} {

set sel [atomselect top $selText]
set pos [$sel get {x y z}]
set index [$sel get index]
$sel delete

set bondDistance2 [expr $bondDistance*$bondDistance]
set bond {}
foreach r $pos ind $index {

Select neighboring atoms.
foreach {x y z} $r { break }
set nearText "($x-x)^2+($y-y)^2+($z-z)^2 < $bondDistance2"
set near [atomselect top \
"$selText and $nearText and not index $ind"]
set nearNum [$near num]
set nearIndex [$near get index]
$near delete

Add them to the bond list.
foreach i $nearIndex {lappend bond $ind $i}

}
return $bond

}

The following two procedures extract information about the system’s geom-
etry from the boundary file for use in bonding across periodic boundaries.

Get the radius from the boundary file.
proc readRadius {boundaryFile} {

set in [open $boundaryFile r]
foreach line [split [read $in] \n] {

if {[string match "radius *" $line]} {
set radius [lindex $line 1]
break

}
}
close $in
return $radius

3 APPENDIX 49

}

Get the cellBasisVector3_z from the boundary file.
proc readLz {boundaryFile} {

set in [open $boundaryFile r]
foreach line [split [read $in] \n] {

if {[string match "cellBasisVector3 *" $line]} {
set lz [lindex $line 3]
break

}
}
close $in
return $lz

}

The procedure bondPeriodic acts much like bondAtoms except that the
entire system is shifted to its periodic image using VMD’s moveby command
(Fig. 3).

Try to bond surface atoms to the periodic image.
proc bondPeriodic {selText bondDistance periodicDisp} {

set selText "$selText and beta == 0.0"
set sel [atomselect top $selText]
set pos [$sel get {x y z}]
set index [$sel get index]

Shift all of the atoms into this periodic image.
$sel moveby $periodicDisp

set bondDistance2 [expr $bondDistance*$bondDistance]
set bond {}
foreach r $pos ind $index {

Select neighboring atoms.
foreach {x y z} $r { break }
set nearText "($x-x)^2+($y-y)^2+($z-z)^2 < $bondDistance2"
set near [atomselect top \
"$selText and $nearText and not index $ind"]
set nearNum [$near num]
set nearIndex [$near get index]
$near delete

Add them to the bond list.
foreach i $nearIndex {lappend bond $ind $i}

}

Return all atoms to their original position.

3 APPENDIX 50

$sel set {x y z} $pos
$sel delete

return $bond
}

The following procedure sets the beta value to 0.0 for all atoms that do not
have a full set of bonds. This includes both atoms that will later be bonded
to the periodic image and those that are truly on the surface. Marking these
atoms allows most of the atoms to be skipped when bonding to the periodic
images.

Find the atoms that have fewer than "numBonds" bonds.
Mark surface atoms by beta = 0.0.
Warning! The bond list is assumed to be flat and redundant.
proc markSurface {bond selText numBonds} {

set sel [atomselect top $selText]
set index [$sel get index]
set nSurfAtoms 0

foreach i $index {
Find the number of bonds for each atom.
set n [llength [lsearch -all $bond $i]]
Assume each bond is in the list twice.
set n [expr $n/2]

Set the beta value to 0.0 if the atom is on the surface.
if {$n < $numBonds} {

set s [atomselect top "index $i"]
$s set beta 0.0
incr nSurfAtoms
$s delete

}
}
$sel delete

return $nSurfAtoms
}

The procedure countBonds creates a Tcl array linking each atom to the
total number of bonds that it has. We need this number because the string in
the PSF type column is determined by the number of bonds. For example, the
type N 2 refers to a nitrogen atom with two bonds. Consequently, we can define
different bond constants in the parameter files depending on the coordination
of the atom. None of the parameter files we will use here discriminate in this
way, however.

3 APPENDIX 51

Count the number of bonds on each atom and return an array (zero-based).
The result is placed in a variable name countVar.
Warning! The bond list is assumed to be flat and redundant.
proc countBonds {countVar bond nAtoms} {

upvar $countVar count

set num {}
for {set i 0} {$i < $nAtoms} {incr i} {

set n [llength [lsearch -all $bond $i]]
set n [expr $n/2]
lappend num $i $n

}

array set count $num
}

The following two procedures reformat the bond lists. The first converts the
flat list of bonds into nested lists containing pairs of atom indices. It also adds
1 to all of the indices since the first PSF index is 1, but VMD atom indices are
0-based. The second of the two procedures removes bonds that are permutations
of one another, as mentioned earlier.

Put the bonds into sublists.
Reindex to a 1-based index.
proc reorganizeBonds {bond} {

set ret {}
foreach {b0 b1} $bond {

incr b0
incr b1
lappend ret [list $b0 $b1]

}
return $ret

}

We should now have all of the bonds twice.
Find the unique bonds.
proc removeRedundantBonds {bond} {

set ret {}
foreach b $bond {

set bPerm [list [lindex $b 1] [lindex $b 0]]
set match [lsearch $ret $bPerm]

Add the bond to "ret" only if it is unique.
if {$match == -1} {lappend ret $b}

}
return $ret

}

3 APPENDIX 52

The findAngles procedure searches through all unique pairs of bonds and
finds triplets of atoms such that atom A is bonded to atom B and atom B is
bonded to atom C. Since each atom not on the surface has a fixed number of
bonds, the number of bonds is proportional to number of atoms. Thus, the
algorithm is in Θ(N2) where N is the number of atoms. We could reduce the
asymptotic complexity by writing the algorithm more cleverly; however, for our
purposes here this method is fast enough. Because of the quadratic complexity
and the fact that it is written entirely in Tcl—it uses no fast built-in VMD
commands—this procedure can take a long to time run for large systems.

Find the angles.
proc findAngles {bond} {

set totalBonds [llength $bond]
set totalBonds1 [expr $totalBonds - 1]

Find bonds that share atoms.
set angle {}
for {set i 0} {$i < $totalBonds1} {incr i} {

for {set j [expr $i+1]} {$j < $totalBonds} {incr j} {
foreach {a0 a1} [lindex $bond $i] {break}
foreach {b0 b1} [lindex $bond $j] {break}

if {$a0 == $b0} {
lappend angle [list $a1 $a0 $b1]
} elseif {$a0 == $b1} {

lappend angle [list $a1 $a0 $b0]
} elseif {$a1 == $b0} {

lappend angle [list $a0 $a1 $b1]
} elseif {$a1 == $b1} {

lappend angle [list $a0 $a1 $b0]
}

}
}
return $angle

}

The final procedure writes all of the information we have determined thus
far to a PSF file. There are three sections of the PSF format important for our
Si3N4 systems. The first is the atom record section which replicates much of
the identifying information contained in the PDB as well the atom’s type, mass,
and charge, which are essential for simulations. The next section of the PSF
contains the bonds. The bonds are stored in eight columns of indices, with each
pair of columns in a row representing a single bond between two atoms. Hence,
each line of the bond section of the PSF describes four bonds (except the last,
which may not be full). The final section of import to us is the angles section
which contains nine columns of indices, which as groups of three define three
bonds in each row.

3 APPENDIX 53

Write the psf file.
proc manifestPsf {psfFile pdbFile nAtoms bondVar angleVar countVar} {

global nameSi massSi chargeSi typePrefixSi numBondsSi
global nameN massN chargeN typePrefixN numBondsN

Import the big pass-by-reference stuff.
upvar $bondVar bond
upvar $angleVar angle
upvar $countVar count

set dummy " 0"
set totalBonds [llength $bond]
set totalAngles [llength $angle]
set out [open $psfFile w]

HEADER
puts $out "PSF"
puts $out ""
puts $out " 1 !NTITLE"
puts $out " REMARKS original generated structure x-plor psf file"

ATOMS
puts "Writing atom records..."
puts $out ""
puts $out "[format %8i $nAtoms] !NATOM"

Open the pdb to extract the atom records.
set inStream [open $pdbFile r]
set atom 1
foreach line [split [read $inStream] \n] {

set string0 [string range $line 0 3]
if {![string match $string0 "ATOM"]} {continue}

Extract each pdb field.
set record [string range $line 0 5]
set serial [string range $line 6 10]
set name [string range $line 12 15]
set altLoc [string range $line 16 16]
set resName [string range $line 17 19]
set chainId [string range $line 21 21]
set resId [string range $line 22 25]
set iCode [string range $line 26 26]
set x [string range $line 30 37]
set y [string range $line 38 45]
set z [string range $line 46 53]
set occupancy [string range $line 54 59]

3 APPENDIX 54

set beta [string range $line 60 65]
set segName [string range $line 72 75]
set element [string range $line 76 77]
set charge [string range $line 78 79]

Determine the type names.
set numBonds $count([expr $atom-1])
set typeSi ${typePrefixSi}${numBonds}
set typeN ${typePrefixN}${numBonds}

Write the atom record.
puts -nonewline $out [format "%8i " $atom]
puts -nonewline $out [format "%-4s " $segName]
puts -nonewline $out [format "%-4i " $resId]
puts -nonewline $out [format "%-3s " $resName]
puts -nonewline $out [format "%-4s " $name]
if {[regexp $nameSi $name]} {

puts -nonewline $out [format "%-4s " $typeSi]
puts -nonewline $out [format "% 5.6f " $chargeSi]
puts -nonewline $out [format "%6.4f " $massSi]

} else {
puts -nonewline $out [format "%-4s " $typeN]
puts -nonewline $out [format "% 5.6f " $chargeN]
puts -nonewline $out [format "%6.4f " $massN]

}
puts $out $dummy

incr atom
}
close $inStream
puts $out ""

BONDS
Write the bonds.
set total [format %8i $totalBonds]
puts $out "$total !NBOND: bonds"
set num 0
foreach b $bond {

puts -nonewline $out [format "%8i%8i" [lindex $b 0] [lindex $b 1]]

incr num
if {$num == 4} {
puts $out ""
set num 0

}
}

3 APPENDIX 55

puts $out ""

ANGLES
Write the angles.
puts $out "[format %8i $totalAngles] !NTHETA: angles"
set num 0
foreach a $angle {

puts -nonewline $out \
[format "%8i%8i%8i" [lindex $a 0] [lindex $a 1] [lindex $a 2]]

incr num
if {$num == 3} {

puts $out ""
set num 0

}
}
puts $out ""

Write everything else.
DIHEDRALS
set nDihedrals 0
puts $out ""
puts $out "[format %8i $nDihedrals] !NPHI: dihedrals"
puts $out ""

IMPROPERS
set nImpropers 0
puts $out ""
puts $out "[format %8i $nImpropers] !NIMPHI: impropers"
puts $out ""

DONORS
set nDonors 0
puts $out ""
puts $out "[format %8i $nDonors] !NDON: donors"
puts $out ""

ACCEPTORS
set nAcceptors 0
puts $out ""
puts $out "[format %8i $nAcceptors] !NACC: acceptors"
puts $out ""

NON-BONDED
set nNB 0
puts $out ""

3 APPENDIX 56

puts $out "[format %8i $nNB] !NNB"
puts $out ""

set tmp [expr int($nAtoms/8)]
set tmp2 [expr $nAtoms -$tmp*8]
for {set i 0} {$i <$tmp} {incr i} {

puts $out " 0 0 0 0 0 0 0 0"
}
set lastString ""
for {set i 0} {$i <$tmp2} {incr i} {

set lastString "${lastString} 0"
}
puts $out $lastString

####### GROUPS
puts $out ""
puts $out " 1 0 !NGRP"
puts $out " 0 0 0"
puts $out ""
puts $out ""
close $out

}

main

	Simulation setup and protocols
	Building a crystal
	Constructing synthetic nanopores
	Generating the structure file
	Calibrating the force field
	Solvating the nanopore
	Measuring ionic current

	Simulations of DNA permeation through nanopores
	Manipulating DNA
	Combining DNA and the synthetic nanopore
	Measuring ionic current with DNA
	Simulating DNA translocation

	Appendix

