University of lllinois at Urbana-Champaign

Beckman Institute for Advanced Science and Technology

NIH Resource for Macromolecular Modeling and Bioinformatics
Theoretical and Computational Biophysics Group

GPU Accelerated Molecular Dynamics Simulation,
Visualization, and Analysis

Authors:

lvan Teo

Juan Perilla
Rezvan Shahoei
Ryan McGreevy

Chris Harrison
May 19, 2014

Please visit www.ks.uiuc.edu/Training/Tutorials/ to get the latest version of this tutorial, to obtain
more tutorials like this one, or to join thatorial-l@ks.uiuc.edu mailing list for additional
help.

GPU accelerated molecular dynamics simulations, visualization, and analysis

Contents

1.

Introduction
1.1. Introductionto GPU Computing.
1.2. GPUComputinginNAMD andVMD.

Introduction to Simulations using GPUs

2.1. HowtorunNAMD usingGPUs.. i
2.2. Lookingatthe System. e
2.3. Basic benchmarking of NAMD performance.

2.4. Simulating 2.3 millionatomson CPUsand GPUs.

2.5. Comparison of CPU and GPU performance.

GPU Enhanced Visualization

3.1. Rendering surfacesthe“old”way.
3.2. Introducing GPU-accelerat&@uickSurf.
3.3. Usefulness of Surface Representatians.

GPU Accelerated Molecular Dynamics (aMD)

4.1. “Accelerated” Molecular Dynamics: Theory..
4.1.1. Theoretical background.
4.1.2. Compute the aMD parameters from cMD simulations.

4.2. Using aMD & GPUs for long-timescale molecular dynamics.

GPU Augmented Analysis
5.0.1. Analysis of GGBP trajectories 0.
5.1. Calculatingg(r)usingGPUS.

GPU accelerated molecular dynamics simulations, visualization, and analysis 3

1. Introduction

This tutorial will demonstrate how to use features in NAMD and VMD to harness the computational
power of graphics processing units (GPUSs) to accelerate simulation, visualization and analysis. You
will learn how to drastically improve the efficiency of your computational work, achieving large
speedups over CPU only methods. You will explore ways of investigating large multimillion atom
systems or long simulation timescales through easy to use features of NAMD and VMD on readily
available hardware. Please note that completeing the tutorial examples will require a computer
with a CUDA-capable NVIDIA GPU. Please see Sectipi. for more information.

1.1. Introduction to GPU Computing

Over the past decade, physical and engineering practicalities involved in microprocessor design
have resulted in flat performance growth for traditional single-core microprocessors. Continued
microprocessor performance growth is now achieved primarily through multi-core designs and
through greater use of data parallelism, with vector processing machine instructions. Currently,
the year-to-year growth in the number of processor cores roughly follows the growth in transistor
density predicted by Moore’s Law, doubling every two years. At the forefront of this parallel
computation revolution are graphics processing units (GPUSs), traditionally used for visualization.
Graphics workloads contain tremendous amounts of inherent parallelism. As a result, GPU
hardware is designed to accelerate data-parallel calculations using hundreds of arithmetic units.
The individual GPU processing units support all standard data types and arithmetic operations,
including 32-bit and 64-bit IEEE floating point arithmetic. State-of-the-art GPUs can achieve
peak single-precision floating point arithmetic performance of 2.0 trillion floating point opera-
tions per second (TFLOPS), with double-precision floating point rates reaching approximately half
that speed. GPUs also contain large high-bandwidth memory systems that achieve bandwidths of
over 200 GB/sec in recent devices. The general purpose computational capabilities of GPUs are
exposed to application programs through the two leading GPU programming toolkits: CiJDA [
and OpenCL).

1.2. GPU Computing in NAMD and VMD

NAMD and VMD utilize GPUs to accelerate an increasing number of their most computation-
ally demanding functions, resulting in significant speed increases. Many algorithms involved in
molecular modeling and computational biology applications can be adapted to GPU acceleration,
commonly increasing performance by factors ranging from 1@ 30x faster, and occasionally

as much as 100 faster, relative to contemporary multi-core CPUS,[11, 9]. GPU-accelerated
desktop workstations can now provide performance levels that used to require a cluster, but without
the complexity involved in managing multiple machines or high-performance networking. Users of
NAMD and VMD can now perform many computations on laptops and modest desktop machines
which would have been nearly impossible without GPU acceleration. For example, NAMD users
can easily perform simulations on large systems containing hundreds of thousands and even mil-
lions of atoms thanks to GPUs. The time-consuming non-bonded calculations on so many atoms
can now be performed on a GPU at 20 times the speed of a single CPU core. VMD users can
smoothly and interactively animate trajectories using visualization techniques such as the display
of molecular orbitals or QuickSurf for surface representations. In the case of visualizing molecular
orbitals, VMD’s GPU algorithm obtains a 125speedup over the CPU.

GPU accelerated molecular dynamics simulations, visualization, and analysis 4

2. Introduction to Simulations using GPUs

The performance benefit NAMD’s GPU acceleration feature is most clearly demonstrated by sim-
ulation of large systems, e.g. with 10> atoms, with sufficient work to keep the GPU busy. [

This section will guide you through the simulation of such a large system with and without a
GPU, for the purpose of comparison between the two cases. For this section, please use as your
working directorygpu-tutorial/gpu-tutorial _data/1-largeSims/

2.1. How to run NAMD using GPUs.

To benefit from GPU acceleration you will need a CUDA build of NAMI)[11, 9] and a recent
high-end NVIDIA video card. CUDA builds will not function without a CUDA-capable GPU. You
will also need to be running the NVIDIA Linux driver version 270.41.19 or newer (released Linux
binaries are built with CUDA 4.0, but can be built with newer versions as well).

Finally, the libcudart.so.4 included with the binary (the one copied from the version of CUDA
it was built with) must be in a directory in your LRDIBRARY _PATH before any other libcudart.so
libraries. For example, when running a multicore binary (recommended for a single machine):

setenv LD_LIBRARY_PATH ".:$LD_LIBRARY_PATH"
(or LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH"; export LD_LIBRARY_PATH)
J/namd2 +idlepoll +p4 <configfile>

For more information on running NAMD on the GPU, please seé\h®ID User’'s Guide

2.2. Looking at the System

You will now proceed to examine the example system for this section. The system is comprised
of a mechanosensitive channel of small conductance (MscS) embedded in a lipid bilayer and
solvated in a water box of dimensions 224 3248 x 230A. The MscS allows outflow of ions

when the cell experiences osmotic shock, while maintaining charge balance across the membrane
and selectively retaining crucial ions such as glutamate. The diffusive behavior of ions around and
through the MscS is hence a subject of considerable scientific interest.

1 Open VMD. Go to ‘TkConsole’ from ‘Extensions’
2 In the TkConsole, navigate to the folder containing the files for section 2.

3 Next, open the PDB file of the system by typing in the TkConsole:

mol load pdb mscs.pdb

4 Take some time to inspect the system. Observe that some useful information about the system
has been loaded in the command terminal window. In particular, there are approximately 2.3
million atoms.

5 Close VMD.

http://www.ks.uiuc.edu/Research/namd/2.9/ug/node88.html

GPU accelerated molecular dynamics simulations, visualization, and analysis 5

2.3. Basic benchmarking of NAMD performance.

Before starting actual runs, it is advisable to take stock of your simulation requirements and
estimate how much running time it would take to finish running the simulation given the computing
resources at your disposal. Benchmarking serves as a straightforward way of doing so. In the
midst of any simulation run, NAMD measures the average rate of calculation over the elapsed
simulation time. The rate of calculation depends on many factors, among which are the system
size, configuration parameters, and the computational resources allocated to the simulation. Thus
it is more sensible to empirically measure the rate over elapsed timesteps for each simulation than
to perform an extremely complicatedpriori calculation of the rate. Here, you will perform short
equilibration runs of the MscS system and subsequently extract benchmark information from the
generated lodfiles.

1 Let us begin by taking a look at the NAMD configuration file for the benchmark run. In the
folder for this section, use your favorite text editor and openchmark _cpu.conf

2 Notice the small number of timesteps near the end of therfile: 1000 . NAMD performs
benchmark measurements after 400 timesteps. However, averaging over several benchmarks
gives a more reliable estimate.

3 Now close the editor. Perform the benchmark run on just CPUs by typing in the command
prompt:

namd2 benchmark_cpu.conf > benchmark_cpu.log

4 Create the configuration file for the GPU benchmark by opebamrhmark _cpu.conf
with a text editor and settingutputName to benchmark _gpu. Exit and save the file
asbenchmark _gpu.conf . Note the superficial difference between the CPU and GPU
configuration files; the key procedural difference between running with and without GPUs is
instead in how NAMD is called on the command prompt.

5 Perform the benchmark run on CPUs together with a GPU by typing in the command prompt:

namd2 +idlepoll benchmark_gpu.conf > benchmark_gpu.log

6 Examples of benchmark _cpu.conf and benchmark _gpu.conf , as well
as benchmark _cpu.log and benchmark _gpu.log have been saved in
gpu-tutorial/gpu-tutorial _data/1-largeSims/examples/ . In case

of time constraints or failure in a previous step, please transfer the example files to your
working directory and use them as you proceed.

7 After each run has finished, the benchmark information can be extracted from the respective
logfiles. On a Linux or Mac, this can be easily done by typing into the command prompt:

grep Benchmark benchmark_cpu.log

or
grep Benchmark benchmark_gpu.log

GPU accelerated molecular dynamics simulations, visualization, and analysis 6

You should see a line(s) of text that looks like:
Info: Benchmark time: 12 CPUs 5.99984 s/step 34.7213 days/ns
10434.7 MB memory

8 Based onthae/step anddays/ns numbers, approximately how long would it take, with
and without the GPU, to run, say)® timesteps? What about 10 ns?

2.4. Simulating 2.3 million atoms on CPUs and GPUs.

You are now ready to perform actual equilibration runs on the MscS system. Due to time
constraints, you will perform 2-hour (clock time) runs.(Feel free to perform longer runs if time
allows.) Judging from the benchmarks obtained from the previous system, how many ns do you
think you would be able simulate, both with and without the GPU? Record your estimate for
comparison with the actual results later.

1 The benchmark configuration is virtually identical to that of the actual run. Hence, you can
prepare the configuration file for the actual run simply by editing the benchmark configura-
tion file. Use a text editor to opdrenchmark _cpu.conf

2 SetoutputName toequil _cpu,then scroll down to the bottom of the file and change the
number of timesteps:
run 1000000

Of course,10° should exceed the number of timesteps in your estimate. However, the simula-
tion can be halted in 2 hours for you to view the results. In actual runs, you should set the number
of timesteps according to your benchmark estimates.

3 Save the edited configuration file eguil _cpu.conf

4 Create also, frorhenchmark _gpu.conf ,the GPU configuration filequil _gpu.conf
using the same procedure in the preceding steps.

5 Run the simulation with and without the GPU by typing in the command prompt:

namd2 equil_cpu.conf > equil_cpu.log &
namd2 +idlepoll equil_gpu.conf > equil_gpu.log &

After each of these commands, a process id should have been
printed to the terminal. If you are running NAMD on a computer
running linux or OSX, you can now use the linux "at” command

to kill these two processes in 2 hours. To do this type at "now +
2 hours" . This command will give you a prompt at >, at which
you should enter at >Kkill _pid _, where _pid _ is the process id
printed after starting the namd run. You can now exit the prompt
with "ctrl-d”. You should do this process for both the cpu and gpu
simulations. This will set up jobs to kill the namd simulations 2
hours from the time you entered the command..

6 Examples of the.conf and .log files in this section have been saved in
gpu-tutorial/gpu-tutorial _data/l1-largeSims/examples/ . In addition,
you will also find the trajectory fileequil _cpu.dcd andequil _gpu.dcd inthe same
location should you wish to visualize them in VMD.

GPU accelerated molecular dynamics simulations, visualization, and analysis 7

2.5. Comparison of CPU and GPU performance.

1 Use atext editor to open the logfilequil _cpu.log andequil _gpu.log . How many
timesteps were run in each case?

2 Next, usggrep to inspect the benchmarks in each logfile as you did for the benchmark runs.
How do they compare to your previous benchmark results?

3 Based on your observations, how much faster did the GPU simulation run as compared to the
CPU simulation? Do you think the same performance boost would be observed for a small
system of, say, 5000 atoms?

GPU accelerated molecular dynamics simulations, visualization, and analysis 8

3. GPU Enhanced Visualization

In addition to being computationally demanding to simulate, large biomolecular structures can be
difficult to visualize as well. Not only do large systems push the abilities of the GPU to display
the structures, but displaying structures such that interesting details can be easily discerned is also
a challenge.

Molecular surface visualization allows researchers to see where structures are exposed to sol-
vent or contact each other, and to view the overall architecture of large biomolecular complexes
such as trans-membrane channels and virus capsids. VMD is capable of calculating surfaces
quickly via the GPU-accelerated QuickSurf representation, which achieves performance orders
of magnitude faster than the conventional Surf and MSMS representations. Hence, users can eas-
ily set up interactive displays of molecular surfaces for multi-million atom complexes, e.g. large
virus capsids. Furthermore, QuickSurf enables smooth interactive animation of moderate-sized
biomolecular complexes consisting of a few hundred thousand to a million atoms.

3.1. Rendering surfaces the “old” way.

In this section, you will be acquainted with surface representations using non-GPU methods.

1 Open VMD. Go to ‘TkConsole’ from the ‘Extensions’ tab on the top of VMD Main menu.

2 Ensure your working directory is the same as in Section 2.
gpu-tutorial/gpu-tutorial _data/1-largeSims/ In the TkConsole type:

mol load psf mscs.psf pdb mscs.pdb
3 In the selected atoms field, type “segname PA PB PC PD PE PF PG".

4 For the Drawing Method, choose ‘Surf’ from the drop-down menu. Notice how long it takes
to calculate the surface and apply it to the structure. This surface is rather slow in both
generation and display for systems over several hundred atoms. The Surf calculation is quite
exact and will show complete detail even when it isn't needed. The use of disk space as an
interprocess communications medium takes up about half of the run time. In addition, the
user’s options are limited to changing the radius of the probe used in calculating the surface
and the ability to render a wireframe representation of the surface.

5 If displaying one frame using Surf is slow, playing a trajectory with Surf will be imprac-
tical. For later comparison, add the GPU equilibration trajectory from Sec@on If
you did not generate this file, one has been provided in: gpu-tutorial/gpu-tutiatizall -
largeSims/examples/

mol addfile equil_gpu.dcd

6 Now attempt to play the trajectory or even just skip one frame forward from the VMD Main
window.

7 There is another surface representation, MSMS which is faster than Surf and gives the user
slightly more options. You can try using MSMS by selecting it from the Drawing Method
menu. If the representation fails to load, try selecting fewer segments, e.g. ‘segname PA.
MSMS may fail because while it can be faster than Surf, it is still quite limited by the size of
the system it can work on.

GPU accelerated molecular dynamics simulations, visualization, and analysis 9

8 Alternatively we could use space-filling models to represent our structure such as CPK or
VDW, the latter also giving us an idea of the volume and surface of the protein. Try ap-
plying these Drawing Methods and subsequently rotating the structure. Notice how these
representations are still slower than we would like.

3.2. Introducing GPU-accelerated QuickSurf.

Figure 1: MscS in membrane with QuickSurf representation. lons are represented using VdW.

1 Now select the QuickSurf representation from the Drawing Method menu. Surprised by how
fast the representation loaded? As you can see, QuickSurf lives up to its name by using the
computational power of GPUs to calculate quickly the surface representation.

2 In addition to being fast, QuickSurf gives the user many useful options for controlling the
representation. We can change the Radius Scale, Density Isovalue or Grid Spacing indi-
vidually, or use the Resolution slider which will change them in tandem to give the desired
resolution. Try adjusting the resolution and see how quickly the representation responds.
This can be quite useful for changing on the fly from a high resolution, when you want to
see detail, to a low resolution when you want the detail obscured.

3 Aside from faster rendering of surfaces than the traditional Surf and MSMS methods, Quick-
Surf also allows us to view an entire trajectory with a surface representation. Try playing the
trajectory as you attempted before. Note that you can also adjust the resolution even while
the trajectory is playing.

3.3. Usefulness of Surface Representations

Having a fast surface representation is great, but why might we want to visualize surfaces in the first
place? As an example, look at the structure of the MscS in the QuickSurf. It consists of a seven-fold

GPU accelerated molecular dynamics simulations, visualization, and analysis 10

Figure 2: MscS with transparent QuickSurf membrane.

symmetric heptamer forming a balloon-like cytoplasmic domain attached to the transmembrane
domain. There are several openings into the protein interior - the transmembrane channel, seven
identical windows lining the balloon structure, and one at the C-terminus on the bottom of the
balloon structure. Using a QuickSurf representation, you can quickly get a rough impression of
how the sizes of these openings compare with one another. In particular, you can immediately tell
that the C-terminus window is much smaller than the others. In fact, it is the only window which
is impermeable to ions. The capability of running trajectories in QuickSurf makes it easy to see if
windows are becoming wider or narrower, making it more apparent if, for example, a channel is
opening or closing.

Next, we will modify the representation of different parts of the system to investigate how we can
reduce the detail of certain components without removing them entirely.

1 Go to the Graphical Representation menu and create a selection “segname PA PB PC PD PE
PF PG” in NewCartoon Drawing Method.

2 Create another representation of only “lipids”. by clicking the ‘Create Rep’ button and typing
‘lipids’ into the Selected Atoms field.

3 Select QuickSurf for the lipids representation.

4 Under the “Draw Style” tab you can find an option named “Material”. Select “Transparent”
for the lipids representation.

GPU accelerated molecular dynamics simulations, visualization, and analysis 11

5 Tune the Resolution of QuickSurf to somewhere between 1.5 and 2. Notice how the lipid
detail is reduced while still giving you a clear representation of the volume and overall shape
of the membrane. Zoom into the lipid bilayer and notice how you can clearly see the trans-
membrane portion of the protein without losing the visualization of the lipids. An example
of this view can be seen in Fig.

While studying ion dynamics in the MscS system, you probably would not want to be encum-
bered by the fine details of lipid conformations. Using QuickSurf, you can reduce the detail level
of the lipid bilayer. In general, the QuickSurf representation helps you to reduce the complexity of
parts of the system without removing them entirely.

Figure 3: Front and side views of the Satellite Tobacco Mosaic Virus (STMV) using QuickSurf
representation for the viral capsid. Note the hole in the capsid now visible due to surface represen-
tation.

Another important aspect of visualization is discovery of features and phenomena which would
otherwise have been hidden. The right representation can drastically change how you perceive the
structure being modeled. For example, the capsid of the Satellite Tobacco Mosaic Virus (STMV)
can be represented using QuickSurf to visualize the volume occupied by the proteins without un-
ecessary detail.

In addition to being visually appealing, when using QuickSurf we now notice that the capsid
contains small holes in Fi@ which would have been much more difficult or even impossible to
see with other representations.

GPU accelerated molecular dynamics simulations, visualization, and analysis 12

4. GPU Accelerated Molecular Dynamics (aMD)

Accelerated molecular dynamics (aMD) is an all-atom enhanced sampling technique that enables
the study of large conformational changes in proteins which normally occur on millisecond or
longer time scales. For example, using the aMD method on GPUs the bovine pancreatic trypsin
inhibitor was simulated for 500 nslhe 500 ns aMD simulation sampled the same amouruf
conformational space as an unbiased 1-millisecond MD simulatior3].

Our model system for this section is the D-Glucose/D-Galactose binding protein (GGBP)
which exhibits a “Venus Flytrap” architecture present in several other proteins like the Lac re-
pressor, G-protein-coupled receptors, ion channels, and GABA receptors. GGBP, as several other
Perisplasmic binding proteins (PBP) can exist in open (ligand-free) and closed (ligand-bound)
states. Using the aMD and Generalized Born implicit solvent (GBIS) methods with GPU accel-
eration, you will perform in this section long-timescale simulations of D-Glucose/D-Galactose
binding protein in order to sample the conformational change of its “Venus Flytrap” hinge bending
motion.

4.1. *“Accelerated” Molecular Dynamics: Th

3
Accelerated molecular dynamics (aMD)] [is \
an enhanced-sampling method thatelerates

the sampling of conformational space by ef
fectively reducing the height of energy bar
riers that separate different states of a sys-
tem. The method modifies the potential en- /)
ergy landscape by applying a boost potential|
to raise energy wells below a certain thresh-
old level, while leaving those above this level
unaffected. As a result, barriers separating ad- \
jacent energy basins are effectively reduced, \(
allowing the system to sample conformational
space that would otherwise be inaccessible in a
classical MD simulation, or require extensivelffigure 4: D-Glucose/D-Galactose binding pro-
long simulations at least an order of magntein (GGBP) mediates chemotaxis toward and ac-
tude longer than the corresponding aMD simtive transport of glucose and galactose in some
lations. The threshold level energy, referred teacterial speciesl]. The apo state (blue) shows
asE, will be an important input parameter fom 31° angle difference between theand 3 do-
your aMD simulations. mains of GGBP when compared with the holo
state (red).
4.1.1. Theoretical background

In Hamelberg and McCammon’s aMD metha{, [a system’s potential energy is monitored until it
falls below a threshold energ¥;. A boost potential is then added, such that the modified potential,
V'(r), is related to the original potentidl(r), via

V'(r) = V(r)+ AV(r), 1)

GPU accelerated molecular dynamics simulations, visualization, and analysis 13

whereAV (r) is the boost potential,

0 V(r)>E

AV(r) =4 (B-v()? (2)
{ den V(r) < E.

As shown in the following figure, the portion of the potential surface below the threshold en-
ergy F is elevated by the boost potential. The acceleration faatomodulates the shape of the
resulting elevated potential, permitting smooth continuous splining-together of the new elevated
potential and the old potential. This approach prevents discontinuities at points where the poten-
tials are joined. Such discontinuities lead to improper, even imposssible, energies and dynamics.
Additionally, the« parameter modulates thikexibility of the boosted potential. By splining the
potentials and modulating the curvature of the boosted potential, discontinuities are effectively
eliminated and a smooth differentiable potential energy surface containing the boosted potential is
generated. Note that cannot be set to zero, otherwise the derivative of the modified potential is
discontinuous.

Figure 5: Schematics of the aMD method. When the original potential (thick line) falls below a
threshold energy (dashed line), a boost potential is added. The modified energy profiles (thin
lines) have smaller barriers separating adjacent energy basins. Two parafedadky, control

the portion of the affected potential landscape and the shape of the modified potential, respectively.

From an aMD simulation, the ensemble averggg, of an observable4(r), can be calculated
using the following reweighting procedure:

{A(r) exp(BAV (1))
W= exppav)y)

inwhich =1/kgT, and(- - -) and(...)* represent the ensemble average in the original and the
aMD ensembles, respectively.

Currently, aMD can be applied in three modes in NAMD: dihedral boast¢lMDdihe),
total energy boost, and dual boostc¢elMDdual) modes [7]. In dihedral boost mode
(accelMDdihe) the boost energy is applied only to the dihedral potentialsotil energy boost
mode the default mode in NAMD, the boost potential is applied to the total potential of the simu-
lation. In thedual boost modéaccelMDdual) [4] two independent boost energies are applied,
one to the dihedral potential and a second to the potential resulting from the difference of the total

potential and the dihedral potential, &/ (— Vgine)-

GPU accelerated molecular dynamics simulations, visualization, and analysis 14

Most long-timescale motions of proteins and large biomolecules correspond to large motions,
and these in-turn are often thought linked to the slower vibrational modes of the system. Of the
bonded potentials in MD forcefields that correspond to internal degrees-of-freedom of the system
(bonds, angles, dihedrals and impropers), dihedrals are typically the lowest energy and slowest
moving of the internal degrees-of-freedom. By accelerating, through aMD, the dihedral poten-
tials of a system, the key internal degrees-of-freedom responsible for long-timescale motions are
accelerated to produce these large, slow motions in a shorter simulation timescale. With such
an understanding in mind, trdthedral boost modés the most frequently used mode of aMD in
NAMD.

However, boosting only the dihedrals in protein systems that also exhibit large diffusive mo-
tions of a domain may not be sufficient to accelerate that protein’s motions. To overcome this
challenge, thelual boost modenay be used in which the internal dihedrals are boosted as well as
the diffusive degrees of freedom of the system, but with two seperate boost potentials, to accelerate
large, diffusive, long-timescale motions of protein domains.

Citing accelerated MD in NAMD. Please include the following reference
in publications that include usage of NAMD’s GPU and aMD implementa-
tions:

e Accelerating Molecular Modeling Applications with Graphics Pro-
cessors, John E. Stone, James C. Phillips, Peter L. Freddolino,
David J. Hardy, Leonardo Trabuco and Klaus Schulten. J. Comp.
Chem, 28:2618-2640, 2007.,

e Accelerated Molecular Dynamics: A Promising and Efficient Simu-
lation Method for Biomolecules, D. Hamelberg, J. Mongan, and J. A.
McCammon. J. Chem. Phys120:11919-11929, 2004.

e Implementation of Accelerated Molecular Dynamics in NAMD,
Y.Wang, C.Harrison, K.Schulten, and J.A. McCammon,
Comp. Sci. Discoy4:015002, 2011.

4.1.2. Compute the aMD parameters from cMD simulations.

Here you will perform a dihedral boost aMD simulation and need to obtain the following input pa-
rameters: the dihedral threshold energgqelMDE) and dihedral alpha valua¢celMDalpha).

To determine these values for your aMD simulation, you must first perform a short classical MD
simulation of your system. Typically 500 ps to a few ns are sufficient.

After completion of the classical MD simulation, calculate the mean of the dihedral energies.
This mean energy value is needed to calculate the aMD input parameters. Determining the mean
dihedral energy can be done by hand, for example by extracting the values into a plain text file
and evaluating in xmgrace or your favorite spreadsheet software, or by usiddAM® Plot
plugin in VMD in conjunction with xmgrace. In our example, the average dihedral energy from
a classical MD simulation for GGBP was found to be 871 kcalTholNow calculate the mean
dihedral energy for your system.

1 Navigate togpu-tutorial/gpu-tutorial _data/3-aMD/ , where the necessary
files for the simulation are stored.

2 Start the simulation by entering.

GPU accelerated molecular dynamics simulations, visualization, and analysis 15

4.2.

namd2 +p8 +idlepoll 2fw0.namd > 2fw0_autopsf.log

3 At the end of the simulation, start a VMD session and open the TkConsole. Ensure that you

are in the directory stated above.

4 Calculate the average energies. Open Extensismsnalysis =~ NAMD Plot. Click on File

-> Select NAMD Log File, then select the logfile from your simulation. Click on DIHED.
Click on File = Plot Selected Data. On the plot window, pull down the ‘File’ menu and
export the file to a format that you can work with, such as Xmgrace. You can find example
datasets in thext files in theexamples directory. Open the exported format using its
corresponding software and calculate the mean of the dataset.

Calculate the dihedrall and o« parameter input values by plugging the mean dihedral en-
ergy values into the below equatioris P]. These equations provide the values to use for
accelMDE andaccelMDalpha

Vaine = 871 kcal mol™+(4 kcal mol* residue ! x 306 solute residugs= 2095 kcal mol,

(4)

1 . .
Quin = & X (4 kcal mol™! residue™ x 306 solute residues= 244.8 kcal mol™'. ~ (5)

Using aMD & GPUs for long-timescale molecular dynamics.

In this exercise you will perform an aMD simulation with GPUs. Using the parameters you

previously calculated, add a new section to your NAMD configuration containing the below
aMD keywords with your corresponding values. Our example values are shown below for
comparison.

You <can find an example of the modified configuration file at
examples/2fw0 _aMD.namd.

accelMD on
accelMDdihe on
accelMDE 2095
accelMDalpha 244.8
accelMDOutFreq 1000

Generalized Born implicit solvent (GBIS) is a fast but approximate method for calculating
molecular electrostatics in solvent as described by the Poisson Boltzmann equation which
models water as a dielectric continuum. GBIS enables the simulation of atomic structures
without including explicit solvent water. In aMD simulations involving large motions, elim-
inating the water can sometimes play a critical role in accelerating those large motions as the
resistance and viscous drag of explicit water is absent when using the GBIS model.

In addition, the elimination of explicit solvent actually accelerates simulations by eliminat-
ing the cost of calculating bulk water; however this speedup is somewhat hampered by the

GPU accelerated molecular dynamics simulations, visualization, and analysis 16

increased computational complexity of the implicit solvent electrostatic calculation and a
longer interaction cutoff.

We will set the ion concentration to 300mM using ibaConcentration keyword.

In our example, we turn on GBIS and set the salt concentration to 300mM with the following
commands:

GBIS Parameters
GBIS on
ionConcentration 0.3

3 When using GBIS, you should not uBdEbecause it is not compatible with GBIS. Peri-
odic boundary conditions are supported but are optional. You will also need to increase the
cutoff ;16-18A is a good starting value but some systems may vary.

Nonbonded Parameters
switching on

switchdist 15

cutoff 16

pairlistdist 17.5

Pme off

4 Select anexclude value appropriate for the forcefield you will be using; in this case,
CHARMM. When using GBIS, interactions are not excluded regardless of the type of force
field used, thus any value faxclude will work without affecting GBIS. You should
chooseexclude values appropriate for the force field you will be using. If you are un-
sure of the value to use, examine the input config for your earlier classical MD simulation.
Notice that theexclude values will therefore be the same both with and without explicit
solvent.

5 Select multiple timestepping values compatible with GBIS. When using GBIS, multiple
timestepping behaves as follows: the dEdr force is calculated evetyondedFreq steps
(as with explicit solvent, 2 is a reasonable frequency) and the dEda force is calculated every
fullElectFrequency steps (because dEda varies more slowly than dEdr, 4 is a reason-
able frequency).

Multistep Parameters
timestep 1
nonbondedFreq 2
fullElectFrequency 4

6 There are many ways to tune NAMD to obtain the best possible speeds for a particular sys-
tem running on specific hardware. One of the easiest methods is making sure the number
of patches (sections of your system split by NAMD which can be determined by the line
"PATCH GRID IS nx BY ny BY nz” in NAMD output) are equal to or greater than the num-
ber of processors. If this is not the case, you can force NAMD to almost double the number
of patches in each dimension by putting the parameters shown below in your configuration
file. This has doubled performance for this system on several test machines. You can ex-
plore the effects of turning this on or off in different combinations of dimensions to see if
you can obtain improved performance on your own hardware. For further information about
performance tuning, please see NAMD wiki.

http://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning

GPU accelerated molecular dynamics simulations, visualization, and analysis 17

twoAwayX yes
twoAwayY yes
twoAwayz yes

7 You are now ready to run your simulation using the aMD method on GPUs. Please
proceed and begin your simulation. Your simulation will run between 12 and 24 hours
depending on your GPU hardware. You can find an example trajectory of this run at
examples/ggbp-aMD.dcd

8 While your aMD simulation is running, prepare a second, exact copy of the simulation in
a new directory. This simulation will be identical to the aMD simulation in every respect
except that you will remove from the config file all aMD commands (i.e., any command
prefixed withaccel). Once the aMD simulation that you started in the previous step is
complete, run this new classical version of the system. Possessing all the same settings as
the aMD simulation, this classical simulation will be used to evaluate differences in sampling
between simulations that do and do not use aMD. Examples of the configuration file and
output trajectory have been included in theamples directory, with filenam&fw0 _cMD

5. GPU Augmented Analysis

5.0.1. Analysis of GGBP trajectories

After the GPU and aMD simulations are finished something you will notice is that the protein
diffuses in the simulation box. Hence, we first need to remove the rotational and translational
degrees of freedom of the protein by aligning the entire trajectories to the first frame.

1 Load both cMD and aMD simulations in VMD.

2 In VMD go to Extensions>Analysis=>RMSD Trajectory Tool, a new windw opens up. For
the alignment we are going to use residues from 1 to 109. Thus, in the text box where it says
protein ,addresid 1 to 109 then click onALIGN.

3 Use theQuickSurfrepresentation to look at the trajectories. Color the protein by residue
type. Can you identify the binding site?

4 Now that your trajectory is aligned, make sure the text box contains the pnitgin ~ as
selection. Check thBlot box and click orRMSD You will immediatly notice a difference
between the RMSD curves for the cMD simulation and aMD simulation.

Analysis of protein dynamics in VMD. VMD contains a pow-
erful interface to study the modes of a protein using ProDy
(http://www.csb.pitt.edu/ProDy/plugins/index.html). You can follow the in-
structions on the website to install ProDy. Once you have it installed
and running, in VMD go to Extensions->Analysis->Normal Mode Wiz-
ard. Then select the ProDy interface. Try different calculations, ANM,
ENM and PCA. Are the modes obtained from the cMD and aMD differ-
ent? Look at different modes and animate them to get a better insight of
the motions of the protein.

GPU accelerated molecular dynamics simulations, visualization, and analysis 18

5.1. Calculating g(r) using GPUs.

In VMD, GPUs have extended not only visualization capabilities, but also boosted the efficiency
of calculations for analysis of trajectories, such as that of the pair correlation fungtion)n this
section, you will perforny(r) calculations using a pre-generated MscS trajectory.

1 In VMD, open the TkConsole and navigategjou-tutorial/gpu-tutorial _data/4-analysis/

2 Due to time constraints, you are not expected to have generated a long enough trajectory
to yield meaningful data for analysis. Hence, you have been provided with a pre-generated
long trajectory for this section. The following optional procedure describes how this pre-
generated trajectory was built. If you have had enough time to run a long simulation, then
you are encouraged to go through the following optional steps.

Downsizing your DCDs (Optional). In some cases, you may have gen-
erated very large trajectory files. Large trajectories slow down loading
times, depending on your hardware, and inconvenience transfer of files to
collaborators. To get around this problem, you can extract from your origi-
nal file the trajectories of just the atoms you wish to study, using CatDCD.
CatDCD is a procedure in VMD that manipulates .dcd files, appending
them to one another or extracting from them trajectories of selected atoms
into a separate file. In the current exercise, we will be calculating g(r) for
certain MscS residues and nearby ions in solution, hence you will extract
the trajectories of just these atoms into a separate file. The following
steps, labeled Optional , will guide you through the process.

3 (Optional)

Copy the MscS PSF, PDB and trajectory files from section 1:

cp ../1l-largeSims/mscs.psf .
cp ../1-largeSims/mscs.pdb .
cp ../1-largeSims/equil_gpu.dcd .

4 (Optional) Load the system onto VMD by typing in the TkConsole:

mol load psf mscs.psf pdb mscs.pdb

5 (Optional) You will now create a file listing the indices of atoms whose trajectories you will
be extracting. Source the provided sciipake_ind.tcl or enter the following lines into
the TkConsole:

set seltextl "resname GLU and not segname PA PB PC PD PE PF PG and name CA"
set seltext2 "name POT"

set seltext3 "segname PA PB PC PD PE PF PG and resid 158"
set sel [atomselect top "($seltextl) or ($seltext2) or ($seltext3d)"]
set dat [$sel get index]

set filename "atoms.ind"

set filelID [open $filename "w"]

puts -nonewline $fileID $dat

close $filelD

$sel writepsf mscs_cat.psf

mol delete top

GPU accelerated molecular dynamics simulations, visualization, and analysis 19

6 (Optional) Call CatDCD, using as input the file you have just created:
catdcd -0 equil _cat.dcd -i atoms.ind equil _gpu.dcd

7 (Optional) Compare the filesize of the new trajectory file you have created with the original
one. How much of a difference did CatDCD make?

8 Load the MscS trajectory using the command:

mol load psf mscs_cat.psf dcd equil_cat.dcd

9 On the menubar, click on Extensions, then under Analysis, select Radial Pair Distribution
Function g(r). A user interface should pop up.

10 Make sure that the field ‘Use Molecule:’ is setrtiscs _cat.psf

11 Notice that you can set the beginning and end frames of the time period that you wish to
calculate g(r) over. The defaults are respectively the first and final frames of the trajectory
you have loaded.

12 You can also alter the histogram parameters to suit your own purposes. For this exercise, just
leave them as the defaults.

13 Check ‘Use PBC’, ‘Display g(r)’ and ‘Use GPU code’.

14 Now, we will calculatey(r) for the positively-charged arginine residue 158, or more specif-
ically, the alpha carbon atom of the residue, and positively-charged potassium ions. In ‘Se-
lection 1’, entemame CA and seghame PA PB PC PD PE PF PG and resid
158 and in ‘Selection 2', entemame POT

15 Click on ‘Compute g(r)’. The resulting(r) plot will be loaded.

16 Alternatively, if you want to run this analysis from the command line, type the following into
TkConsole:

set sell [atomselect top "name CA and segname PA PB PC PD PE PF PG and resid 158"]
set sel2 [atomselect top "name POT"]
measure rdf $sell $sel2 usepbc true

17 Perform the same calculation for negatively-charged glutamate ions instead of potassium by
entering in ‘Selection 2’name CA and protein and not segname PA PB PC
PD PE PF PGbefore clicking on ‘Compute g(r)'.

18 Alternatively, if you want to run this analysis from the command line, type the following into
TkConsole:

set sell [atomselect top "name CA and segname PA PB PC PD PE PF PG and resid 158"]
set sel2 [atomselect top "name CA and protein and not segname PA PB PC PD PE PF PG"|
measure rdf $sell $sel2 usepbc true

GPU accelerated molecular dynamics simulations, visualization, and analysis 20

Figure 6: Pair distribution function of residue 158 and potassium ions. Note the almost uniform
distribution across all lengths

R

Figure 7: Pair distribution function of residue 158 and the alpha carbon of glutamate ions. In
contrast to the case of potassium ions, notice the spike®\ar 7.57. Do you think this result
makes sense?

GPU accelerated molecular dynamics simulations, visualization, and analysis 21

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

M. Jack Borrok, Laura L. Kiessling, and Katrina T. Forest. Conformational changes of
glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution
ligand-bound structuregrotein Sciencegl6(6):1032-1041, 2007.

Csar Augusto F. de Oliveira, Barry J. Grant, Michelle Zhou, and J. Andrew McCam-
mon. Large-scale conformational changes of jitalicétrypanosoma cruzij/italic¢, proline
racemase predicted by accelerated molecular dynamics simulaftimS Comput Bigl
7(10):€1002178, 10 2011.

Barry J. Grant, Alemayehu A. Gorfe, and J. Andrew McCammon. Ras conformational switch-
ing: Simulating nucleotide-dependent conformational transitions with accelerated molecular
dynamics.PLoS Comput Bigl5(3):1000325, 03 2009.

Donald Hamelberg, &ar Augusto F. de Oliveira, and J. Andrew McCammon. Sampling of
slow diffusive conformational transitions with accelerated molecular dynafios.Journal
of Chemical Physigsl27(15):155102, 2007.

Aaftab Munshi. OpenCL Specification Version 1.0, December 2008.
http://www.khronos.org/registry/cl/.

John Nickolls, lan Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-
ming with CUDA. ACM Queue6(2):40-53, 2008.

James C. Phillips, John E. Stone, and Klaus Schulten. Adapting a message-driven parallel
application to GPU-accelerated clusters. 9@ '08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputjigjscataway, NJ, USA, 2008. IEEE Press.

Levi C.T. Pierce, Romelia Salomon-Ferrer, Cesar Augusto F. de Oliveira, J. Andrew McCam-
mon, and Ross C. Walker. Routine access to millisecond time scale events with accelerated
molecular dynamicsJournal of Chemical Theory and Computatj@{9):2997-3002, 2012.

John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated
molecular modeling coming of agd. Mol. Graph. Model.29:116-125, 2010.

John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco,
and Klaus Schulten. Accelerating molecular modeling applications with graphics processors.
J. Comp. Chem28:2618-2640, 2007.

John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus
Schulten. High performance computation and interactive display of molecular orbitals on
GPUs and multi-core CPUs. Rroceedings of the 2nd Workshop on General-Purpose Pro-
cessing on Graphics Processing Units, ACM International Conference Proceeding, Series
volume 383, pages 9-18, New York, NY, USA, 2009. ACM.

Yi Wang, Chris B. Harrison, Klaus Schulten, and J. Andrew McCammon. Implementation
of accelerated molecular dynamics in NAMIZomput. Sci. Discov4:015002, 2011. (11

pages).

	Introduction
	Introduction to GPU Computing
	GPU Computing in NAMD and VMD

	Introduction to Simulations using GPUs
	How to run NAMD using GPUs.
	Looking at the System
	Basic benchmarking of NAMD performance.
	Simulating 2.3 million atoms on CPUs and GPUs.
	Comparison of CPU and GPU performance.

	GPU Enhanced Visualization
	Rendering surfaces the ``old'' way.
	Introducing GPU-accelerated QuickSurf.
	Usefulness of Surface Representations

	GPU Accelerated Molecular Dynamics (aMD)
	``Accelerated'' Molecular Dynamics: Theory.
	Theoretical background
	Compute the aMD parameters from cMD simulations.

	Using aMD & GPUs for long-timescale molecular dynamics.

	GPU Augmented Analysis
	Analysis of GGBP trajectories
	Calculating g(r) using GPUs.

