# First run of the Cyt C2: # Generates a trajectory file by writing to DCD at every frame # #contfrom 1 set outputname cytreduced #firsttimestep 1 # input structure cyt_reduced.psf coordinates SPH_1CXCequi.pdb if {1} { set inputname cyt_red_init bincoordinates $inputname.rst.coor ExtendedSystem $inputname.rst.xsc binvelocities $inputname.rst.vel } paraTypeCharmm on parameters par_all27_prot_lipid_mod.inp numsteps 200 #minimization off if {0} { temperature 298.0 } #fixedAtoms off # force field parameters exclude scaled1-4 1-4scaling 1.0 cutoff 12.0 switching On switchdist 10.0 pairlistdist 14.0 # integrator params # Since we want to keep track of energies at every frame we want # to do the unsual practice of setting the below frequencies all to 1 timestep 1.0 nonbondedFreq 1 fullElectFrequency 1 stepspercycle 10 # Periodic boundary condition if {0} { cellBasisVector1 53 0 0 cellBasisVector2 0 51 0 cellBasisVector3 0 0 51 cellorigin 0 0 0 } wrapWater on wrapAll on wrapNearest on # Particle Mesh Ewald PME yes PMEGridsizeX 54 PMEGridsizeY 54 PMEGridsizeZ 54 # Temperature coupling langevin on # do langevin dynamics langevinDamping 10 # damping coefficient (gamma) of 5/ps langevinTemp 298 # bath temperature #langevinHydrogen no # don't couple langevin bath to hydrogens # Pressure coupling useFlexibleCell yes useConstantRatio yes langevinPiston on langevinPistonTarget 1.01325 # in bar -> 1 atm langevinPistonPeriod 200 langevinPistonDecay 200 langevinPistonTemp 298.0 #fixedAtomsForces off # Harmonic constraints #constraints on #consexp 4 #consref $inputcoor #conskfile $inputcoor #conskcol B # output # # Again, for keeping track of energies at each time frame we will # output at every step # outputname $outputname dcdfile $outputname.dcd XSTfile $outputname.xst binaryoutput no outputEnergies 1 dcdfreq 1 XSTfreq 200 restartname $outputname.rst restartfreq 200