next up previous
Up: VMD Tutorial Previous: Minimization with new parameters

Bibliography

1
MacKerell et. al.
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J. Phys. Chem. B, 102:3586-3616, 1998.

2
Jr. A.D. MacKerell and N. Banavali.
All-atom empirical force field for nucleic acids: 1) parameter optimization based on small molecule and condensed phase macromolecular target data.
J. Comp. Chem., 21:86-104, 2000.

3
J. Wang, P. Cieplak, and P.A. Kollman.
How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules.
J. Comp. Chem., 21:1049-1074, 2000.

4
W. Jorgensen, S. Maxwell, and J. Tirado-Rives.
Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids.
J. Amer. Chem. Soc., 117:11225-11236, 1999.

5
C. Rizzo and W. Jorgensen.
Opls all-atom model for amines: Resolution of the amine hydration problem.
J. Amer. Chem. Soc., 121:4827-4836, 1999.

6
A. Mackerell.
Parametrization of molecules for use of charmm.
http://www.psc.edu/general/software/packages/charmm/tutorial/mackerell/parameters.html, 2003.

7
A. Mackerell.
Workshop on methods and applications of molecular dynamics to biopolymers.
http://www.psc.edu/general/software/packages/charmm/tutorial/index.html, 2003.

8
J. Wang, R.M. Wolf, J. Caldwell, P. Kollman, and D. Case.
Development of a general amber force field.
http://www.amber.ucsf.edu/amber/amber.html, 2003.

9
P. Pulay, G. Fogarasi, F. Pang, and J.E. Boggs.
Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives.
J. Amer. Chem. Soc., 101:2550-2560, 1979.

10
H. Stern, G.A. Kaminski, J.L. Banks, R. Zhou, B.J. Berne, and R.A. Friesner.
Fluctuating charge, polarizable dipole, and combined models: parametrization.
J. Phys. Chem. B, 103:4730-4737, 1999.

11
Chemical Computing Group.
Moe.
Montreal, Canada, 2003.

12
Inc. Wavefunction.
Spartan '02 tutorial and user's guide.
Irvine, CA, 2001.

13
W. Humphrey, A. Dalke, and K. Schulten.
Vmd - visual molecular dynamics.
J. Mol. Graph., 14:33-38, 1996.

14
L. Kale and et. al.
Namd2: Greater scalability for parallel molecular dynamics.
J. Comp. Phys., 151:283-312, 1999.

15
A. Douangamath, M. Walker, S. Beismann-Driemeyer, M. Vega-Fernandez, R. Sterner, and M. Wilmanns.
Structural evidence for ammonia tunneling across the (beta-alpha)8 barrel of imidazole glycerol phosphate synthase bienzyme complex.
Structure, 10:185-193, 2002.

16
B. Chaudhuri, S. Lange, S. Chittur R. Myers, V. Jo Davisson, and J. Smith.
Crystal structure of imidazole glycerol phosphate synthase: A tunnel through a (beta-alpha)8 barrel joins two active sites.
Structure, 9:987-997, 2001.

17
P. O'Donoghue, R. Amaro, and Z. Luthey-Schulten.
On the structure of hish: Protein structure prediction in the context of structural and functional genomics.
J. Struct. Bio., 134:257-268, 2001.

18
R. Amaro, E. Tajkhorshid, and Z. Luthey-Schulten.
Developing an energy landscape for the novel function of a (beta-alpha)8 barrel: Ammonia conduction through hisf.
Proc. Natl. Acad. Sci., in press, 2003.

19
J. Thoden, S. Miran, J. Phillips, A. Howard, F. Raushel, and H. Holden.
Carbamoyl phosphate synthetase: Caught in the act of glutamine hydrolysis.
Biochemistry, 37:8825-8831, 1998.

20
D. Zacharias, P. Murray-Rust, R. Preston, and J. Glusker.
The geometry of the thioester group and its implications for the chemistry of acyl coenzyme a.
Archives of Biochemistry and Biophysics, 222:22-34, 1982.



vmd@ks.uiuc.edu