Quantum Mechanics/ Molecular Mechanics (QM/MM)

Todd J. Martinez

The QM/MM Idea

Monard, et. al, Acc. Chem. Res., 32, 904 (1999)

QM/MM Partitioning

 $E = E_{QM} + E_{MM} + E_{QM/MM}$

The tough part – how do QM and MM interact?

Energy of MM subsystem

Warshel and Levitt, J. Mol. Biol. Field, Bash and Karplus, J. Comp. Chem.

QM Region

What should be used in the QM region?

- Ab Initio
- DFT
- Semiempirical
- Usually, the answer to this is dictated by cost. Most QM/MM simulations to date have used semiempirical QM regions

Why? QM/MM interaction term can be problematic – it is not good to have this boundary close to the chemistry of interest...

Pitfalls in QM/MM

Not clear which force fields to use – much experience with expected accuracy of *ab initio* methods alone and MM methods alone, but not much with QM/MM No direct map from wavefunction to parameters

Mechanical Embedding

Crudest level of QM/MM
Include only Van der Waals in E_{QM/MM}
Useful to impose only steric constraints
Can take advantage of this to isolate effects...

 $H_{QM/MM} = \sum_{i \in MM} V_{ij}^{VdW}(r_i, r_j)$ j∈OM

Electrostatic Embedding

Include electrostatic interaction in H_{QM/MM}
Many possible implementations – best is to evaluate integrals over continuous QM charge density and discrete MM charge density

$$H_{QM/MM} = H_{QM/MM}^{mechanical} + \sum_{i \in MM} q_i \int \frac{\rho_{QM}(r)}{|r - r_i|} dr$$

Oft-used approximation (questionable):

 $H_{QM/MM} = H_{QM/MM}^{mechanical} + \sum q_i q_j (\rho_{QM})$ $i \in MM$ j∈OM

Atomic Charge Schemes

- * "Atoms" are not well-defined in molecules there is no quantum mechanical operator corresponding to an atom.
- This leads to ambiguity in the definition of an atomic charge
- Population Analysis Schemes
 - Basically, sum over all electrons using the basis functions of a given atom
 - Depends on the atom-centered nature of the basis set
 - Breaks down as the basis functions become more delocalized – results do not usually converge with increasing basis set!

Charge Schemes

- Atoms-in-molecules
 - Atoms are defined by "critical points" of the charge density
 - More stable than Mulliken/Lowdin schemes with respect to basis set expansion
 - Implemented in Gaussian
 - Not clear whether stable="correct"

Charge Schemes 2

ESP-Fitting

- Determine charges which reproduce the electrostatic potential generated by the molecule
- If using charges in an MM potential, this appears to be the right way
- But, equations have many solutions, especially when molecule has an "interior"

Charge for solvated ion will be essentially undetermined

Charge Schemes 3

Restricted ESP-Fitting (RESP)

- Attempts to avoid unphysical solutions of ESPcharges
- Requires user guidance in imposing "reasonable" values of charges

Most difficult embedding – cutting across covalent bonds
Almost always required in biological context
Many strategies; still not clear which is best or whether any of

them "work"

Singh & <u>Kollman</u> (1986)

Potential Problems with Link Atom Idea

- Extra degrees of freedom which somehow need to be removed; i.e. the link atom somehow needs to be connected to the MM part of the simulation
- Electronic structure at boundary will be very different if H and the atom it replaces do not have similar electronegativities

Thiel

- Adjust electronegativity of link atom to be equivalent to target atom. Also adjust size of atom
- Can only do this easily with semiempirical models
- Still can cause problems, especially with electronically excited states – the 2s-3s transition of H-like atom is much lower than the 1s-2s transition!

Frozen orbital ideas:

Rivail & co-workers (1994)

 $E_{QM}: AM1 \qquad E_{MM}: AMBER \qquad \qquad E_{QM/MM}: Hybrid MO$

Summary of current approaches

Karplus & co-workers

 E_{QM} : DFT, HF, AM1 E_{MM} : CHARMM $E_{QM/MM}$: Link atoms CHARMM interface with GAMESS or CADPAC

Friesner & co-workers

 E_{QM} : DFT, HF E_{MM} : OPLS-AA $E_{QM/MM}$: Hybrid Orbital Qsite (Macromodel interface with Jaguar)

Gao & co-workers

 E_{QM} : AM1 E_{MM} : CHARMM $E_{QM/MM}$: Hybrid Orbital*

Yang & co-workers

E_{QM}: HF, DFT E_{MM}: CHARMM E_{QM/MM}: Link atom*

*Specific parameterization allows bond length change

Cautions

- Most force fields do not include polarizability, but QM region will
- This can lead to imbalance and amplification of errors
- All covalent embedding schemes should be treated with caution – it is surely possible to break almost every implemented scheme
- One needs to test carefully the dependence of the results on the QM/MM partitioning

Coarser than QM/MM?

 Continuum solvation models – treat solvent as a dielectric continuum (PCM=Polarizable Continuum Model; SCRF=Self-Consistent Reaction Field)

Continuum Solvation

Algorithm:

- Compute "reaction field" polarization of dielectric continuum which generates electric field acting on solute
- Compute electronic wavefunction in presence of new solvent-generated field
- Loop until reaction field does not change
- Issues:
 - Shape of cavity (spherical and ellipsoidal are rarely acceptable at present)
 - Dielectric of solvent zero vs infinite frequency?
 - H-bonding between solvent and solute will not be properly represented
 - Atomic radii used to generate cavity

Supermolecule Approach

Explicit solvent molecules in first solvation shell
Surround with dielectric continuum
Expensive, but can be very accurate
Not feasible if solute is very large

Related approach – QM/MM/PCM

