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Extending Quantum Chemistry
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“Right Answer”

•Extend accuracy and/or size range of quantum chemistry?
•Remember the canon!



Taking the Canon Seriously
Can we estimate the exact answer?
Hypothesis: One- and Many-particle basis set contributions

to energy are additive
Implies that electron correlation and the flexibility of the 

electronic wfn are independent – cannot be true…
Examples: Gaussian-2 (G2); Complete Basis Set (CBS)
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These methods only work well 
when the SBS is big enough to
qualitatively describe correlation,
i.e. polarized double-zeta or preferably 
better

G2/G3 – Curtiss, et al. J. Phys. Chem. 105 227 (2001)
CBS – Montgomery, et al. J. Chem. Phys. 112 6532 (2000)



Beyond the Canon…
Can consider a 3-dimensional version of the canon –

the new dimension is model size/faithfulness
For example, consider the following sequence of models:

Should not ask about total energy, but rather about 
energy differences, e.g. De(OH) in the above examples.  

Always looking for ∆E anyway – total energies are not 
experimentally observable for molecules.
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Extending the Canon - IMOMO

Vreven, et al. J. Comp. Chem. 21 1419 (2000)
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Canon is now a cube…

• Again, assume additivity:

Ereal/LBS/Corr≈Esmall/SBS/HF+
(Esmall/LBS/HF-Esmal/SBS/HF)+
(Esmall/SBS/Corr-Esmall/SBS/HF)+
(Ereal/SBS/HF-Esmall/SBS/HF)

• Can be very sensitive to 
choice of small model…

• Test thoroughly for your problem!



IMOMO Simplified

If we lump basis set and correlation method together, 
we can just write:

, , ,mod ,modhigh real low real high el low elE E E E≈ + −
where high and low are the “high-level” and “low-level”
methods and “real” and “model” are the target and 
truncated molecules 

Example: Proton Affinity – See Lab this afternoon



IMOMO Example
SN2 Reaction Energy

Re, et al. J. Phys. Chem. 105A, 7185 (2001)



IMOMO Example

Errors of approx. 2 kcal/mol per solvent molecule in 
absolute energies; and 1-2 kcal/mol in reaction 
energetics



Multi-Level for Transition States?
• Simple variant of previous ideas

• Optimize w/low-level method (e.g. HF/3-21G)
• Energies w/high-level method (e.g. CCSD/cc-pvtz)
• Predict heat of reaction by difference of high-level E

• Why not do the same for TS?



Why do Rxns have Barriers?
It’s the electrons, …

Simple example: H2+H→H+H2
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“diabats,” often 
reasonably approximated 
as harmonic
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Adiabatic PES – w/barrier

Crudely approx’d as constant
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Shift and Distort…
To see the point, we need to complicate things…

Consider XCH3 + Y- → X- + H3CY

C

H

HH

YX

TS moves!

High-Level

Low-Level • Correlation and basis set
affect frequency and 
relative energy of 
diabatic states



Hope springs eternal…
• It turns out that the MEP does not change much…
• Determine MEP at low-level first
• Search along low-level MEP for maximum to get 

estimate for high-level barrier height – “IRCMax”

Malick, Petersson, and Montgomery, J. Chem. Phys. 108 5704 (1998)

High-Level

Low-Level



Empirical Valence Bond (EVB)
• Parameterize diabats and couplings 
• One potential energy surface per bonding topology
• More potential energy surfaces, but advantage is that

they are simpler than adiabatic surfaces
• Possible to incorporate solvent effects
• Disadvantages 

Diagonalize a matrix to get PES
Number of diabats quickly gets large unless few 

reactions are allowed…

Proposed by Warshel and Weiss
Recent applications – Voth, Hammes-Schiffer, others

Warshel, et al. – J. Amer. Chem. Soc. 102 6218 (1980) 
Cuma, et al. J. Phys. Chem. 105 2814 (2001)



Large Molecules Directly…
• Is there any way to solve electronic SE for 

large molecules w/o additivity approximations?
• O(N) Methods

• Divide and conquer
• Same ideas are applicable in ALL e- structure methods
• Generally harder to implement for correlated methods 
• Available in commercial code (e.g. Qchem)

• Pseudospectral Methods
• Closely related to FFT methods in DFT and wavepacket
dynamics



Pseudospectral Methods-Intro
Integral Contractions are major bottleneck in 

Gaussian-based methods
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Pseudospectral Methods
Problem: # grid pts scales w/molecular size, but 

prefactor is usually very large
Pseudospectral Idea – Don’t think of numerical integration,

but of transform between spaces
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Pseudospectral Performance
• PS advantage depends on Ng/N – smaller is better 
• Not useful for MBS/small molecules
• HF and Hybrid DFT, ≈10x faster/100 atoms
• Advantage partly additive w/locality –

local MP2≈30x faster/100 atoms
•Only available in commercial 

code – Jaguar (Schrödinger)
(accessible at NCSA)

Eg where PS-B3LYP optimization and PS-
LMP2 energy calculations are possible –
active site of cytochrome c oxidase
Moore and Martínez, J. Phys. Chem. 104, 2367 (2000)



Quantum Effects
• Is there any need for quantum mechanics of nuclei in 

large molecules?
• Answer not completely known, but certainly yes for:

• Tunneling – H+ transfer 
• Electronic Excited States – Photo-chemistry/biology
•Classical mechanics only works with one PES?!

What should happen



Traditional Methods

• Grid methods (Kosloff and Kosloff, J. Comp. Phys. 52 35 1983)

• Solve TDSE exactly
• Require entire PES at every time step 
• Only feasible for < 10 degrees of freedom

• Mean-Field (Meyer and Miller, J. Chem. Phys. 70 3214 1979)

• Classical Mechanics on Averaged PES
• Problematic if PES’s are very different
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Spawning Methods
• Classical mechanics guides basis set
• Adaptively increase basis set when quantum effects occur
• Best for t-localized quantum effects 
• Effort ≈ N Classical Trajectories, 

size of N controls accuracy

M. Ben-Nun and T. J. Martínez, Adv. Chem. Phys. 121, 439 (2002)
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Spawning Application

• Transmembrane protein
• 248 AA/7 helices
• Chromophore: all-trans retinal
• 3762 atoms = 11,286 DOF
•Light-driven proton pump
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Light-induced isomerization:



bR Photocycle

M412

bR568 bR* J625
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O640
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200 fs < 1ps

3-5 ps

2 µs

5 ms

70 µsms

ms

Can simulate first 
steps directly

Initial Geometry of RPSB



Sample Results
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