Deca-Alanine Stretching

Free Energy Calculation from Steered Molecular Dynamics Simulations Using Jarzynski's Eqaulity

Sanghyun Park

May, 2002

 λ = end-to-end distance, position of substrate along a channel, etc.

2nd law of thermodynamics: $\langle W \rangle \geq \Delta F = F(\lambda_f) - F(\lambda_i)$

Jarzynski (1997): $\langle \exp(-\beta W) \rangle = \exp(-\beta \Delta F)$ difficult to estimate Derivation of Jarzynski's Equality

Process described by

a time-dependent Hamiltonian H(x,t)

Trajectory $\mathbf{x}_{t} \implies$ External work $\mathbf{W} = \int_{0}^{\tau} d\mathbf{t} \partial_{t} \mathbf{H}(\mathbf{x}_{t}, \mathbf{t})$

If the process

- (1) is Markovian: $\partial_{\dagger} f(\mathbf{x}, \mathbf{t}) = L(\mathbf{x}, \mathbf{t}) f(\mathbf{x}, \mathbf{t})$
- (2) satisfies the **balance** condition: $L(x,t) \exp[-\beta H(x,t)] = 0$

Then, $\exp \{-\beta [F(\tau) - F(0)]\} = \langle exp(-\beta W) \rangle$

Isothermal MD schemes (Nose-Hoover, Langevin, ...) satisfies the conditions (1) and (2).

Cumulant Expansion of Jarzynski's Equality

Helix-Coil Transition of Deca-Alanine in Vacuum

Main purpose:

Systematic study of the methodology of free energy calculation

- Which averaging scheme works best

with small number (~10) of trajectories?

Why decaalanine in vacuum?

- small, but not too small: 104 atoms
- short relaxation time \rightarrow reversible pulling \rightarrow exact free energy

Reversible Pulling (v = 0.1 Å/ns)

Umbrella Sampling w/ WHAM

Weighted Histogram Analysis Method

Biasing potential:

$$U_i(x) = \frac{1}{\Delta t} \int_{t_i}^{t_i + \Delta t} \frac{k}{2} (x - vt)^2 dt = \frac{k}{2} \left(x - vt_i - \frac{v\Delta t}{2} \right)^2 + \frac{k(v\Delta t)^2}{24}$$

Choice of Δt :

$$v\Delta t = \delta x$$
, such that $\exp\left(-\frac{k\,\delta x^2}{2k_B T}\right) \le \varepsilon \to 0$

Weighted Histogram Analysis Method

 $P_{0i}(x), i = 1, 2, ..., M$: overlapping local distributions

 $P_0(x)$: reconstructed overall distribution

Underlying potential: $U_0(x) = -k_B T \ln P_0(x)$

To reconstruct
$$P_0(x)$$
 from $P_{0i}(x)$ $(i=1,2,...,M)$

$$P_0(x) = \frac{\sum_{i=1}^{M} P_{0i}(x) N_i}{\sum_{i=1}^{M} \frac{Z_0}{Z_{0i}} P_i(x) N_i}; \qquad \frac{Z_0}{Z_{0i}} = \int_{x_0}^{x_f} P_0(x) P_i(x) dx ,$$

 N_i = number of data points in distribution *i*,

$$P_i(x) = \frac{1}{\Delta t} \int_{t_i}^{t_i + \Delta t} \exp[-U_s(x, t)/k_B T] dt$$

Biasing potential: $U_s(x,t) = k(x-vt)^2$

NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group, Beckman Institute, UIUC

II. Finding Reaction Paths

Typical Applications of Reaction Path

Chemical reaction

Protein folding

Conformational changes of protein

Reaction Path

steepest-descent path for simple systems

?

Reactions are **stochastic**: Each reaction event takes a different path and a different amount of time.

 \Rightarrow Identify a representative path, revealing the reaction mechanism.

Reaction Path Based on the Mean-First Passage Time

Reaction coordinate r(x): the location of x in the progress of reaction

 $r(x) = MFPT \tau(x)$ from x to the product

MFPT $\tau(\mathbf{x}) \leftarrow$ average over all reaction events

reaction path // $-\nabla \tau$

Brownian Motion on a Potential Surface

Smoluchowski equation: $\partial_{+}p = D\nabla \cdot (e^{-\beta U} \nabla (e^{\beta U} p))$

 \rightarrow -D $\nabla \cdot (e^{-\beta U} \nabla \tau) = e^{-\beta U}$

Brownian Motion on a Potential Surface

β = 1

β = 8

Brownian Motion on a Potential Surface

