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Jarzynski’'s Equality
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A= N A= M)
(D ’
heat Q
work W

A = end-to-end distance, position of substrate along a channel, etc.

2nd law of thermodynamics: (W) = AF = F(A\¢) - F(\)

Jarzynski (1997):  (exp (-pW)) = exp (-BAF)
difficult to estimate



Derivation of Jarzynski’'s Equality

Process described by
a time-dependent Hamiltonian H(x,1)

Trajectory X, :> External work W = for dt 9,.H (x;,1)

If the process
(1) is Markovian: d,f(x,t) = L(x,1) f(x,1)
(2) satisfies the balance condition: L(x,t) exp[-pH(x,1)]1=0

Then, exp{-p[F(t)-F(0) 1} = ( exp (-BW))

Isothermal MD schemes (Nose-Hoover, Langevin, ...)
satisfies the conditions (1) and (2).




Cumulant Expansion of Jarzynski’'s Equality

AF = - (1/B) log (eW) statistical error & truncation error

(W) - (B/2) ((W?) -(W)?)
+ (B2/6) ((WP) - (W2EKW) + 2(W)° ) + -

shift ~ o2 / kT

| W x pw) | shift/width ~ o / kyT
W2 x p(W) width o T
| W3 x p(W) | big in strong nonequilibrium




Helix-Coll Transition of Deca-Alanine in Vacuum

Main purpose:
Systematic study of the methodology of free energy calculation
- Which averaging scheme works best
with small number (~10) of trajectories ?
Why decaalanine in vacuum?
- small, but not too small: 104 atoms
- short relaxation time — reversible pulling — exact free energy



Typical Trajectories
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Reversible Pulling (v =0.1 A/ns)
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PMF and Protein Conformations




10 blocks of 10

Irreversible Pulling (v =10 A/ns) traiectories
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Irreversible Pulling (v =100 A/ns))
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Umbrella Sampling w/ WHAM
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Weighted Histogram Analysis Method

x(t)
| Pi(x)
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Biasing potential:

A k AN k(vAr)?
U(JC) Af tﬁ(x Vf) df = E(x_vti_y__) 2 (V )

Choice of Ar:

vAt = ox, such that exp(—



Weighted Histogram Analysis Method

P(x) Pu®).i=12.,M: overlapping
local distributions

P,(x): reconstructed overall
distribution

Underlying potential:
Uyx) = -kzT In P,(x)

To reconstruct Py(x) from P,(x) (i=1,2,....M)

, Zﬂj- P()(ZC) ;—\r Z(] -
Po(z) = ==L, 00 0 20 = (% Py(x) Py(x)de
| o Z?;R ()N Z0; '/'I"'“ 2

N, =number of data points in distribution i,

|
Pi(x) = th:ﬁ& exp|—Usg(z,t)/kpT|dt

Biasing potential: U (x,¢) = k(x-vt)?

NIH Resource for Macromolecular Modeling and Bioinformatics
Theoretical Biophysics Group, Beckman Institute, UIUC



SMD-Jarzynski Umbrella Sampling

(equal amount of; simulation time)
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simple analysis coupled nonlinear equations (WHAM)
uniform sampling of the reaction coordinate * nonuniform sampling of the reaction coordinate



Il. Finding Reaction Paths



Reaction Path - Background

Typical Applications of Reaction Path

* Chemical reaction
* Protein folding

» Conformational changes of protein



Reaction Path - Background

Reaction Path

steepest-descent path
for simple systems complex systems

y

N N

Reactions are stochastic: Each reaction event takes a different path
and a different amount of time.

= Identify a representative path, revealing the reaction mechanism.



Reaction Path - Accomplishments

Reaction Path Based on the Mean-First Passage Time

Reaction coordinate r(x):
the location of x in the progress of reaction

r(x) = MFPT t(x) from x to the product

MFPT t(x) < average over all reaction events

reaction path // -V=



Reaction Path - Accomplishments

Brownian Motion on a Potential Surface

‘rhr'ee-ole potential U(x)
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Smoluchowski equation: d,p = DV-(e Y V(ef!V p))
— -DV:(ePVVrt)=ehV



Reaction Path - Accomplishments

Brownian Motion on a Potential Surface
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Reaction Path - Accomplishments

Brownian Motion on a Potential Surface




