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Simulated Cooling of UbiquitinSimulated Cooling of Ubiquitin
� Proteins function in a narrow (physiological) 

temperature range. What happens to them when the 
temperature of their surrounding changes significantly 
(temperature gradient) ?

� Can the heating/cooling process of a protein be 
simulated by molecular dynamics ? If yes, then how?

0T

1T � What can we learn from the 
simulated cooling/heating of 
a protein ?



Nonequilibrium (Transport) PropertiesNonequilibrium (Transport) Properties

! macromolecular properties of proteins, which are 
related to their biological functions, often can be 
probed by studying the response of the system to an 
external perturbation, such as thermal gradient

! �small� perturbations are described by linear response 
theory (LRT), which relates transport (nonequilibrium) 
to thermodynamic (equilibrium) properties

! on a �mesoscopic� scale a globular protein can be 
regarded as a continuous medium  ⇒ within LRT, the 
local temperature distribution T(r,t) in the protein is 
governed by the heat diffusion (conduction) equation      
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Atomic       Atomic       vsvs MesoscopicMesoscopic

� each atom is treated 
individually 

� length scale ~ 0.1 Ǻ

� time scale ~ 1 fs

� one partitions the protein 
in small volume elements 
and average over the 
contained atoms   

� length scale ≥ 10 Ǻ = 1nm

� time scale ≥ 1 ps



Heat Conduction EquationHeat Conduction Equation
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coefficient

thermal conductivity
specific heat

mass density

� approximate the protein with a 
homogeneous sphere of radius 
R~20 Ǻ

� calculate T(r,t) assuming initial 
and boundary conditions:

0( ,0)
( , ) bath

T r T for r R
T R t T

= <
=

R0
r



Thermal diffusion coefficient  D=?Thermal diffusion coefficient  D=?

D is a phenomenological transport coefficient which needs 
to be calculated either from a microscopic (atomistic) 
theory, or derived from (computercomputer) experimentexperiment

�Back of the envelope� estimate:
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From MD simulation !From MD simulation !



Solution of the Heat EquationSolution of the Heat Equation
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averaged over the entire protein!averaged over the entire protein!



How to simulate cooling ?How to simulate cooling ?
� In laboratory, the protein is immersed in a coolant and the 

temperature decreases from the surface to the center

� Cooling methods in MD simulations:

1.1. Stochastic boundary methodStochastic boundary method

2. Velocity rescaling  (rapid cooling, biased velocity 
autocorrelation)

3. Random reassignment of atomic velocities according 
to Maxwell�s distribution for desired temperature 
(velocity autocorrelation completely lost)
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NAMD User Guide: Temperature ControlNAMD User Guide: Temperature Control

6.3 Temperature Control and Equilibration . . . .50 
6.3.1 Langevin dynamics parameters . . . . . 
6.3.2 Temperature coupling parameters . . . 
6.3.3 Temperature rescaling parameters . . . 
6.3.4 Temperature reassignment parameters .



Stochastic Boundary MethodStochastic Boundary Method
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coolant layer of atomscoolant layer of atoms
motion of atoms is subject 
to stochastic Langevin
dynamics
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follow Newtonian dynamics



22--66--heat_diffheat_diff: Simulated Cooling of UBQ : Simulated Cooling of UBQ 

Start from a pre-equilibrated system of UBQ in a water sphere of radius 26Ǻ 
mol load mol load psfpsf ubq_ws.psfubq_ws.psf namdbinnamdbin ubq_ws_eq.restart.coorubq_ws_eq.restart.coor

Create the a coolant layer of atoms of width 4Ǻ

Select all atoms in the system:
set set selALLselALL [[atomselectatomselect top all]top all]

Find the center of the system:
set center [measure center $set center [measure center $selALLselALL weight mass]weight mass]

Find X, Y and Z coondinates of the system's center:
foreachforeach {{xmassxmass ymassymass zmasszmass} $center { break }} $center { break }



22--66--heat_diffheat_diff: Simulated Cooling of UBQ: Simulated Cooling of UBQ

Select atoms in the outer layer:
set set shellSelshellSel [[atomselectatomselect top "not ( top "not ( sqr(xsqr(x--$xmass$xmass) + ) + sqr(ysqr(y--$ymass$ymass) + ) + 
sqr(zsqr(z--$zmass$zmass) <= sqr(22) ) "]) <= sqr(22) ) "]

Set beta parameters of the atoms in this selection to 1.00:
$$shellSelshellSel set beta 1.00set beta 1.00

Select the entire system again:
set set selALLselALL [[atomselectatomselect top all]top all]

Create the pdb file that marks the atoms in the outer layer by 1.00 in
the beta column:
$$selALLselALL writepdbwritepdb ubq_shell.pdbubq_shell.pdb



NAMD configuration file: NAMD configuration file: ubq_cooling.confubq_cooling.conf
# Spherical boundary conditions# Spherical boundary conditions
# Note: Do not set other bondary conditions and PME if spherical 
# boundaries are used
if {1} {
sphericalBC on
sphericalBCcenter 30.30817, 28.80499, 15.35399
sphericalBCr1       26.0
sphericalBCk1       10
sphericalBCexp1     2
}

# this is to constrain atoms# this is to constrain atoms
if {1} {
constraints                     On
consref ubq_shell.pdb
consexp 2
conskfile ubq_shell.pdb
conskcol B
}



NAMD configuration file: NAMD configuration file: ubq_cooling.confubq_cooling.conf
# this is to cool a water layer this is to cool a water layer 
if {1} {
tCouple on
tCoupleTemp 200
tCoupleFile ubq_shell.pdb
tCoupleCol B
}

RUN THE SIMULATION FOR 10 ps

(5000 steps; timestep = 2 ps)
The (kinetic) temperature T(t) is extracted from the 
simulation log (output) file; it can be plotted directly with

namdplot TEMP ubq_cooling.log
Is this procedure of getting Is this procedure of getting T(tT(t) correct ?) correct ?



Determine D by Fitting the DataDetermine D by Fitting the Data
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Thermal Conductivity of UBQThermal Conductivity of UBQ
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