ATPase Synthase - A Molecular Double Motor
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Enforcing domain rotation in the bc, complex

Events during torque application to ISP head
Izrailev et al., Biophys J.,
77:1753-1768 (1999)
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Mechanisms of Rotatory Molecular
Motor that Converts Voltage (proton L
gradient) into ATP Synthesis |
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Animation of the ATP Synthase




Adenosine Triphosphate (ATP) Synthase
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Mechanism of ATP Hydrolysis in F1 ATPase
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Reaction Mechanism of

ATP Hydrolysis

Role of protein side groups

Interaction with reactant Control of TS barrier
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One shaft, two motors: Let’s look at F1
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Soluble part, F,-ATPase

-Synthesizes ATP when torque is applied
>to it (main function of this unit)
-Produces torque when it hydrolyzes
ATP (not main function)

Membrane-bound part,
, Ky Complex

- Produces torque when positive proton

\ .

gradient across membrane(main
function of this unit)

- Pumps protons when torque 1s applied
(not main function)

Torque 1s transmitted between the motors via the central stalk.



F1-ATPase: A Rotary Motor Made of a Single Molecule

http://www.k2.ims.ac.jp/F1movies/F1Prop.htm

Actin filament

Streptavidin

22 nm

To observe rotation, the three beta subunits were fixed on a glass surface through
histidine tags engineered at the N terminus.[To the putative rotor subunit gamma, a
micrometer-sized actin filament was attached through streptavidin.[When ATP was
added, the actin filament rotated continuously clockwise (movie).[llNote that, in this
movie, the rotation occurs around the middle of the filament.[IF you hold an end of a
long rod, you could make a fake rotation by twisting your wrist.[If you hold the
middle, however, you have to rotate yourself to keep the rod rotating.[Thus, the
propeller rotation in this movie shows that the __ subunit really slides against the

surrounding alpha,beta, subunits over finite angles.
Moji, H. et al., Nature 386, 299-302 (1997).




F1-ATPase: A Rotary Motor Made of a Single Molecule

http://www.k2.ims.ac.jp/F1movies/F1Prop.htm

From Yoshida web site

Actin filament

Streptavidin

22 nm

To observe rotation, the three beta subunits were fixed on a glass surface through
histidine tags engineered at the N terminus.To the putative rotor subunit gamma, a
micrometer-sized actin filament was attached through streptavidin.[When ATP was
added, the actin filament rotated continuously clockwise (movie).[llNote that, in this
movie, the rotation occurs around the middle of the filament.[IF you hold an end of a
long rod, you could make a fake rotation by twisting your wrist.[If you hold the
middle, however, you have to rotate yourself to keep the rod rotating.[Thus, the
propeller rotation in this movie shows that the __ subunit really slides against the

surrounding alpha,beta, subunits over finite angles.
Moji, H. et al., Nature 386, 299-302 (1997).




Revolutions

Stepping Rotation of F1-ATPase at Low
ATP Concentrations

12
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Time (s)
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http://www.k2.ims.ac.jp/F1movies/F1Step.htm

[ATP] = 20 nM [ATP] = 200 nM

At low ATP concentrations, F.
rotates in discrete 120° steps.[IThe steppml;

rate is proportional to the ATP concentration,
indicating that each step is driven by one and
only one ATP molecule.lllh the movie at 20 nM
ATP, there is an instant where the F motor
makes a mistake and steps backward
(clockwise).IA molecular machine
occasionally makes mistakes, and its
operation is always stochastic as seen in the
figure at left.[BBecause of the stochasic
nature, one can never synchronize multiple
molecular machines.ITo analyze their
mechanism, therefore, one needs to observe
individual molecules closely.

Yasuda, R et al.MCel/ 93, 1117-1124 (1998).




From Yoshida web site

Substeps in F1 Rotation

http://www.k2.ims.ac.jp/FImovies/F1Substp.htm

Time (ms)

At speeds below the maximal, we were able to resolve substeps with an amplitude
of 90° and 30° in the 120° step powered by the hydrolysis of one ATP molecule
(see figure at left).[lIF you have very good eyes, you may be able to detect some of
the substeps in the actual images on the right.[IThe 90° substep turned out to be
driven by binding of ATP to a catalytic site on F; and the 30° substep by the

release of a hydrolysis product(s).0lThe hydrolysis reaction per se appeared to be
mechanically almost silent.

[Yasuda, R. et al., Nature 410, 898-904 (2001).




Let’s look at F1

Torque is transmitted between the motors via the central stalk.



A rough 1dea of central stalk’s tasks:

TP -> E -> DP -> TP (1994 Walker, ] BMF)

Interpolation of observed states

y-phosphate / orthophosphate
1s fixed at TP position

ADP-P, \

ATP

h
ATP ADP-P,



Assembling ATP Synthase F,

o Start with DCCD-inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
pProcessors.
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Torque application to F,

Torque 1s applied to the central stalk atoms at the F,-F_ interface to
constrain their rotation to constant angular velocity w = 24 deg/ns.

central stalk,
vO€

applied torque

0.0 to 5.0 ns (0 to 120 deg) of torqued F,
rotation, w = 24 deg/ns.



Stalk analysis

Using best RMSD rotation fit for stalk sections binned along axis direction
at 3.0 ns (72 deg) of rotation, we observe:

* slowed torque transmission along central stalk
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Winding of vy coiled-coil

t= 3.0 ns
0= 72°

Different coupling for the two y helices:
1—50, partially via 6 subunit
197—272, directly to F




Rotation Produces Synthesis-like Events (1)

Around 3 ns (72 deg) of rotation, we observe:
* slowed torque transmission along central stalk
e cooperative interactions at stalk - 3 subunit interfaces

[B1p push this active site open
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Rotation Produces Synthesis-like events (2)

Around 3.0 — 3.5 ns (72 — 84 deg) of rotation, we observe:
* slowed torque transmission along central stalk

* opening and closing motions as expected
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Rotation Produces Synthesis-like Events (3)

At 3.0 ns (72 deg) of rotation, we observe:
* slowed torque transmission along central stalk
* unbinding from ATP at the P, catalytic site

0 ns: active site closed
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Fo ATP synthase

Asp 61 (D61) side groups take protons

Transmembrane F | unit (ab,c,,):
converts proton motive force into
mechanical rotation of central stalk




Suggested Mechanism of Proton
Translocation

(R.H. Fillingame, 2002)



Key Amino Acids Participating in
Electro-Mechanical Motor

Serine

Ser =S

arginine

Arg=R

asparagine

Asn =N

aspartate

Asp=D




Structural Model of E. coli F,

Cqo (Fillingame et al, 1999, NMR)
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Forced Rotation of the c10 Subunit

Forces were applied to all
backbone atoms of ¢,

angle (deg)

504 | ! applied torques
7,=10,500 kcal M
Tz 5,050 kcal M
T,= 2,030 kcal M
7,= 1,000 kcal M

time (ns)

Estimated friction coefficient
C ~10° kcal/(M sec)



Salt Bridge Arg,,,-Asp, 1s Formed

With only one Aspg, residue deprotonated, SMD rotation of
c;o breaks the structure apart.

No restraints Subunit ¢ 1s restrained




To minimize steric hindrance (critical on
nanosecond time scale), helix was forced
to rotate in a reptation tube (local pivot
points and directors).



Salt Bridge Can Be Transfered

4 The salt bridge can
«  be transferred by the
concerted rotation of

the c¢,, complex and

{r’ / - t-"
gﬁ (’T the outer TMH of
- B e = i
o _h"/“ subunit ¢




Stochastic model

Q 6 degrees of
phb freedom:
0,, 0, 0,, 05,0, are
TMH rotation
angles; 0, - position

-- of the a subunit
Each Asp61 can be in

either of two chemical
states (protonated or
deprotonated).

hydroph. + Uintemal] + Tli (t )




Stochastic Simulations of F Operation
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Time evolution of rotation angles 0, (black), 0, (red), 6, (green),
and 0, (blue). Motor rotation speed 1s close to physiological.




