

NSF Summer School UIUC 2003Molecular Machines of theLiving Cell : PhotosyntheticUnit from Light Absorption toATP SynthesisMelihThorstenSenerIoanKosztin

Ana Damjanovic Theoretical Biophysics Group (also Sanghyun Park, Deyu Lu, and Ulrich Kleinekathoefer)

Research Opportunities in the Teraflop Era

Towards Larger Molecules

BPTI 3K atoms

Estrogen Receptor 36K atoms (1996)

> ATP Synthase 327K atoms (2001)

• Studying protein-protein and protein-nucleic acid recognition and assembly.

• Investigating integral functional units (membrane proteins, signal transduction, motors, bioenergetic apparatus).

• Bridging the gap between computationally feasible and functionally relevant time scales.

• Combining classical molecular dynamics simulations with quantum chemical forces.

• Describing integral cell functions.

Study of integral cell functions:

gene storage, regulation, and expression; protein synthesis and degradation; energy conversion and storage; cell motion; cell signaling; metabolic pathways; ...

Habitats of Photosynthetic Life Forms

Photosynthetic Apparatus of Purple Bacteria

RC - Photosynthetic Reaction Center

LH – Light Harvesting Complex

Structure of RC+LH-I+Cyt System

bc

cytochrome c₂

Focussing on the Structure of RC + LH-I

System of Water - Lipids - Protein

Lipids only

Lipids and Proteins

Proteins only

Proteins and Chromophores

Chromophores only

Chromophores only

Electron Transfer Chain in RC + Cyt c Complex

Role of the Protein Matrix on Electron Transfer

Role of Thermal Disorder on Electron Transfer in the Photosynthetic Reaction Center

Electron Transfer Process Coupled to the Protein Matrix

We assumed that the electron transfer $Q_A^- Q_B^- > Q_A Q_B^-$ is coupled to an ensemble of oscillators representing the protein matrix

Hamiltonian
$$\hat{H}_{qo}^{(s)} = \begin{pmatrix} \hat{H}_r^{(s)} & v \\ v & \hat{H}_p^{(s)} + E \end{pmatrix}$$

Protein matrix is a bath of oscillators linearly coupled to the electron transfer according to

$$\hat{H}_r = \sum_j \left(\frac{\hat{p}_j^2}{2M_j} + \frac{1}{2} M_j \omega_j^2 q_j^2 \right)$$
$$\hat{H}_p = \sum_j \left(\frac{\hat{p}_j^2}{2M_j} + \frac{1}{2} M_j \omega_j^2 \left(q_j - \frac{c_j}{M_j \omega_j^2} \right)^2 \right)$$

Dong Xu and Klaus Schulten. Chemical Physics, 182: 91--117, 1994.

Klaus Schulten. In D. Bicout and M. J. Field, editors, Proc. Ecole de Physique des Les Houches, pp 85--118, Les Editions de Physique, Springer, Paris, 1995.

Klaus Schulten. Science, 290:61--62, 2000.

Electron Transfer Process Coupled to the Protein Matrix

Rate for an ensemble of oscillators (spin boson model, Legett et al)

$$k_{qb}(R \to P) = \frac{v^2}{\hbar^2} \int_{-\infty}^{+\infty} dt \; e^{itE/\hbar} \; e^{iQ_1(t)/\pi\hbar} \; e^{-Q_2(t)/\pi\hbar}$$

Relaxation rate

$$k_{\rm rel} = \frac{2v^2}{\hbar^2} \int_0^{+\infty} dt \cos(-tE/\hbar) \cos(Q_1(t)/\pi\hbar) e^{-Q_2(t)/\hbar}$$
$$Q_1(t) = \frac{\pi}{2} \sum_j \frac{c_j^2}{\hbar\omega_j^3} \sin\omega_j t$$
$$Q_2(t) = \frac{\pi}{2} \sum_j \frac{c_j^2}{\hbar\omega_j^3} \coth\frac{\hbar\omega_j}{2kT} [1 - \cos(\omega_j t)]$$

 $(t)/\pi\hbar$

But we didn't know all the coupling constants c_i? All we needed to know was J

$$J(\omega) = \frac{\pi}{2} \sum_{j} \frac{c_j^2}{\omega_j} \,\delta(\omega - \omega_j) \frac{Q_1(t)}{Q_2(t)} = \frac{\int_0^\infty d\omega \,\omega^{-2} J(\omega) \sin\omega t}{Q_2(t)} = \frac{\pi}{2} \int_0^\infty d\omega \,\omega^{-2} J(\omega) \coth\frac{\hbar\omega}{2kT} (1 - \cos\omega t)$$

Electron Transfer Process Coupled to the Protein Matrix

Relaxation rate

$$k_{rel} = \frac{2v^2}{\hbar^2} \int_0^{+\infty} dt \cos(tE/\hbar) \cos(Q_1(t)/\pi\hbar) e^{-Q_2(t)/\pi\hbar}$$

$$Q_1(t) = \int_0^{\infty} d\omega \, \omega^{-2} J(\omega) \sin\omega t$$

$$Q_2(t) = \frac{\pi}{2} \int_0^{\infty} d\omega \, \omega^{-2} J(\omega) \cosh\frac{\hbar\omega}{2kT} (1 \cos\omega t)$$

$$\frac{J(\omega)}{\omega} = \frac{\sigma^2}{k_B T} \int_0^{\infty} dt \, C(t) \cos\omega t$$

$$C_{\epsilon\epsilon}(t) = \frac{\langle (\epsilon(t) - \langle \epsilon \rangle) (\langle \epsilon(0) - \langle \epsilon \rangle) \rangle}{\langle \epsilon(0) - \langle \epsilon \rangle \rangle^2}$$
energy gap correlation function

$$\sigma \text{ rms deviation of energy gap}$$

$$k_{rel} = \frac{\sqrt{(\omega)}{4\pi} \int_0^{\infty} dt \, C(t) \cos\omega t$$

$$k_{rel} = \frac{\sqrt{(\omega)}{4\pi} \int_0^{\infty} dt \, C(t) \cos\omega t$$

$$k_{rel} = \frac{\sqrt{(\omega)}{4\pi} \int_0^{\infty} dt \, C(t) \cos\omega t$$

$$k_{rel} = \frac{\sqrt{(\omega)}{4\pi} \int_0^{\infty} dt \, C(t) \cos\omega t$$

$$k_{rel} = \frac{\sqrt{(\omega)}{4\pi} \int_0^{\infty} dt \, C(t) \cos\omega t$$

Temperature Dependence of Electron Transfer Rate

Dong Xu and Klaus Schulten. Chemical Physics, 182: 91--117, 1994.

Klaus Schulten. In D. Bicout and M. J. Field, editors, Proc. Ecole de Physique des Les Houches, pp 85--118, Les Editions de Physique, Springer, Paris, 1995.

Klaus Schulten. Science, 290:61--62, 2000.

Coupling protein motion to electron transfer via MD

• Cytochrome c_2 from purple bacterium *Rhodobacter sphaeroides*.

• Serves as electron carrier between bc1-complex and reaction center

When the gene encoding cytochrome c_2 is deleted from *Rb. sphaeroides*, the bacterium is unable to grow photosynthetically.

The energy gap function

$$\varepsilon(t) = E_P(t) - E_R(t)$$

- *R*: reactant state (reduced)
- *P*: product state (oxidized)

Tutorial:

You will do two consecutive NAMD runs.

- obtain an MD trajectory
- evaluate $\mathcal{E}(t)$ at each frame of the first trajectory through a second NAMD run

MD simulation of the electron transfer process

- ~12000 atoms solvated system
- Already minimized and equilibrated
- You will continue from a restart file (so, you do not need to worry about velocity relaxation)

The energy gap function

Result from the first 500fs

The energy gap function

The energy gap function

Genomic Organization of the Light Harvesting Complexes

Photosynthetic apparatus of purple bacteria

Xiche Hu¹, Thorsten Ritz², Ana Damjanović², Felix Autenrieth² and Klaus Schulten^{2,*}

¹ Department of Chemistry, University of Toledo, Toledo, OH 43606, USA ² Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

I. Introduction 2

- 2. Structure of the bacterial PSU 5
 - 2.1 Organization of the bacterial PSU 5
 - 2.2 The crystal structure of the RC 9
 - 2.3 The crystal structures of LH-II II
 - 2.4 Bacteriochlorophyll pairs in LH-II and the RC 13
 - 2.5 Models of LH-I and the LH-I–RC complex 15
 - 2.6 Model for the PSU 17

3. Excitation transfer in the PSU 18

3.1 Electronic excitations of BChls 22

