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Initial remarks

mathematical explanations will be avoided.

equations will be presented but not be discussed in
detail.

lecture will conclude with brief demonstration of use of
Mathematica notebooks.
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Simulation methodologies

Uncontrolled approximations—modeling

predetermined models,

computed models, e.g., PMF + diffusion coeff.

Controlled approximations—algorithms

sampling protocols,

integrators/propagators,

minimizers,

fast force evaluation methods.
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Good references

T. Schlick, Molecular Modeling and Simulation: An
Interdisciplinary Guide, 2002,
http://monod.biomath.nyu.edu/index/book.html

M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids, 1987,

A. R. Leach, Molecular Modelling: Principles and
Applications, 1996,

D. Frenkel and B. Smit, Understanding Molecular
Simulation: From Algorithms to Applications, 1996.

For others see Appendix C of the first.
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Outline

I. Models and aims
classical atomistic model
aims
enhanced models—polarizable forces
reduced models

II. Fast force evaluation

III. Numerical integrators for long-time kinetics

IV. Propagators for thermodynamics
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Equations of motion

Atomic positions ~ri obey

mi
d2

dt2
~ri(t) = −∇iU(~r1(t), ~r2(t), . . . , ~rN (t)), i = 1, 2, . . . , N,

where

mi are masses,

the potential energy U(~r1, ~r2, . . . , ~rN ) is a sum of
O(N) potentials for bonded forces,
O(N2) potentials for nonbonded forces.

NSF Summer School on Theoretical and Computational Biophysics – p.6



Concise notation

x collection of positions ~ri,

M diagonal matrix of masses,

v collection of velocities,

p = Mv collection of momenta,

F (x) = −∇U(x) collection of forces.

Equations are a Hamiltonian system,

d
dtx(t) = M−1p(t), d

dtp(t) = F (x(t)),

with Hamiltonian H(x, p) = 1
2pTM−1p + U(x).
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Periodic electrostatics

A periodic box of dimensions L × L × L replicated infinitely
far in all directions.

U el(x) =
1

2

∑

~n

N
∑

i=1

N
∑

j=1

′ qiqj

ε0|~rj − ~ri + ~n|

where qi are partial charges,
ε0 is the dielectric constant, and
~n are lattice points obtained as integer multiples of L.
Primed sum omits excluded pairs (i, j) including j = i

for ~n = ~0.

This sum is not well defined.
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Ewald sum

Imagine, instead, that the replicas merely fill a huge sphere,
outside of which the dielectric coefficient is εs.
In the limit of an infinite sphere

U el(x) =
1

2ε0

∑

i,j

qiqj

∑

~n

′ erfc(β |~rj − ~ri + ~n|)
|~rj − ~ri + ~n|

+
1

2πε0L3

∑

~m6=~0

exp(−π2|~m|2/β2)

|~m|2

∣

∣

∣

∣

∣

∣

∑

j

qj exp(2πi~m · ~rj)

∣

∣

∣

∣

∣

∣

2

− 1

2ε0

∑

i,j

′′qiqj
erf(β |~rj − ~ri|)

|~rj − ~ri|
+

2π

(ε0 + 2εs)L3

∣

∣

∣

∣

∣

∑

i

qi~ri

∣

∣

∣

∣

∣

2

.

The first three terms constitute the Ewald sum (1921).
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Aims: kinetics

The equations of motion are chaotic. Exercise 1
To make sense of trajectories,

incorporate uncertainty stochastically
and ask only for averages:

To compute expectation of A(Γ(t)) where Γ =

[

x

p

]

,

use
1

Ntrials

Ntrials
∑

ν=1

A(Γ(ν)(t)).

where the Γ(ν)(0) are random with p.d.f. ρ0(Γ).
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Aims: thermodynamics

Thermodynamics calculations (structure and energetics)
can be expressed

∫

A(Γ)ρ(Γ) dΓ

for some given p.d.f. ρ(Γ). For constant-T , constant-V

ρ(Γ) ∝ e−H(Γ)/(kBT ).

Better for biomolecules is constant-T , constant-P , for which

ρ(x, p, V ) ∝ e−(H(x,p)+PV )/(kBT ), 0 < V < +∞,

~ri ∈ box scaled to have volume V.

Phase space is sampled by a propagator.
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Constraints

High frequencies limit integrator efficiency.
Constraining bond lengths and angles removes them.
Write these constraints as

g(x(t)) = 0

where gk(x) = ‖~rj(k) − ~ri(k)‖2 − l2k, k = 1, 2, . . . , µ.
Constraints determine Lagrange multipliers λ(t)
in the equations of motion

d
dtx(t) = M−1p(t), d

dtp(t) = F (x(t)) + ∂xg(x(t))Tλ(t)

where ∂xg is the Jacobian matrix for g.
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Implicit solvent

Dynamical equations are those of Langevin dynamics:

d
dtx(t) = v(t), M d

dtv(t) = −∇U(x(t))

− kBTD(x(t))−1v(t) +
√

2kBTD1/2(x(t))−T d
dtW (t)

where U(x) includes a Poisson-Boltzmann solution,
D = D1/2D

T

1/2 is a diffusion tensor, and
d
dtW (t) is standard white noise, i. e., W (t) is Gaussian

with EW (t) = 0 and EWi(s)Wj(t) = min{s, t}δij .
Implicit solvent deviates from explicit solvent
unless four layers of explicit solvent are included.

Cheaper and less accurate is a generalized Born potential.
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Outline

I. Models and aims

II. Fast force evaluation
nonperiodic bonded forces
periodic electrostatic forces
polarizable forces
implicit solvent electrostatics

III. Numerical integrators for long-time kinetics

IV. Propagators for thermodynamics
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Multilevel methods for electrostatics

cell methods, such as the fast multipole method, based
on an oct-tree decomposition of space, and

grid methods, such as the Brandt-Lubrecht fast
summation method, based on a hierarchy of grids.

Both have three elements:

1. separation of length scales:

short-range + slowly varying.

with short-range interactions calculated directly.

2. coarsening: approximating the slowly varying part with
fewer values on a lattice.

3. recursive application of 1. and 2.
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Cell methods

The effect of a charged particle is

represented directly at a short length scale,

is pooled with other charges and represented by a
Taylor expansion at longer length scales.

(Use of harmonic polynomials reduces number of terms.)

particles level 4 level 3 level 2
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Grid methods

A multiple grid method separates length scales by splitting
pair potentials into short-range and slowly varying parts:

1

r
=

0
0

r

1/r − (softened 1/r)

+

0
0

r

softened 1/r

Coarsening is by interpolation from a grid.

Continuous forces are easily obtained.
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Comparison

The multipole method is not usable unless high accuracy is
requested due to discontinuous forces.
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  8 terms in FMA
12 terms in FMA
16 terms in FMA

In one comparison, the multiple grid method is 4 times as

fast as the fast multipole method for MD.

NSF Summer School on Theoretical and Computational Biophysics – p.18



Continuous forces

Exercise 4

NAMD note. For van der Waals forces use switching on to get a C1

force and choose

switchdist < cutoff < pairlistdist.

If the margin pairlistdist − cutoff is not large enough, a warning is

printed (indicating a flawed force evaluation).
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Ewald algorithms

standard Ewald cuts off the short-range potential and
truncates the Fourier series.
Optimal β gives an O(N3/2) operation count.

particle–mesh Ewald (PME) interpolates the Fourier
basis functions from a mesh resulting in a discrete
Fourier series.
Use of an FFT gives an O(N log N) algorithm.

NAMD note. Use PME yes and control the error by setting PMETol-

erance (default value 10−6) and choosing PMEGridSizeX, PMEGrid-

SizeY, and PMEGridSizeZ.
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Outline

I. Models and aims

II. Fast force evaluation

III. Numerical integrators for long-time kinetics
Newtonian dynamics
constrained dynamics
stochastic dynamics

IV. Propagators for thermodynamics
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Verlet integrator

Numerical integrators generate Γn ≈ Γ(n∆t). The Verlet
method is

M
1

∆t2
(

xn+1 − 2xn + xn−1
)

= F (xn).

Exercise 6 (order of accuracy)
Velocity definition,

vn =
1

2∆t

(

xn+1 − xn−1
)

,

does not affect dynamics.
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Velocity Verlet integrator

Typical integrators can be expressed as Γn+1 = Ψ(Γn).
An example is the “velocity Verlet” scheme:

xn+1 = xn + ∆tvn +
1

2
∆t2M−1F (xn),

Mvn+1 = Mvn +
1

2
∆tF (xn) +

1

2
∆tF (xn+1).
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Symplectic integrators

Evidence indicates that Ψ being symplectic is appropriate
for statistically accurate long time integrations. Exercise 3
An integrator Γn+1 = Ψ(Γn) is symplectic if

∂ΓΨ(Γ)T

[

0 I

−I 0

]

∂ΓΨ(Γ) =

[

0 I

−I 0

]

.

The evidence is even more compelling for Ψ being volume
preserving,

det ∂ΓΨ(Γ) = 1.
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Energy fluctuations

Energy H(Γn) fluctuates for a symplectic integrator.

Exercise 5 step size resonance
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Shadow Hamiltonian

However, there is formally a shadow Hamiltonian

H̃(Γ) = H(Γ) +

∞
∑

j=q

∆tjηj(Γ)

which is exactly conserved.
And there are interpolated shadow Hamiltonians

Hk(Γ) = H̃(Γ) + O(∆tk), k = 2, 4, . . . ,

which are very inexpensive to evaluate. Exercise 7

They help to identify deficiencies in a simulation.
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Conservation of shadow Hamiltonian

energies vs. time for decalanine for 100 ps
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Multiple time stepping

MTS based on impulses (r-RESPA) is symplectic.
Example. Split U = U slow + U fast. Define an (outer) time step
of MTS to be 3 Verlet steps, each of size 1

3∆t:

1. at steps n = 0, 1, 2, . . ., use U slow + 1
3U fast, and

2. at steps n = 1
3 , 2

3 , 4
3 , 5

3 , 7
3 , 8

3 , . . ., use 1
3U fast.

Each Unonbonded
ij is split into a slow + a short-range part.
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Step size barriers

Energy growth occurs for nondamping integrators unless
(outer) ∆t < 1

3 period
where “period” = numerical period of fastest normal mode.
Limit on (outer) step size:

Verlet MTS
no constraints 2.2 fs 3.3 fs
with H constraints 3.1 fs 4.6 fs

Accuracy further limits the Verlet ∆t.

NAMD note. To use multiple time stepping without energy drift, set

timestep 1.041666666666667 and fullElectFrequency 3.
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Nonsymplectic integrators

Damping may be acceptable if balanced with random noise:
symplectic integrator + weak Langevin coupling

Such a method is Langevin MOLLY where
Uslow(x) is replaced by Uslow(vibration-averaged(x))

in the impulse MTS method.
By targeting the coupling, one can use an outer ∆t = 16 fs
compared to only 3.2 fs with impulse MTS.

NAMD note. One can use an outer ∆t = 8 fs by setting langevin on,

langevinTemp 298., langevinDamping 0.2, molly on, timestep 1.0,

fullElectFrequency 4, and nonbondedFreq 2.
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Constrained dynamics algorithms

SHAKE is the discretization:

M
1

∆t2
(

xn+1 − 2xn + xn−1
)

= F (xn) + ∂xg(xn)Tλn

where
λn satisfies g(xn+1) = 0.

A variant, called RATTLE, defines better velocities.
An iteration is needed to solve the constraint equations.
An accurate solution is needed to avoid energy drift.
NAMD note.
Rigid waters is an option, implemented using SETTLE.

Rigid H covalent bonds is an option, implemented using SHAKE.
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Stochastic dynamics algorithms

Brooks-Brünger-Karplus scheme is

M
1

∆t2
(xn+1 − 2xn + xn−1) = F (xn)

−kBTD(xn)−1 1

2∆t
(xn+1−xn−1)+

√
2kBTD1/2(x

n)−T 1√
∆t

Zn

where Zn are standard Gaussians, i. e.,
EZn

i = 0 and EZm
i Zn

j = δmnδij.
For a diagonal diffusion tensor there are better methods:

Most efficient is the LN (MTS) method.

Simplest is the 1982 scheme of van Gunsteren and
Berendsen and the Langevin impulse method.
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Outline

I. Models and aims

II. Fast force evaluation

III. Numerical integrators for long-time kinetics

IV. Propagators for thermodynamics
Markov chain Monte Carlo methods
NVT dynamics
NPT dynamics
time correlation functions
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Markov chain Monte Carlo methods

Example.
Hybrid Monte Carlo uses MD to generate possible moves.
It is enough that the integrator

be reversible and volume-preserving.
Unfortunately, rejection rate increases with system size N

due to integrator-produced fluctuations in the energy.

Higher order integrators is one solution.
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NVT dynamics

Nosé dynamics is defined by the extended Hamiltonian

H(x, s, p̄, ps) =
1

2
s−2p̄TM−1p̄ + U(x) +

1

2Q
p2
s + NdkBT ln s

where Q = thermal inertia and Nd = number of DOFs.

〈A〉NVT ≈
∫ t
0 A(x(τ), s(τ)−1p̄(τ))s(τ)−1 dτ

∫ t
0 s(τ)−1 dτ

Nosé-Hoover dynamics is not Hamiltonian and gives
drift in the extended energy.

Langevin dynamics

NAMD note. Langevin dynamics with a diagonal tensor.
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NPT dynamics

The Langevin piston method for NPT sampling involves
integrating

d
dtx(t) = M−1p(t)+

pV(t)

3QV (t)
x(t), d

dtp(t) = F (x(t))− pV(t)

3QV (t)
p(t),

d
dtV (t) =

pV(t)

Q
, d

dtpV(t) = P (t)−P−γpV(t)+
√

2γkBTQ d
dtW (t)

where

P (t) =
1

3QV (t)

(

p(t)TM−1p(t) + x(t)TF (x(t))
)

.

NAMD note. Langevin piston method.
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Time correlation functions

Correlation functions should be computed from accurate
Newtonian dynamics trajectories using initial conditions
drawn from the desired ensemble (Allen and Tildesley,
1987).

In practice, this dictum is often ignored, e. g., the Langevin

piston method is designed with kinetics in mind.
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