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Acronyms, Abbreviations, and Units

A
A adenine (purine nitrogenous base)
Å angstrom (

���������
m)

AdMLP adenovirus major late promoter (protein)
AIDS acquired immune deficiency syndrome
Ala (A) alanine
Arg (R) arginine
Asp (D) asparagine
Asn (N) aspartic acid
AS Altona/Sundaralingam (sugar description)
ATP adenosine triphosphate (energy source)
AZT zidovudine (AIDS drug)

B
bp base pair
bps base pairs
BAC bacterial artificial chromosome
BOES Born-Oppenheimer energy surfaces
BPTI bovine pancreatic trypsin inhibitor
BSE bovine spongiform encephalopathy (‘mad cow disease’)

C
cm centimeter (

��� �
	
m)

C cytosine (pyrimidine nitrogenous base)
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CAP catabolite gene activator protein
CASP Critical Assessment of Techniques for Protein Structure Prediction
CG Conjugate gradient method (for minimization)
CJD Creutzfeld-Jakob disease (brain disorder, human version of BSE)
CN Crigler-Najjar (debilitating disease, gene therapy applications)
CP Cremer/Pople (sugar description)
CPU central processing units
Cys (C) cysteine

D
DFT density functional theory (quantum mechanics approach)
DH Debye-Hückel
DNA deoxyribonucleic acid (also A-, B-, C-, D-, P-, S-, T-, and Z-DNA)
DOE Department of Energy

E
erg energy unit (

� ��� �
J)

EM electron microscopy

F
fs femtosecond (

� �������
s)

FFT Fast Fourier Transforms

G
G guanine (purine nitrogenous base)
Gln (Q) glutamine
Glu (E) glutamic acid
Gly (G) glycine
GSS Gerstmann-Straussler-Scheinker disease (brain disorder similar to CJD)

H
HDV hepatitis delta helper virus
His (H) histidine
HIV human immunodeficiency virus
HMC hybrid Monte Carlo
HTH helix/turn/helix (motif)
Hz hertz (inverse second)

I
Ile (I) isoleucine
IHF integration host factor (protein)
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K
kbp kilobase pairs
kcal/mol kilocalories per mole (energy unit)
kDa kilodaltons (mass unit used for proteins)
KR Kirkwood-Riseman

L
Leu (L) leucine
Lys (K) lysine
LCG linear congruential generator

M
m meter
mgr minor groove
ms millisecond (

��� ���
s)

� s microsecond (
� � ���

s)
mm millimeter (

�������
m)

MAD multiple isomorphous replacement (crystallography technique)
MC Monte Carlo
MD molecular dynamics
Met (M) methionine
Mgr major groove
MIR multiwavelength anomalous diffraction (crystallography technique)
MLCG multiplicative linear congruential generator
MTS multiple-timestep methods (for MD)

N
nm nanometer (

��� ���
m)

ns nanosecond (
��� ���

s)
NCBI National Center for Biotechnology Information
NASA National Aeronautics and Space Administration
NDB nucleic acid database (ndbserver.rutgers.edu/)
NIH National Institutes of Health
NMR nuclear magnetic resonance
NSF National Science Foundation

O
OTC ornithine transcarbamylase (chronic ailment, gene therapy applications)

P
pn picoNewton (force unit)
ps picosecond (

� ����� 	
s)

PB Poisson-Boltzmann
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PBE Poisson-Boltzmann equation
PC principal component
PCA principal component analysis
PCR polymerase chain reaction
PDB protein databank (www.rcsb.org/pdb)
Phe (F) phenylalanine
PIR Protein Information Resource (pir.georgetown.edu)
PME particle-mesh Ewald
PNA peptide nucleic acid (DNA mimic)
Pro (P) proline
PrP

�

prion protein cellular (harmless)
PrP

���

harmful isoform of PrP
�

, causes scrapie in sheep
Pur purine (base)
Pyr pyrimidine (base)

Q
QM quantum mechanics
QN quasi Newton method (for minimization)
QSAR quantitative structure/activity relationships

R
RCSB Research Collaboratory for Structural Bioinformatics (www.rcsb.org)
RMS (rms) root-mean-square
RMSD root-mean-square deviations
RNA ribonucleic acid (also cRNA, gRNA, mRNA, rRNA, snRNA, tRNA)
RT reverse transcriptase (AIDS protein)

S
s second
Ser (S) serine
SAR structure/activity relationships
SCF self-consistent field (quantum mechanical approach)
SCOP structural classification of proteins (scop.mrc-lmb.cam.ac.uk/scop/)
SD steepest descent method (for minimization)
SGI Silicon Graphics Inc.
SNPs single-nucleotide polymorphisms (“snips”)
SRY sex determining region Y (protein)
STS single-timestep methods (for MD)
SVD singular value decomposition

T
T thymine (pyrimidine nitrogenous base)
Thr (T) threonine
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Trp (W) tryptophan
Tyr (Y) tyrosine
TBP TATA-box DNA binding protein (transcription regulator)
TE transcription efficiency
TMD targeted molecular dynamics
TN truncated Newton method (for minimization)
2D two-dimensional
3D three-dimensional

U
U uracil (pyrimidine nitrogenous base)
URL uniform resource locator
UV ultraviolet spectroscopy

V
Val (V) valine

W
WC Watson/Crick base pairing
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Chapter 10 Notation

SYMBOL DEFINITION

Matrices
A symmetric matrix, components ����� �	�
��

approximation to Hessian inverse at � � (QN methods)� �
scaling matrix at step � of minimization method (trust

region approach)�
Hessian matrix, components ��� ������������� �!�����#"$��%&�#��%'�(
identity matrix)
preconditioning matrix, related to

�
(TN methods)) �

preconditioning matrix at step � of TN method* �
QN low-rank update matrix at step �

Vectors+-,#.
constant vectors/ � unit vectors0 gradient vector of � , components 12�3�����4�5�6�7�����#"$�&%&�0 � gradient vector at � � (short hand for 0 ��� � �#�8 � search vector at step � of minimization method8 � � inner-loop CG iterate 9 for outer-loop search vector8 � (TN method): residual vector defined in TN methods (

)<;= : )> � displacement vector at step � , � �$?A@AB � � (QN method)� vector of C components �D%��E��7F starting point vector for minimization� � minimization iterate at step � of method�HG local minimum point of objective function. �
gradient difference vector at QN step � , 0 �$?I@ B 0 �;
solution vector defined in TN methods (

)<;= : )
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Chapter 10 Notation Table (continued)

SYMBOL DEFINITION

Scalars & Functions� ,�� numbers� �3� �!� constraint function ���� small positive number (in TN methods)��F constant (function value)�7���H� objective function, dependent on vector ��
small number (finite difference interval)C problem dimension� convergence order	 ���H� quadratic function	 � � > ) quadratic model of objective function
 � residual norm at step � of TN methods� line search parameter for sufficient decrease condition�
line search parameter for sufficient decrease of curvature

(also convergence ratio)� �
scheme-dependent scale parameter of search vector 8 �

(CG and QN methods)�� , �� small positive numbers�� small positive number, machine precision� � forcing sequence in TN methods�
line search steplength���
trial line search steplength�
variable in the neighborhood of % for a univariate

function �7��%��� � � � polynomial of steplength
�

� �
size bound in QN methods at step �

’Pon my word Watson, you are coming along wonderfully. We
have really done very well indeed. It is true that you have missed
everything of importance, but you have hit upon the method.

Arthur Conan Doyle (1859–1930), in A Case of Identity (1891).

10.1 Ubiquitous Optimization: From Enzymes to
Weather to Economics

Optimization is a fundamental component of molecular modeling. The deter-
mination of a low-energy conformation for a given force field can be the final
objective of the computation. It can also serve as a starting point for subsequent
calculations, such as molecular dynamics simulations or normal-mode analyses.

Both local and global optimization problems lie at the heart of numerous sci-
entific and engineering problems — from the biological and chemical disciplines
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to architectural and industrial design to economics. Optimization is part of our
everyday life — responsible for our weather forecasts, flight planning, telephone
routing, microprocessor design, and the functioning of enzymes in our bodies.

10.1.1 Algorithmic Sophistication Demands Basic Understanding

The mathematical techniques developed to address these optimization problems
are just as robust and varied as the target problems themselves. The algorithmic
complexity of such techniques has led to many available computer programs that
require minimal input from the user (e.g., the starting point and a routine for
function evaluation).

However, the prudent user of these canned software modules — even within
standard molecular mechanics and dynamics packages — should understand the
fundamental structure of the optimization algorithms and associated performance
issues to make their application both efficient and correct, in terms of the physical
interpretations.

This chapter introduces key optimization concepts for this purpose. We also
highlight the fundamentals of local optimizers for large-scale nonlinear un-
constrained problems, an important optimization subfield relevant to biological
macromolecules. We describe the most promising approaches among them, and
discuss practical issues, such as parameter variations and termination criteria.
Of course, the latter are best learned by experimentation in the context of real
problems. To illustrate behavior for complex problems, some comparisons among
three competitive minimizers are also included, for molecular models minimized
in the molecular mechanics and dynamics program CHARMM.

10.1.2 Chapter Overview

Specifically, Section 10.2 introduces optimization fundamentals such as problem
formulation and terminology. Section 10.3 describes the basic algorithmic frame-
work of iterative minimization protocols (based on line search and trust region
methods); it also discusses convergence criteria and line search procedures and
introduces the key concept of descent directions.

In Section 10.4, we present the Newton method, including a historical per-
spective, and one-dimensional implementations for nonlinear equations as well
as optimization. This presentation familiarizes readers with the Newton method
framework — the basis for formulating many other optimization methods — and
with performance and convergence issues relevant to minimization of multivariate
functions.

In Section 10.5, we mention effective methods for large-scale nonlinear op-
timization, namely quasi-Newton (QN), nonlinear conjugate gradient (CG), and
truncated Newton (TN) schemes. Section 10.6 outlines available software and
presents comparative performance in CHARMM for two molecular models (a
small model system and a protein). Finally, in Sections 10.7 and 10.8, we summa-
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rize recommendations to optimization practitioners and offer a future perspective
to field developments.

For details, as well as for other categories of the rich and exciting field of
optimization, I refer readers to classic texts [29, 16, 22, 55, 66], some reviews
[63, 77, 82, 78, 24], and a perspective [86].

10.2 Optimization Fundamentals

The methods for solving an optimization task depend on the problem classifica-
tion. Since the value of the independent variable that maximizes a function � also
minimizes the function ��� , it suffices to deal with minimization.

The optimization problem is classified according to the type of indepen-
dent variables involved (real, integer, mixed), the number of variables (one,
few, many), the functional characteristics (linear, least squares, nonlinear, non-
differentiable, separable, etc.), and the problem statement (unconstrained, subject
to equality constraints, subject to simple bounds, linearly constrained, nonlin-
early constrained, etc.). For each category, suitable algorithms exist that exploit
the problem’s structure and formulation.

10.2.1 Problem Formulation

For a vector � of � components ���	��
 , we write the minimization problem as:

������ ����������
������ � � (10.1)

where � is the objective function and � is a given region (which can be the entire
Euclidean space !#" ). The problem can be subject to $ constraints, which can be
written more generally as a combination of equality and inequality constraints:

% �&�'��� ( � )�*,+.- ( � �0/0/�/1�&$324�
% �&�'��� 5 � )�*6+.- (7$82:9 � �0/0/�/1�&$�/ (10.2)

This general formulation can be obtained for problems with bound constraints in
the form

% �;�'���<(=�>�?�
where �>� is the

-
th component of the vector � , or for problems with two-sided

constraints such as
@ �85 % �&�'����5BA	�C/

In this chapter, we only cover unconstrained optimization formulations. For a
comprehensive review of interior methods for continuous nonlinear optimization
problems subject to constraints, see [24].
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10.2.2 Independent Variables

In most computational chemistry problems, x is a real vector in Euclidean space,
i.e., � � !#" , and � defines a transformation to a real number, i.e., ������� �
! "�� ! . When the components of � are integers, the optimization problem is
classified as integer-programming. When � is a mixture of real and integer vari-
ables, the problem is of mixed-integer programming type. Common examples of
integer-programming are network optimization and the ‘traveling salesman prob-
lem’,1 also classified as combinatorial optimization. See [86], for example, and
references cited therein.

10.2.3 Function Characteristics

The nature of the function � is the next step in problem classification. Many appli-
cation areas such as finance and management-planning tackle linear or quadratic
objective functions.

Linear and Quadratic Functions

Linear objectives can be written in vector form as

�������<( ��� � 9B� � � (10.3)

where
�

is a column vector of dimension � , and � � is a scalar. Quadratic objective
functions can be expressed as

���'��� (7� ��� � 9 � � � 9 � � � (10.4)

where
�

is a constant symmetric matrix of dimension �	� � . (By definition, the
� 	 entries of a symmetric matrix

�
satisfy 
 ���  (�
 �� � ). The superscripts

�
above

refer to a vector transpose; thus � ��� is an inner product.
Linear programming problems refer to linear objective functions subject to lin-

ear constraints (i.e., a system of linear equations and inequalities), and quadratic
programming problems have quadratic objective functions and linear constraints.

1The notorious ‘traveling salesman’ problem seeks to find the optimal travel route that covers
a given number of cities, each one only once, and returning to the home town. Visually, imagine
drawing such a route on a map, where each city � for � =�� ,������ , C is designated by coordinates�D% � ,�� � � . The connected route started at �D% F ,�� F � covers each city and returns to the original point.
Though simple to envision, there are clearly many such routes, and the number of combinations that
connect all these cities grows steeply with C . This problem in fact belongs to a class of very difficult
problems (known as NP-complete) for which no polynomial-complexity algorithm is known (i.e., the
computational time for an exact solution of this problem increases exponentially with C ).
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Least-Squares Functions

Nonlinear functions can be classified further. Least-squares functions have the
form

���'��� (
�

�
��

��� �
� � ��� � 	 / (10.5)

Separable Functions

Separable functions can be expressed as a sum of subfunctions, namely

�������<(
��

��� �
� � ��� �	� (10.6)

where each subfunction �,� depends only on a subset of the independent variables.
That is, for each subfunction �,� there are many unit vectors �  (with 1 in compo-
nent � and 0 elsewhere) for which � �;��� 9��  � ( � �;��� � . All molecular mechanics
potential functions arising from the local, bonded interactions can be written this
way.

Nonsmooth Functions

Because most optimization algorithms exploit derivative information to locate op-
tima, nonsmooth functions pose special difficulties, and very different algorithmic
approaches must be used. See [7] and [22, Chapter 14] for a general introduction
to nonsmooth optimization, and the two-volume set [35, 36] for the special case
of nonsmooth convex problems. Optimization of nonsmooth functions requires
new mathematical machinery (e.g., subdifferentials) that extends ordinary differ-
entiation and leads to counterparts of most results in differential calculus (Taylor
expansions, mean value theorem, etc.).

Potential Energy Functions

Geometry optimization problems for molecular potential functions in the con-
text of standard all-atom force fields in computational chemistry are typically of
the multivariate, continuous, and nonlinear type [78]. They can be formulated as
constrained (as in adiabatic relaxation, an example of which was shown in Chap-
ter 5) or unconstrained. Discontinuities in the derivatives may be a problem in
certain formulations involving truncation, such as of the nonbonded terms (see
Section 10.6).

The large number of independent variables for biomolecules, in particular,
warrants their classification as large-scale and rules out the use of many algo-
rithms that are effective for a small number of variables. However, as we will
discuss, effective techniques are available today that achieve rapid convergence
even for large systems. In practice, for macromolecular applications these opti-
mization algorithms must be modest in storage requirements and economical in
computations, which are dominated by the function and derivative evaluations.



10.2. Fundamentals 25

x

f(x)

Figure 10.1. A one-dimensional function with several minima. This function was con-
structed from the actual univariate function at one line search step of the truncated Newton
algorithm (see later in chapter) applied to minimization of a small protein’s potential en-
ergy function.

10.2.4 Local and Global Minima

Definitions

The local unconstrained optimization problem in the Euclidean space !�" can be
stated as in eq. (10.1) for � � ��� ! " where � denotes a neighborhood of
the starting point, � � . The global optimization problem is much more difficult
because it requires finding the global minimum among all the local minima, and
the number of minima can be exponentially large.

A (strong) local minimum ��� of ������� satisfies

���'� � ��� ��� � � )�*,+��	�
� � � � � ���( � � / (10.7)

The point ��� is a weak local minimum if ���'���0� 57��� � � .
A global minimum �� satisfies the stringent requirement that

���'� � ��� ��� � � )�*6+������ ���(7� � / (10.8)

See Figure 10.1 for an illustration of a one-dimensional function with several
minima. The function corresponds to the actual univariate function minimized in
the line search substep of the TN method (see later in chapter for details).

Convergence

Finding a local minimum is a challenging task for a large biological system
governed by a nonlinear potential energy function. This is because the optimiza-
tion scheme must find a minimum from any point along the potential surface,
even one associated with a very high-energy, and should not get trapped at lo-
cal maxima or saddle points. Finite-precision arithmetic and various errors that
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accumulate over many operations also degrade practical performance in compari-
son to theoretical expectations (which can be described as convergence order; see
Box 10.1). Nonetheless, the local optimization problem is solved in a mathemati-
cal sense: convergence to a local minimum can be achieved on modern computers.
In the mathematical literature, this is referred to as global convergence to a local
minimum. Still, though many algorithms are available in widely-used molecu-
lar mechanics and dynamics packages, performance and solution quality vary
considerably and depend greatly on the user-specified algorithmic convergence
parameters and the starting point.

The global optimization problem, by contrast, remains unsolved in general.
This is because the exponentially-growing number of minima with system size
cannot be exhaustively surveyed. Certainly, effective strategies have been devel-
oped in specific application contexts (e.g., for polypeptides) and work well for
moderately-sized systems. See [23], for example, for a review, the website at
www.mat.univie.ac.at/ � neum/glopt.html for general information, and home-
work 13 for the deterministic global optimization approach based on the diffusion
equation [73].

Global minimization algorithms differ from the local schemes in that they do
not necessarily require the energy to decrease systematically, making possible es-
cape from local potential wells and entry into others. Global optimization methods
can be stochastic or deterministic, or a combination thereof; they often rely on
local optimization components.

Box 10.1: Convergence Definitions

A sequence
��� ���

converging to
� G has order p if � is the largest number such that a finite

limit � (the “convergence ratio”, not to be confused with the line search parameter � ) exists,
where:

�
	����������
� � �$?I@�� � G �� � ��� � G � ��� ����� � (10.9)

When � �"! , we have quadratic convergence. When � �$# , we refer to the convergence
as superlinear if � � � and as linear if the nonzero � is less than 1.

For example, the reader can verify that the sequences
� !&% �(' � , �*) %

� �
, and
� !+%

� �
converge,

respectively, quadratically, superlinearly, and linearly. Quadratic convergence is faster than
superlinear, which in turn is faster than linear.

10.2.5 Derivatives of Multivariate Functions

Gradient

When � is a smooth function with continuous first and second derivatives, we
define its gradient vector of first derivatives by ,��'� � , where each component of ,
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is
� � ����� (�� �����������>� �;/ (10.10)

Hessian and Curvature

The �	�3� symmetric matrix of second derivatives, � ��� � , is called the Hessian.
Its components are defined as:

� ���  ����� (�� 	 ���'� ���	� �>�
�>�  / (10.11)

At a stationary point, the gradient is zero. At a minimum point � � , in addi-
tion to stationarity, the curvature is positive. For higher dimensions, convexity
is expressed as positive-definiteness of the Hessian. A multivariate function is
positive-definite at a point ��� if

� � � �'� � � ��� � )�*,+��	�
� � * ���� + * � / (10.12)

In particular, positive definiteness guarantees that all the eigenvalues are posi-
tive at � � . A positive semi-definite matrix has nonnegative eigenvalues; a negative
semi-definite matrix has nonpositive eigenvalues; and a negative-definite matrix
has only negative eigenvalues. Otherwise, the matrix is indefinite. The utiliza-
tion of curvature information is important for formulating effective multivariate
optimization algorithms.

Figure 10.2 illustrates this notion of curvature for quadratic functions of two
variables:

� ��� � (7� � � � 9 ��� � /
Namely, it displays the contours of these functions — curves on which the
function is constant — in four cases. These cases are defined by different prop-
erties of the matrix

�
: (a) indefinite, (b) positive definite, (c) negative definite,

and (d) singular (i.e., not invertible). Figure 10.3 displays corresponding three-
dimensional views of the functions, with circles and a line indicating stationary
points. We use similar contour plots later (Figure 10.10) to illustrate paths of
different minimization algorithms.

10.2.6 The Hessian of Potential Energy Functions

Sparsity

A matrix is termed sparse if it has a large percentage of zero entries; otherwise it
is dense. (There is no specific threshold percentage of zero elements below which
a matrix is considered ‘sparse’). A sparse matrix can be structured, as in a banded
matrix of bandwidth � where there are zeros for � - � ��� � � . Alternatively, a sparse
matrix can be unstructured, as shown in Figures 10.4 and 10.5.

In these figures, the matrix indices are the independent variables (three times
the number of atoms) of the potential energy function for molecular systems. A
point in the matrix position � - � � 
 indicates a nonzero Hessian element for the



28 10. Multivariate Minimization in Computational Chemistry

−2

−2

−1

−1

2

2

4

4

6

6

8

8

2
4

6

6

8

8

−2
−4

−4

−6

−6

−8

−8

2

2

4

4

6

6

8

8

Indefinite Positive Definite

Negative Definite Singular
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Figure 10.2. Two-dimensional contour curves for the quadratic function
������� � ���	�
������	� of two variables, where � is: (a) indefinite, with entries by
row 1,2,2,2; (b) positive definite, entries 4,0,0,2; (c) negative definite, entries

� # ,0,0,
�

4;
and (d) singular, entries 1,1,1,1. See also Figure 10.3.

second-derivative term of the potential energy objective function. Examples are
shown for various molecular systems. The left-column matrices correspond to the
Hessian pattern resulting when 8 Å cutoffs are used for the nonbonded terms.
The right-column patterns correspond to only the local, bonded second-derivative
terms (bond-length, bond angle, and dihedral-angle). The insets zoom on two
submatrices and illustrate how the sparsity pattern repeats in triplets (for the � , � ,
and � components), and how nearly banded the local Hessian structure is due to
the finite range of the bonded interactions.

We also see that although the matrices corresponding to 8 Å cutoffs are sparse
for the larger systems, the atom ordering used determines the resulting pattern. For
example, the X pattern for the DNA system results from the consecutive ordering
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Indefinite Positive Definite

Negative Definite Singular

(a) (b)

(c) (d)

Figure 10.3. Three-dimensional curves for the quadratic functions as described for Fig-
ure 10.2. Critical points are shown by thick circles (a–c) and a line (d).

of atoms down one strand and up the complementary strand; the water atoms are
numbered following the DNA atoms.

Memory Intensity

Because the formulation of a dense Hessian ( � 	 entries) is both memory and
computation intensive, many Newton techniques for minimization approximate
curvature information implicitly and often progressively, i.e., as the algorithm
proceeds. Limited-memory versions reduce computational and storage require-
ments so that they can be applied to very large problems and/or to problems where
second derivatives are not available.

Exploitation of Derivatives

In most molecular mechanics packages, the second derivatives are programmed,
though sparsity (when relevant) is not often exploited in the storage techniques
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Figure 10.4. Hessian patterns from the potential energy functions of various molecular
systems corresponding to 8-Å cutoffs (matrices at left column) or to local terms (right col-
umn; bond-length, bond-angle, and dihedral-angle components). The percentage sparsity
is shown for each case, and insets show enlargements of some Hessian submatrices. The
matrix axes label Cartesian coordinates, i.e., the

���������
coordinates of each atom in turn;

the atom ordering comes from the molecular mechanics package (CHARMM used here).
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Figure 10.5. Sparse Hessian patterns, continued (see caption to Figure 10.4).

for large molecular systems. The optimizer should utilize some of this second-
derivative information to make the algorithm more efficient. Truncated Newton
methods, for example, are designed with this philosophy.
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10.3 Basic Algorithmic Components

10.3.1 Greedy Descent

The basic structure of an iterative local optimization algorithm is one of “greedy
descent”. Namely, a sequence � ��� 
 is generated from a starting point � � in
such a way that each iterate attempts to further reduce the value of the objective
function.2

Two Frameworks

Two algorithmic frameworks are available for such algorithms: line-search or
trust-region methods. Both are found throughout the literature and in software
packages and are essential components of effective descent schemes that guaran-
tee convergence to a local minimum from any starting point. No clear evidence
has emerged to render one class superior over another.

In describing iterative minimization techniques, it is convenient to use short
hand notation for quantities used at each step

�
of the minimization algorithm.

Namely, associated with each iterate � � , we denote the gradient and Hessian
at � � , namely ,���� � � and � ��� � � , as , � and � � . The initial guess for the iter-
ative minimization process ( � � ) can be derived from experimental data, where
available, or from results of conformational search techniques.

Algorithmic Parameters

The final stopping criteria must be chosen with care to ensure a sufficiently ac-
curate solution and, at the same time, avoid wasting computational effort when
further progress is not realized. For example, the norm of the gradient alone (i.e.,� , � � ) may not be a satisfactory stopping criterion in unconstrained optimization,
as it often exhibits oscillations in the course of the optimization [65]; see also
Figure 10.11.

The line search framework requires careful implementation of convergence cri-
teria of its own at each step, for a one-dimensional optimization procedure. This
segment is a tricky part of minimization methods and requires well tested software
with safeguards against many undesirable situations that can occur in practice,
like very small steplengths and failure to bracket the univariate minimum (see
[16, 66, 89], for example).

We now describe in turn the line search and trust-region frameworks for min-
imization (Subsections 10.3.2 and 10.3.3); this is followed by a discussion of
convergence criteria for the minimization process (Subsection 10.3.4).

2This does not imply that the reduction in the gradient norm is monotonic; see Figure 10.11 for
example.
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10.3.2 Line-Search-Based Descent Algorithm

Algorithm [A1]: Basic Descent Using Line Search

From a given point � � , perform for
� ( � � � � � �0/�/0/ until convergence:

1. Test � � for convergence (see subsection 10.3.4).

2. Calculate a descent direction � � (method dependent).

3. Determine a steplength � � by a one-dimensional line search so that the
new position vector, � ��� � ( � � 9�� � � � , and corresponding gradient , ��� � ,
satisfy:

����� ��� � � 5 ���'� � ��9���� , �� � � 	�
������  �0����� � � + � � � ����� (10.13)

and

� , ���� � � � � 5�� � , �� � � � 	�
������  �0�����C + � � �  * � ��� � � + �� � �; � � + ��� ��� �; * �����
(10.14)

where
� �!���"� � �

(e.g., � ( � � �$#
, � ( � / % in Newton methods).

4. Set ����� � to � �#9�� �&� � and
�

to
� 9 �

and go to step 1.

Step 2: Descent Direction

A descent direction � � is one along which the function must decrease locally.
Formally, we define such a vector as one for which the directional derivative is
negative:

, � � � � � � / (10.15)

To see why this property implies that � can be reduced, approximate the nonlinear
objective function � at � by a linear model along the descent direction � , assum-
ing that higher-order terms are smaller than the gradient term. Then we see that
the difference in function values is negative:

���'��9"�'�.� � ���'��� ( � ,������ � � 9 � 	� � � � ��� �(�
) � ,������ � � � � � (10.16)

for sufficiently small positive � .

Steepest Descent

The descent condition is used to define the algorithmic sequence that generates
� � . The simplest way to specify a descent direction is to set

� � ( ��, � (10.17)



34 10. Multivariate Minimization in Computational Chemistry

λ
λ = 0 λ* λt

φ(λ) = f (x  + λ p  )k k

g   p < 0k k
T

slope
f (x )k

f (x  + λ   p  )t kk
slope
g(x  + λ   p  )  pt kk

T
k

Figure 10.6. One-dimensional line search minimization at step
)

of the multivariate
method, using polynomial approximation to estimate the optimal steplength � G in the
region � � � � ��� .

at each step. This “steepest descent” direction defines the steepest descent (SD)
method. SD methods generally lead to improvements quickly but then exhibit
slow progress toward a solution. Though it has become customary to recommend
the use of SD for initial minimization iterations when the starting function and
gradient-norm values are very large, this approach is not necessary when a more
robust minimization method is available.

Step 3: The One-Dimensional Optimization Subproblem (Line Search)

The line search procedure, a univariate minimization problem, is typically
performed via approximate minimization of a quadratic or cubic polynomial
interpolant of the one-dimensional function of � (given ��� and � � ):

� � � ��� ���'� � 9��'� � �	/
See Figure 10.6 for an illustration of the first step of this univariate minimization
process, where the minimum ( � � in figure) is sought in the initial interval 	 � � ��� �
where ����� � � ( � � � � and ������� 9 �	� � � � ( � ���
�;� . For details, consult standard
texts (e.g., [66]). This iteration process is generally continued until the � value
that minimizes the polynomial interpolant of

� � � � satisfies the line search criteria
(eqs. (10.13) and (10.14)). The resulting steplength � � defines the next iterate for
minimization of the multivariate function by � ��� � ( � � 9�� � � � .

The line search criteria in Step 3 of Algorithm [A1] have been formulated to
ensure sufficient decrease of � relative to the size of step ( � ) taken. The first con-
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dition (eq. (10.13)) prescribes an upper limit on acceptable new function values;
recall that the second term on the right is negative by the descent property. The
second criterion, eq. (10.14), imposes a lower bound on � . The control parameters
� and � determine the balance between the computational work performed in the
line search and the reduction in function achieved. (See [77] for illustrations and
further discussion). The work in the line search (number of polynomial interpola-
tions) should be balanced with the overall progress realized in the minimization
algorithm.

10.3.3 Trust-Region-Based Descent Algorithm

Algorithm [A2]: Basic Descent By A Trust Region Subsearch

From a given point � � , perform for
� ( � � � � � �0/�/0/ until convergence:

1. Test � � for convergence (see subsection 10.3.4).

2. Calculate a step � � by solving the subproblem
������ � � �C��� ��
�� (10.18)

where � � is the quadratic model of the objective function:

� � ����� ( ����� � � 9 , � � � 9
�

� � � � � � � (10.19)

subject to a size bound,
�
� (a positive value), on � . This bound involves a

scaling matrix, � � , and requires
� � � � � � � � � (10.20)

where
��� �

denotes the standard Euclidean norm.

3. Set � ��� � to � � 9	� � and
�

to
� 9 �

and go to step 1.

Basic Idea

The idea in trust-region methods — the origin of the quadratic optimization sub-
problem in step 2 above — is to determine the vector � � on the basis of the size of
region within which the quadratic functional approximation can be “trusted” (i.e.,
is reasonable). The quality of the quadratic approximation can be assessed from
the following ratio:


 � ( ����� � � � ����� � 9�� � �
���'� � � � � �C��� � � / (10.21)

A value near unity implied that the bound
�
� imposed on � can be increased;

in contrast, a negative or a small positive value for 
 � implies that the quadratic
model is poor, requiring a decrease in

�
� .
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Many Newton methods (see next section for details) based on trust-region
approaches determine a candidate � � by solving the linear system

� � �7( ��, � (10.22)

that results from minimizing � � ��� � . (A related system may also be formulated).
The scaling of this vector � is determined according to the quality of the quadratic
model at the region of approximation. A good source of a trust-region Newton
method is the program LANCELOT [14].

10.3.4 Convergence Criteria

The criteria used to define convergence of the minimization algorithm (in step 1
of Algorithms [A1] or [A2]) must be chosen with care. The desire to obtain as
accurate a result as possible should be balanced with the amount of computation
involved. In other words, it is wasteful to continue a loop when the answer can no
longer be improved. A well-structured algorithm should halt the iteration process
when progress is poor.

The gradient norm value, together with measures of progress in the function
values and the independent variables (e.g., eqs. (10.25) and (10.26)) are used
to assess performance. Upper limits for the total number of allowable function
and/or gradient evaluations are important safeguards against wasteful computing
cycles.

Specifically, reasonable tests for the size of the gradient norm are:
� , � � 5���� � � 9 �����'� � � � � (10.23)

or
� , � � 5�� � � ��� � � � � ��� � �	� (10.24)

where the gradient norm may be set to the Euclidean norm divided by
� � (this

introduces a dependency on the number of variables). The parameter ��� is a small
positive number such as

��� ���
that might depend on the machine precision, � � ; � �

is roughly the largest number for which
� 9�� � ( �

in computer representation.
The student is encouraged to code a routine for determining � � .3

For example, our truncated-Newton package TNPACK [81, 79, 80] checks the
following four conditions at each iteration:

����� � � � �.� ���'� � � � �
	�� � 9 � ���'� � � � �	� (10.25)
� � � ��� � � � � � ���
	6� �� 	 � � 9 � ��� � �	� (10.26)

� , � � � ���
	6� �� � � � 9 � ����� �,� � �	� (10.27)
� , � � � � � � � 9 � ���'� � � � �	/ (10.28)

3Typically,  � is � � %
@��

and � � %�� , respectively, for double and single-precision IEEE arithmetic
[68].
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Here, all norms are the Euclidean norm divided by
� � , and �
	 and � � are small

numbers (like
� �������

and
� � ���

, respectively). If the first three conditions above
are satisfied, or the fourth condition alone is satisfied, convergence is consid-
ered to have been satisfied and the minimization process is halted; otherwise,
the loop continues. Note that the first and second conditions test for convergence
the sequences of the function values and iterates of the independent variables,
respectively, while the third and fourth conditions test the size of the gradient
norm.

Box 10.2: Historical Perspective of ‘Newton’s’ Method

The method’s credit to Sir Isaac Newton is a partial one. Although many references
also credit Joseph Raphson, the contributions of mathematicians Thomas Simpson and
Jean-Baptiste-Joseph Fourier are also noteworthy. Furthermore, Newton’s description of
an algebraic procedure for solving for the zeros of a polynomial in 1664 had its roots in
the work of the 16th-century French algebraist François Viète. Viète’s work itself had
precursors in the 11th-century works of Arabic algebraists.

In 1687, three years after Newton described a root finder for a polynomial, Newton
described in Principia Mathematica an application of his procedure to a nonpolynomial
equation. That equation originated from the problem of solving Kepler’s equation:
determining the position of a planet moving in an elliptical orbit around the sun, given
the time elapsed since it was nearest the sun. Newton’s procedure was nonetheless purely
algebraic and not even iterative.

In 1690, Raphson turned Newton’s method into an iterative one, applying it to the solution
of polynomial equations of degree up to ten. His formulation still did not use calculus;
instead he derived explicit polynomial expressions for

� � � � and
��� � � � .

Simpson in 1740 was first to formulate the Newton-Raphson method on the basis of
calculus. He applied this iterative scheme to solve general systems of nonlinear equations.
In addition to this important extension of the method to nonlinear systems, Simpson
extended the iterative solver to multivariate minimization, noting that the nonlinear solver
can be applied to optimization by setting the gradient to zero.

Finally, Fourier in 1831 published the modern version of the method as we know it
today in his celebrated book Analyse des Équations Determinées. The method for solving� � � � � � was simply written as:

� �$?A@ � � � � � � � � ��� � � � � � � � Unfortunately, Fourier
omitted credits to either Raphson or Simpson, possibly explaining the method’s name.

Thus, strictly speaking, it is appropriate to title the method as the Newton-Raphson-
Simpson-Fourier method.
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10.4 The Newton-Raphson-Simpson-Fourier Method

Newton’s method is a classic iterative scheme for solving a nonlinear system
������� ( �

or for minimizing the multivariate function ���'� � . These root-finding
and minimization problems are closely related.

Though the method is credited to Newton or Newton and Raphson, key
contributions were made also by Fourier and Simpson; see Box 10.2 for a histor-
ical perspective. For brevity, we refer to the “Newton-Raphson-Simpson-Fourier
method” as Newton’s method.

A Fundamental Optimization Tool

Many effective methods for nonlinear, multivariate minimization can be related to
Newton’s method. Hence, a good understanding of the Newton solver, including
performance and convergence behavior, is invaluable for applying optimization
techniques in general.

We first discuss the univariate case of Newton’s method for obtaining the ze-
ros of a function �����	� . In one dimension, instructive diagrams easily illustrate
the method’s strengths and weaknesses. We then discuss the general multivariate
formulations. The section that follows continues by describing the effective vari-
ants known as quasi-Newton, nonlinear conjugate gradient, and truncated-Newton
methods.

10.4.1 The One-Dimensional Version of Newton’s Method

Iterative Recipe

The modern version of Newton’s method (see Box 10.2) for solving ���'�>� ( �
is:

� ��� � ( � � � ���'� � ��� �	24��� � �	/ (10.29)

This iterative scheme can be derived easily by using a Taylor expansion to ap-
proximate a twice-differentiable function � locally by a quadratic function about
� � :
����� ��� � � ( ����� � ��9 ��� ��� � � � � �?�	2 �'� � � 9

�

� ��� ��� � � � � � 	 �	2 24���,� (10.30)

where � � 5�� 5 � ��� � . Omitting the second-derivative term, the solution of
����� ��� � � ( �

yields the iteration process of eq. (10.29). The related discrete-
Newton and quasi-Newton methods [66] correspond to approximating � 2 ���	� by
finite-differences, as

� 2 ��� � � ) 	 ����� � 9��>� � ���'� � � � ��� � (10.31)

or by the method of secants

�	2 �'� � � ) 	 ����� � � � ����� � ��� � � � �'� � � � � ��� �	� (10.32)

where � is a suitably-chosen small number.
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Figure 10.7. Newton’s method in one dimension: (a) geometric interpretation and behav-
ior in the ideal case (rapid convergence), and (b) divergent behavior near point where� � � � � � � .
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Geometric Interpretation

Newton’s method in one dimension has a simple geometric interpretation: at each
step, approximate ���'�>� by its tangent at point ��� � � ����� � � 
 and take � ��� � as the
abscissa of the intersection of this line with the � -axis (see Figure 10.7).

Performance

The method works well in the ideal case (Figure 10.7a), when � � is near the
solution ( � � ) and � � 2 ���,������� � �

nearby.
However, difficulties arise when � � is far from the solution, or when � 2 ���	� is

close to zero (Figure 10.7b). Further difficulties emerge when � 2 ���	� is zero at the
solution.

Note that the Newton iteration process is undefined when � 2 ���	� ( �
and can

exhibit poor numerical behavior when � � 2 �'�>��� is very small, as shown in Fig-
ure 10.7b. In general, both performance and attainable accuracy of the solver
worsen if any of the above complications arise.

A simple example for solving for the square root of a number by Newton’s
method in Box 10.3 (with associated data in Figure 10.8) illustrates the rapid
convergence for the ideal case when the root of �����>� is simple and reasonably
separated from the other root. In the non-ideal case (e.g., � � far from the solution
or � 2 �'�>� close to zero), convergence is slow at the beginning but then improves
rapidly until the region of quadratic convergence is approached. (See Box 10.1
for a definition of quadratic convergence).

The quadratic convergence of Newton’s method for a simple root and for � �
sufficiently close to the solution � � can easily be shown on the basis of the Taylor
expansion. Tensor methods based on fourth-order approximations to the objective
function can achieve more rapid convergence [83], but they are not generally ap-
plicable. The attainable accuracy for Newton’s method depends on the function
characteristics, and on whether the root is simple or not.

Box 10.3: Newton’s Method: Simple Examples

We can apply Newton’s method to solve for the square root of a number � by defining
� � � � � � � � � � ���

the resulting iterative scheme for computing
� ��� � is:

� �$?A@ � #!
	 � � � �� ��
 �

(10.33)

defined for
� ���� � . A computer result from a double-precision program is shown in Fig-

ure 10.8 for � � � � � # with four starting points: 5,
�

100, 1000, and # � %� .
The rapid, quadratic convergence (see Box 10.1) can be noted in all cases at the last 3–4

steps. In these steps, the number of correct digits for the solution is approximately doubled
from one step to the next! Note the larger number of iterations for convergence when

� F
is near zero (

� F � # � %� shown). Since the derivative of the objective function is zero at
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Figure 10.8. Computer output from the application of Newton’s method to solve the simple
quadratic

� � � � � � � � � � # , from four different starting points.
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� � � , the tangent takes the iterates very far, as illustrated in Fig. 10.7b, but then works
back systematically toward the solution.

Figure 10.9 further illustrates the notions of of accuracy, convergence, and problem
conditioning for solving

� � � � � �(' �*) � � � � ),+ � �

by Newton’s method. The three roots are
� � ) , 0, and � � ) . The corresponding iterative

scheme for solving this cubic polynomial of
�

becomes:

� �$?I@ ��! �-' � ����. � �� �/) � � (10.34)

Near the point where the Newton iteration is undefined (
� � �10 ) ��. ), the iterative process

converges very slowly. When
)

is small, as in our example (
) � � � � � � # ), the three roots

are relatively close. The Newton iterates in Figure 10.9 started from
�32 �

, 0 ) ��. � # � %
@ F ,� # , # � %

@ F , 0.009, and 0.011 show that the solution obtained depends on the starting point.
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Figure 10.9. Computer output from the application of Newton’s method to solve� ' �/) � � � � ) � # � %�� , from various starting points.

Newton Error: � � � ����� � ��� Newton Error: � � � ����� � ���
iterate, � (for nonzero ��� ) iterate, � (for nonzero ��� )

%&F = B�� � %&F = � � � ����� � � %
@ F
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�
3 ��� �����������
� 	����
��	�� � � � E– � � � � 	����
��	�� � ���������
� � ��	 E– � �
4 ��� ����������������������� � � � � E– � ����� � � � ��� � �� � ��	��������� E– ���
5 � � ��������������������������� ��	 E– � � ��� ��� � �
��� � ��	 � ���� � ��� E– ��

10.4.2 Newton’s Method for Minimization

To derive the iteration process of Newton’s method for minimization of the one-
dimensional ���'�>� , we use a quadratic, rather than linear, approximation:

����� ��� � � ) ����� � � 9 ��� ��� � � � � �?�	24��� � �#9
�

� �'� ��� � � � � � 	 �	2 24��� � �	/ (10.35)



10.5. Large-Scale methods 43

Since ���'� �6� is constant, minimization of the second and third terms on the right-
hand-side in eq. (10.35) yields the iteration process:

� ��� � ( � � � � 2 ��� � ���,� 2 2 ��� � �	/ (10.36)

Thus, we have replaced � and � 2 of eq. (10.29) by � 2 and � 2 2 , respectively. This
Newton scheme for minimizing �����	� is defined as long as the second derivative
at � � is nonzero.

10.4.3 The Multivariate Version of Newton’s Method

We generalize Newton’s method for minimization in eq. (10.36) to multivari-
ate functions by expanding ������� locally along a search vector � (in analogy to
eq. (10.35)):

���'� �#9 � � � ) ����� �6�89 ,��'� �,� � � � 9
�

� � � � � �'� � �(� � / (10.37)

Minimizing the right-hand side leads to solving the linear system of equations,
known as the Newton equations, for � � , as long as � � is positive definite:

� � � � ( ��, � / (10.38)

Performing this approximation at each step
�

to obtain � � leads to the iteration
process

� � � � ( � � � � � �
� , � / (10.39)

Thus, the search vector

� � ( � � ���
� , � (10.40)

is used at each step of the classic Newton method for minimization. This requires
repeated solutions of a linear system involving the Hessian. Not only is this an
expensive, order � � process for general dense matrices; for multivariate func-
tions with many minima and maxima, the Hessian may be ill-conditioned (i.e.,
have large maximal-to-minimal eigenvalue ratio ������� � ����� � ) or singular (zero
eigenvalues) for certain � � .

Thus, in addition to the line-search or trust-region modifications that essentially
dampen the Newton step (by scaling � � by a positive scalar less than unity),
effective strategies must be devised to ensure that � � is well defined at each step.
Such effective strategies are described in the next section. These include quasi-
Newton (QN), nonlinear conjugate gradient (CG), and truncated Newton (TN)
methods.

10.5 Effective Large-Scale Minimization Algorithms

The popular methods that fit the descent framework outlined in subsections 10.3.2
and 10.3.3 require gradient information. In addition, the truncated-Newton (TN)
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method may require more input to be effective, such as second-derivative in-
formation from components of the objective function that can be computed
cheaply.

The steepest descent method (recall � � ( ��, � ) can be viewed as a simple
version of the � � definition in eq. (10.40) in which the Hessian replaced by the
identity matrix.

Nonlinear CG methods improve upon (the generally poor) convergence of SD
methods by using better search directions than SD that are still cheap to compute.

QN methods, which are closely related to nonlinear CG methods, can also be
presented as robust alternatives to the classic Newton method ( � � by eq. (10.40))
which update curvature information as the algorithm proceeds.

TN methods are another clever and robust alternative to the classic Newton
framework that introduce curvature information only when locally warranted, so
as to balance computation with realized convergence. Hybrid schemes have also
been devised, e.g., limited-memory QN with TN [12].

The methods described in turn in this section — QN, nonlinear CG, and TN
methods — render SD obsolete as a general method.

10.5.1 Quasi-Newton (QN)

Basic Idea

QN methods avoid using the actual Hessian and instead build-up curvature in-
formation as the algorithm proceeds [66, 28]. Actually, it is often the Hessian
inverse (


�
) that is updated in practice so that a term


�
� , � replaces � � �

� , � in
eq. (10.39). Here


�
� is short hand for


� ��� � � .
The Hessian approximation

�
� is derived to satisfy the quasi-Newton condition

(see below). QN variants define different formulas that satisfy this condition.
Because memory is considered premium for large-scale applications, the matrix�
� or


�
is formulated through several vector operations, avoiding explicit storage

of an � � � matrix. In practice,
�
� is updated by adding a low rank update matrix�

� .

Recent Advances

Two important developments have emerged in modern optimization research in
connection with QN methodology. The first is the development of limited-memory
versions, in which the inverse Hessian approximation at step

�
only incorpo-

rates curvature information generated at the last few $ steps (e.g., $ (�� )
[62, 54, 26, 66]. The second is the emergence of insightful analyses that explain
the relationship between QN and nonlinear CG methods.
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QN Condition

The QN condition specifies the property that the new approximation
�
��� � must

satisfy:
�
��� � � � ( �

� / (10.41)

Here

� � ( � ��� � � � � (10.42)

and
�
� ( , ��� � � , � / (10.43)

(Note that the ‘step vector’ � � can be equated with the displacement from � � ,
namely � � � � , used in the basic Algorithm [A1]). If ������� were a quadratic func-
tion, its Hessian � would be a constant and would satisfy (from the Taylor
expansion of the gradient) the following relation:

, ��� � � , � ( � �'� ��� � ��� � �	/ (10.44)

This equation makes clear the origin of the QN condition of eq. (10.41).

Updating Formula

The updating QN formula can be written symbolically as:
�
��� � ( � �=9 � �C��� �:� � � � � � � (10.45)

where
�
� is a matrix of low rank (typically 1 or 2). Note that a rank 1 matrix can

be written as the outer product of two vectors: ���
�

. In addition to rank, imposed
symmetry and positive-definiteness are used in the formulation of

�
� .

BFGS Method

One of the most successful QN formulas in practice is associated with the BFGS
method (for its developers Broyden, Fletcher, Goldfarb, and Shanno). The BFGS
update matrix has rank 2 and inherent positive definiteness (i.e., if

�
� is positive

definite then
�
��� � is positive definite) as long as

� �
� � � � �

. This condition is
satisfied automatically for convex functions but may not hold in general without
the sufficient reduction of curvature criteria (eq. (10.14)) in the line search. In
practice, the line search must check for the descent property; updates that do not
satisfy this condition may be skipped.

The BFGS update formula is given by

�
��� � ( � �7�

�
� � � � � � � � �
� � � � � � � 9

�
�
� �
�� �

� � � / (10.46)
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The corresponding formula used in practice to update the inverse of
�

, namely
�
, is:


�
��� � (

���
� � � ��� �� �

� � ��� 
�
�

���
�
�
� � � �� �
� � ��� 9 � � � � �� �

� � � / (10.47)

From this

�

, the BFGS search vector is defined as

� � ( �

�
� , ��� (10.48)

(compare to the Newton search vector defined in eq. (10.40)).

Practical Implementation

Because we only require the product of

�

with the gradient (and not
�

or

�

per se), effective matrix/vector products have been developed to minimize stor-
age requirements by using low-rank QN updates. This requires � �'��� memory to
store the successive pairs of update vectors ( � � and

�
� ) and the respective inner

products
���
� � � .

Limited-memory QN methods reduce storage requirements further by only re-
taining the � �,� � 
 pairs from the previous few iterates (3–7). The identity matrix,�
, or a multiple of it, is typically used for the initial Hessian approximation

�
� .

Updating this scaling at each iteration enhances overall efficiency [54, 26].
The limited-memory BFGS code of Nocedal and co-workers [64] is one of

the most effective methods in this class. The combination of modest memory,
requiring only gradient information, and good performance in practice makes it
an excellent choice for large-scale multivariate minimization [61]. The method
has been extended to constrained optimization [11, 10, 90], used to propose pre-
conditioners for CG methods [59], and combined with TN methods in a QN/TN
cyclic fashion [12]. The text of Nocedal and Wright [66] presents a comprehensive
description of the limited-memory BFGS method.

10.5.2 Conjugate Gradient (CG)

Nonlinear CG methods form another popular type of optimization scheme for
large-scale problems where memory and computational performance are im-
portant considerations. These methods were first developed in the 1960s by
combining the linear CG method (an iterative technique for solving linear sys-
tems

� � ( � where
�

is an � ��� matrix [30]) with line-search techniques. The
basic idea is that if � were a convex quadratic function, the resulting nonlinear
CG method would reduce to solving the Newton equations (eq. (10.38)) for the
search vector � when � is a constant positive-definite matrix.

CG Search Vector

In each step of the nonlinear CG method, a search vector � � is defined by a
recursive formula. A line search is then used as outlined in Algorithm [A1]. The
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iteration process that defines the search vectors ��� � 
 is given by:

� ��� � ( ��, ��� � 9 � ��� � � � � (10.49)

where � � ( ��, � . The scheme-dependent parameter � � that defines the search
vectors is chosen so that if � were a convex quadratic and the line search exact
(i.e., � � 9�� � � � minimizes � exactly along � � ), then the linear CG process would
result. The reduction to the linear CG method in this special case is important
because linear CG is known to terminate in at most � steps of exact arithmetic.
This finite-termination property relies on the fundamental notion that two sets of
vectors ( � ,�
 and ��� 
 ) generated in the CG method satisfy

, � � �  ( � )�*,+����� � � � /
This orthogonality condition implies that the search vectors span the entire � -
dimensional space after � steps, so that , " � � (

�
in finite arithmetic.

CG Variants

Different formulas for � � (not to be confused with the line search parameter in-
troduced earlier) have been developed for the nonlinear CG case, though they
all reduce to the same expressions for convex quadratic functions. These variants
exhibit different behavior in practice.

Three of the best known algorithms are due to Fletcher-Reeves (FR), Polak-
Ribi ère (PR), and Hestenes-Stiefel (HS). They are defined by the parameter �
(for eq. (10.49)) as:

��� ���� � ( , � ��� � , ��� � � ,
�
� , � � (10.50)

� ������ � ( , � ��� � � � � ,
�
� , � � (10.51)

� � ���� � ( , � ��� � � � � � � � � � / (10.52)

(Recall
�
� ( , ��� � ��, � ).

The PR version is often found in software packages. Still, to be effective PR
restarts the iteration process, i.e., sets � � to zero occasionally, for example when
� � becomes negative.

Some important modifications of this version are due to Powell [75], available
in the IMSL library, and to Shanno & Phua [85], available in the NAG library.
These modifications have slightly more memory requirements but fewer func-
tion evaluations. An interesting CG–PR–FR hybrid algorithm might also be an
effective alternative [27].

A careful line search is important for nonlinear CG methods.

CG/QN Connection

Key connections between CG and QN-Newton algorithms for minimization began
to emerge in the late 1970s. Essentially, it was found that the CG conjugacy prop-
erty can be closely related to the QN condition, and thus an appropriate formula
for � � could be obtained from both viewpoints.
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The many developments in the 1980s have shown that the limited-memory QN
class of algorithms balances the extremely modest storage requirements of non-
linear CG with good convergence properties in practice. The fact that the unit
steplength in QN methods is often acceptable leads to greater efficiency in terms
of function evaluations and hence less computational time overall.

Still, the linear and nonlinear CG methods play important theoretical roles in
the numerical analysis literature, as well as practical roles in many numerical
techniques; see the research monograph of [1] for a modern perspective. The lin-
ear CG method, in particular, proves ideal for solving the linear subproblem in
the truncated Newton method for minimization (discussed next), especially with
convergence-accelerating techniques known as preconditioning.

10.5.3 Truncated-Newton (TN)

Approximate Solution of the Newton Equations

In the early 1980s a very simple but important idea emerged in connection with the
Newton equations: why solve this linear system for the search vector � � exactly
[15]? In the context of large-scale nonlinear optimization, an accurate solution
of eq. (10.38) is not warranted! Far away from a minimum, any descent direction
that can be computed cheaply may still produce progress toward a minimum. Only
near the solution, where the quadratic model is good, should the system be solved
more accurately.

In practice, truncated-Newton (TN) methods allow a nonzero residual, � � , for
the Newton equations. For example, we can require

� � � � � ��� � 9 , � � 5�� � � , � � � (10.53)

where � � is the forcing sequence.
This condition on the size of the residual � � at step

�
of the minimization

scheme becomes stricter as the gradient norm becomes smaller. Thus, near the
solution we solve for � � more accurately, whereas far away we permit a cruder
approximation.

Theoretical work further showed that asymptotic quadratic convergence of the
method can be realized for a well chosen � � as

� , � � � �
[15]. For example, an

effective setting is:

� � ( �� � � %�� � � � � , � � 
<� � � %�� 5 � / (10.54)

This choice forces the residuals to be progressively smaller as the number of
iterations (

�
) increases and as the gradient becomes smaller. Another termina-

tion criterion based on the quality of the quadratic approximation has also been
suggested [61].



10.5. Large-Scale methods 49

Truncated Outer Iteration; Effective Residual

To implement an upper bound on the residual norm in practice, an iterative, rather
than direct, procedure that can be “truncated” is required for approximating � �
from eq. (10.38) at each outer step

�
.

The linear CG method is an excellent candidate since it is simple and very mod-
est in memory. The linear CG algorithm mirrors in structure the general descent
method of Algorithm [A1]. That is, it generates search vectors ��� �� � � 	 � � � � � 
 at
each step recursively (as the nonlinear conjugate gradient method of the previous
subsection) until the residual (eq. 10.54), or another suitable truncation criterion,
is satisfied for the � th iterate �  � . However, in place of the line search, an ex-
plicit formula for the steplength is used. This expression is derived analytically
by minimizing the quadratic model at the current point along �  � and then using
the conjugacy condition to simplify the formula.

Preconditioning

To accelerate convergence of this inner iteration process, preconditioning is es-
sential in practice. This technique involves modification of eq. (10.38) through
application of a closely-related matrix to � � , � � (effectively, multiplication of
both sides by the inverse of � � ).

The preconditioner � is typically chosen as a sparse symmetric matrix that is
rapid to assemble and factor. Theoretically, convergence improves if � ���

� � � ,
the coefficient matrix of the new linear system, has clustered eigenvalues or
approximates the identity matrix.

The TN code in CHARMM [17, 87] uses a preconditioner from the local chem-
ical interactions (bond length, bond angle, and dihedral-angle terms). This sparse
matrix is rapid to compute and was found to be effective in practice, whether the
matrix is indefinite or not, with an appropriate (unusual) modified Cholesky fac-
torization [87]. Other possibilities of preconditioners in general contexts have also
been developed, such as a matrix derived from the BFGS update (defined in the
QN subsection) [59].

Overall Work

Although more complex to implement than QN or nonlinear CG methods, TN
algorithms can be very efficient overall in terms of total function and gradi-
ent evaluations, convergence behavior, and solution accuracy, as long as the
many components of the algorithm are carefully formulated (truncation, solution
process for the inner loop, preconditioning, etc.).

In terms of the computational work per outer Newton step (
�

), TN methods
based on preconditioned CG require a Hessian/vector product ( ��� ) at each in-
ner loop iteration, and one solution of a linear system ��� (�� where � is
the preconditioner. Because � may be sparse, this linear solution often takes a
very small percentage of the total CPU time (e.g., ����� [87]). The benefits of
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faster convergence generally far outweigh these additional costs associated with
the preconditioner.

Hessian/Vector Products

The Hessian/vector products in each linear CG step ( � � �  � ) are more significant
in terms of computer time. For a Hessian formulated with a nonbonded cutoff
radius (e.g., 8 Å), many zeros result for the Hessian (see Figures 10.4 and 10.5);
when this sparsity is exploited in the multiplication routine, performance is fast
compared to a dense matrix/vector product. However, when the Hessian is dense
and large in size, the following forward-difference formula of two gradients often
works faster (we omit subscripts

�
from � �� , and � for clarity):

� � ) 	 ,���� 9 � �.� � ,������ � ��� � (10.55)

where � is a suitably-chosen small number. The central difference approximation,

� � ) 	 , �'� 9��'��� � ,����3� �'�.� � � � � � (10.56)

may alternatively be used for greater accuracy at the cost of one more gradient
evaluation with respect to the one-sided difference formula.

In either case, finding an appropriate value for the finite-difference stepsize �
is nontrivial, and the accuracy of the product near the solution (where the gradient
components are small) can be problematic.

Performance

Thus, TN methods require more care in implementation details and user inter-
face, but their performance is typically at least as good overall as limited-memory
QN Newton methods. If simplicity is at a premium, the latter is a better choice.
If partial second-derivative information is available, the objective function has
many quadratic-like regions, and the user is interested in repeated minimization
applications, TN algorithms may be worth the effort.

In general, though Newton methods may not always perform best in terms
of function calls and CPU time, they are the most reliable of methods for mul-
tivariate minimization and have the greatest potential for achieving very small
final-gradient norms. This can be especially important if normal-mode analysis is
performed following minimization.

10.5.4 Simple Example

To illustrate performance of the methods described in this section, we have con-
structed a nonlinear minimization problem with an objective function dependent
on two variables, whose contour lines are shown in Figure 10.10. Though the
original problem has more variables, this construct represents a ‘slice’ of the
real problem. Illustrations on more realistic, multivariate functions (potential
functions of molecular systems) are presented in the next section.
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The two-variable problem is derived from our charge optimization procedure
[4] that determines electrostatic charge parameters for particles distributed on a
virtual surface enclosing a macromolecular system; the electrostatic energy is
modeled by a Debye-Hückel potential as an approximation (in the far zone) to
a continuum, Poisson-Boltzmann solution to the electrostatic field surrounding
the system. The objective function thus reflects the error in electric field (or po-
tential) between the discrete and continuum approximations to the electrostatic
potential of the complex macromolecular system.

Specifically, our constructed two-dimensional example seeks to optimize two
charge values on the surface of the nucleosome, with the remaining 275 charges
fixed.

The contour plots of our function, most readily seen from the darker illustration
in Figure 10.10 (bottom right), show the unique minimum lying inside a shallow
valley in the function surface.

The steepest descent (SD) path (top left) first overshoots the minimum and then
slowly approaches it, reaching the high desired gradient accuracy of order

��� � ��	

after nearly 2000 iterations. It also requires two orders of magnitude more CPU
time that the other methods.

The CG path (top right) is direct and efficient for this problem, likely because
of the quadratic nature of the function. Equally direct and efficient are the New-
ton minimizers: QN BFGS in Matlab and the TN package TNPACK (bottom
illustrations). TNPACK, in particular, achieves a low gradient norm in one step.

10.6 Available Software

Table 10.1 summarizes the available minimizers in several chemistry and math-
ematics packages. See [60] and the NEOS (Network-Enabled Optimization
System) Guide at www.mcs.anl.gov/otc/Guide/ for a compilation of up-to-date
mathematical software for optimization and related information, including on
www.mcs.anl.gov/otc/Guide/SoftwareGuide/.

10.6.1 Popular Newton and CG

Nonlinear CG and various Newton methods are quite popular, but algorithmic de-
tails and parameters vary greatly from package to package. In particular, nonlinear
CG implementations are quite different. Several comprehensive mathematical li-
braries, such as IMSL, NAG, and MATLAB are sources of quality numerical
software.

10.6.2 CHARMM’s ABNR

Of special note is the “adopted-basis Newton-Raphason” method implemented in
CHARMM, ABNR. It is a memory-saving adaptation of Newton’s method that
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Figure 10.10. Minimization paths (with corresponding CPU times) for a function of two
variables shown on top of function contour plots, for steepest descent (SD), nonlinear con-
jugate gradient (CG), BFGS quasi-Newton (QN), and truncated-Newton (TN) algorithms.
See text for functional construction details. All contours are the same, but different levels
of resolution are used in each plot to discern both the region near the minimum (darkest
contour plot) and the higher-energy regions (lighter plots).

avoids analytic second derivatives. The idea is to use SD steps for a given number
of iterations, $ (e.g., 5), after which a set of $ 9 � coordinate and gradient vectors
are available. A Hessian is constructed numerically in this $ � $ subspace, and all
corresponding eigenvalues and eigenvectors are computed. If all eigenvalues are
negative, SD steps are used; if some are negative and some are positive, the search
direction is modified by a Newton direction constructed from the eigenvectors
corresponding to the positive eigenvalues only. In all cases, the � -dimensional
search vector � � is determined via projection onto the full space. The ABNR
algorithm is similar in strategy to limited-memory QN methods in that it uses
only recent curvature information and exploits this information to make steady
progress toward a solution.



10.7. Recommendations 53

10.6.3 CHARMM’s TN

The TN method in CHARMM [17] is detailed elsewhere [81, 79, 80, 87, 88].
It uses a preconditioner constructed from the local chemical interactions (see
Figures 10.4 and 10.5, right panels) and determines � � from a truncated precondi-
tioned CG loop. When negative curvature is detected, the preconditioned CG loop
is halted with a guaranteed direction of descent. Interestingly, numerical analysis
and experiments have shown that the method can produce quadratic convergence
near a solution regardless of whether the preconditioner is indefinite or not [87].
As implemented, the method is applicable only to moderate system sizes (due to
Hessian memory limitations).

10.6.4 Comparative Performance on Molecular Systems

In Table 10.2 we illustrate the minimization performance of three methods in
CHARMM — nonlinear CG, ABNR, and TNPACK — for several molecular
systems; see [87, 88] for details.

Note that the same minimum is obtained for the small systems (butane and n-
methyl-alanyl-acetamide) but that different minima typically result for the larger
systems.

Considerable differences in CPU times can also be noted. The CG method
performs much slower and can fail to produce very small gradient norms. Both
Newton methods perform well for these problems, though ABNR is relatively ex-
pensive for the small system. TNPACK displays much faster convergence overall
and yields smaller final gradient norms.

Note also that CG requires about two function evaluations per iteration (in the
line search), while ABNR employs only one on average. TNPACK uses more than
one function evaluation per outer iteration, since the (unscaled) magnitude of the
produced search vector often leads to small steplengths at some iterations of the
line search. The quadratic convergence of TNPACK is evident from Figure 10.11,
where the gradient norm per iteration is shown.

10.7 Practical Recommendations

In general, geometry optimization in the context of molecular potential energy
functions has many possible caveats. Hence, a novice user especially should
take the following precautions to generate as much confidence as possible in a
minimization result.

1. Use many starting points. There is always the possibility that the method
will fail to converge from a certain starting point, or converge to a nearby
stationary point that is not a minimum.

A case in point is minimization of biphenyl from a planar geometry [53];
many minimizers will produce the flat ring geometry, but this actually
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Figure 10.11. Minimization progress (gradient norm) of three CHARMM algorithms
(CONJ: nonlinear conjugate gradient, ABNR: adopted-basis Newton-Raphson, and
TNPACK: truncated Newton) for various molecular systems. See Figures 10.4 and 10.5
for corresponding sparse matrix patterns; the local Hessians are used as preconditioners
for TNPACK. See also Table 10.2 for final function and gradient-norm values and required
CPU time.
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corresponds to a maximum! Different starting points will produce the cor-
rect nonplanar structure. See the homework assignment on minimization
(number 10).

2. Compare results from different algorithms. Many packages offer more than
one minimizer, and thus experimenting with more than one algorithm is an
excellent way to check a computational result. Often, one method fails to
achieve the desired resolution or converges very slowly. Another reference
calculation under the same potential energy surface should help assess the
results.

Minimization of the DNA in vacuum system in Figure 10.11 and Table 10.2
by three algorithms also reveals very different final energies. This is be-
cause the DNA strands have separated! Proper solvation and ions remedy
this physical/chemical problem. Interestingly, adding only water keeps the
strands nearby but untwists the strands; only added ions and water maintain
the proper DNA chemistry.

3. Compare results from different force fields whenever possible. Putting aside
the quality of the minimizer, the local minimum produced by any package is
only as good as the force field itself. Since force fields for macromolecules
today are far from converging to one another — in fact there are very
large differences both in parameters and in functional forms — a better
understanding of the energetic properties of various conformations can be
obtained by comparing the relative energies of the different configurations
as obtained by different force fields. Differences are expected, but the re-
sults should help identify the lowest-energy configuration. If significant
differences are observed, the researcher could further investigate both the
associated force fields (e.g., a larger partial charge, an additional torsional
term) and the minimization algorithms for explanations.

4. Check eigenvalues at the solution when possible. If the significance of the
computed minima is unclear, the corresponding eigenvalues may help diag-
nose a problem. Near a true minimum, the eigenvalues should all be positive
(except for the six zero components corresponding to translation and ro-
tation invariance). In finite-precision arithmetic, “zero” will correspond to
numbers that are small in absolute value (e.g.,

��� ���
). Values larger than this

tolerance might indicate deviations from a true minimum, perhaps even a
maximum or saddle point. In this case, the corresponding structure should
be perturbed substantially and another trial of minimization attempted.

5. Be aware of artificial minima caused by nonbonded cutoffs or improper
physical models! When cutoffs are used for the nonbonded interac-
tions, especially in naive implementations involving sudden truncation or
potential-switching methods, the energy and/or gradient can exhibit numer-
ical artifacts: deep energy minima and correspondingly-large gradient value
near the cutoff region. Good minimization algorithms can find these min-
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ima, which are correct as far as the numerical formulation is involved, but
unfortunately not relevant physically.

One way to recognize these artifacts is to note their large energy difference
with respect to other minima computed for the same structure (as obtained
from different starting points or minima). These artificial minima should
disappear when all the nonbonded interactions are considered, or improved
spherical-cutoff treatments (such as force shifting and switching methods)
are implemented instead.

Besides artifacts caused by nonbonded cutoffs, improper physical models
— such as that for DNA lacking solvent and ions, as discussed above —
also produce artificial minima. For this example of DNA in vacuum, parallel
strands rather than intertwined polynucleotide strands are produced as a
result of minimization.

10.8 Looking Ahead

Only a small subset of topics was covered here in the challenging and ever-
evolving field of nonlinear large-scale optimization. Interested readers are referred
to the comprehensive treatments in the texts cited at the beginning of this chap-
ter. The increase in computer memory and speed, and the growing availability of
parallel computing platforms will undoubtedly influence the development of opti-
mization algorithms in the next decade. Parallel architectures can be exploited in
many ways: for performing minimization simulations concurrently from different
starting points; for evaluating function and derivatives in tandem; for greater ef-
ficiency in the line search or finite-difference approximations; or for performing
matrix decompositions in parallel for structured, separable systems.

The increase in computing speed is also making automatic differentiation a
powerful resource for nonlinear optimization. In this technique, automatic rou-
tines are available to construct program codes for function derivatives. The
construction is based on the chain-rule application to the elementary constituents
of a function [32]. It is foreseeable that such codes will introduce greater versa-
tility in Newton methods [64]. The cost of differentiation is not reduced, but the
convenience and accuracy may increase.

Function separability is a more general notion than sparsity, since problems
associated with sparse Hessians are separable but the reverse is not true. It is
also another area where algorithmic growth can be expected [64]. (Recall that
separable functions are composites of subfunctions, each of which depends only
on a small subset of the independent variables; see eq. (10.6)). Therefore, effi-
cient schemes can be devised in this case to compute the search vector, function
curvature, etc., much more cheaply by exploiting the invariant subspaces of the
objective function.
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Such advances in local optimization will certainly lead to further progress in
solving the global optimization problem as well; see [69, 23, 74] for examples.
Scientists from all disciplines will anxiously await all these developments.
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Table 10.1. Available optimization algorithms.

Package Contact Minimizers

AMBER www.amber.ucsf.
edu/amber/amber.html

SD, nonlinear CG from the IMSL library (due to
Powell), and Newton.

CHARMM yuri.harvard.edu
SD, nonlinear CG (FR, and modified PR version, the
latter from the IMSL library),a Adopted-Basis Newton
(ABNR), Newton, truncated-Newton (TNPACK).

DISCOVER
Biosym Technologies,
San Diego, CA

SD, nonlinear CG (PR, FR versions), � quasi-Newton,
truncated Newton.

DUPLEX Brian E. Hingerty Powell’s coordinate descent method

hingertybe@ornl.gov (no derivatives).b

ECEPP/2 QCPE 454
qcpe5.chem.indiana.edu/

Calls SUMSL, a quasi-Newton method based on a trust-
region approach (by Gay).

GROMOS igc.ethz.ch/gromos SD and nonlinear CG (FR version), � both with and
without SHAKE constraints.

IMSL Lib.
IMSL, Inc., Sugar Land,
TX. www.vni.com/
products/imsl/

Many routines for constrained and unconstrained mini-
mization (nonsmooth, no derivatives, quadratic and linear
programming, least-squares, nonlinear, etc.), including a
nonlinear CG method of Powell (modified PR version
with restarts). �

LANCELOT
Philippe Toint
www.cse.clrc.ac.uk/ Activ-
ity/LANCELOT

Various Newton methods for constrained and un-
constrained nonlinear optimization, specializing in
large-scale problems and including a trust-region New-
ton method and an algorithm for nonlinear least squares
that exploits partial separability.

MATLAB

The Math Works, Inc., Nat-
ick, MA
info@mathworks.com,
www.mathworks.com

SD, DFPc and BFGS quasi-Newton, simplex algorithm,
and others for linear and quadratic programming, least
squares, etc..

MMFF94
/94S

www.ccl.net/cca/data
/MMFF94/

Calls OPTIMOL which uses a BFGS quasi-Newton
method, with variable-metric updating scheme, but for
Cartesian optimization (there is also a torsion-only op-
timizer) initiates the initial inverse Hessian approximated
from the inverse of a 3 � 3 block-diagonal Hessian.

MM3 europa.chem.uga.edu � � � block-diagonal Newton and full Newton.

MM2 europa.chem.uga.edu � � � block-diagonal Newton.

NAG Lib.
NAG, Inc.,
Downers Grove, IL
www.nag.com

Quasi-Newton, modified Newton and nonlinear CG
(CONMIN by Shanno & Phua, modified PR version);
also quadratic programming, least squares minimization,
and many service routines.

SIGMA femto.med.unc.edu
/SIGMA/

Nonlinear CG (FR version). �

X-PLOR atb.csb.yale.edu/xplor/ Nonlinear CG (from IMSL library).

aFR and PR refer to the Fletcher-Reeves and Polak-Ribi ère nonlinear CG versions.
bSee [34, 9] for details on DUPLEX.
cDFP is a rank-1 QN method, credited to Davidon, Fletcher, and Powell.
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Table 10.2. Performance of three CHARMM minimizers on various molecular systems.
See Figures 10.4 and 10.5 for patterns of the preconditioner used in TNPACK and Fig-
ure 10.11 for minimization progress. Note: For the DNA system in vacuum, though
minimization produces a local minimum for each method, the structures are physically
incorrect: without proper solvation, the DNA strands intertwine and separate. This also
explains the very different values of final energies. For the DNA system with water and
ions, the CG method terminates prematurely with an error message; the final gradient is
relatively large.

Methoda Final � Final
� 0 � Itns.b ��� 0 Evals CPUc

N-Methyl-Alanyl-Acetamide ( C =����
)

CG
B � � � ��� � � � ��	�
 � � % � 882 2507 2.34 s

ABNR
B � � � ��� � � � ��� 
 � � %� 16466 16467 7.47 s

TNPACK
B � � � ��� � � � � ��
 � � %

@ @
29 (210) 44 1.32 s

Solvated Butane ( C = �
� � � )
CG

B � 	�� � � � � � � � ��
 � � %
�

1152 3175 49.48 m
ABNR

B � 	 � � � ��� � � � 
 � � %� 1574 1575 48.52 m
TNPACK

B � 	�� � � ��� � � ��
 � � %� 90 (1717) 263 59.44 m

BPTI ( C = � � ��� )
CG

B � � ��� � � 	 � � � 
 � � %� 12469 32661 97.8 m
ABNR

B � � ��� � ��� � � � 
 � � %� 8329 8330 25.17 m
TNPACK

B � ����	 � � � � � � 
 � � %� 65 (1335) 240 5.21 m

DNA 14 Bps ( C =��������
)

CG
B���	�� � � � � � � � 
 � � %� 62669 62670 20.42 h

ABNR
B � � 	�	 � � � � � � 	�
 � � %� 86496 86497 6.69 h

TNPACK
B�� � � � � � � � ��� 
 � � %� 111 (3724) 268 0.54 h

DNA 14 Bps + 300 Waters + Ions ( C = ��	 ��� �
CG

B �
� ��� � � � � � � � � 
 � � % � 2580 6616 1.62 h
ABNR

B �
� ��� � � ��� � � � � 
 � � %� 11306 11307 2.78 h
TNPACK

B �
� ��� � � � � � � � � 
 � � %� 236 (6555) 687 1.75 h

Lysozyme ( C =�� ��� �
)

CG
B ����� � � 	 ��� � � � � 
 � � %

�
9231 24064 19.63 h

ABNR
B ��� 	 � � ��� � � � � ��
 � � %� 7637 7638 6.11 h

TNPACK
B ��� 	 � � 	�� � � � � ��
 � � %� 78 (1848) 218 1.49 h

aCG: nonlinear conjugate gradient, ABNR: adopted basis Newton Raphson, TNPACK: truncated
Newton based on the TNPACK package.

bFor TNPACK, the total number of inner (preconditioned CG) iterations is indicated in
parentheses, following the number of outer iterations.

cs: seconds, m: minutes, h: hours.
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Monte Carlo Techniques

Chapter 11 Notation

SYMBOL DEFINITION

Matrices
M mass matrix (components � � )

Vectors� (or
�

) collective momentum vector	 (or � ) collective position vector�
collective random force vector

Scalars & Functions� multiplier (of random number generator, a prime)� increment (of random number generator)
� , 9 , � , � , 	 , 
 integers�

time� ,�� real numbers� � velocity component ��D%&�E� , �	�%&�E� sequences of numbers
 � data batch (for MC mean)� �
kinetic energy� � potential energy�
probability distribution function� (or

�
) total energy

modulus (of random number generator, usually of
order of computer word size); also used for
number of batches in a sample�

number of particles�
sample size� 1 radius of gyration��,��
polynomial functions
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Chapter 11 Notation Table (continued)

SYMBOL DEFINITION
�

temperature� 
 DNA writhing number�
Boltzmann factor �D" � ��� � )� Langevin damping constant� mean (also chemical potential in MC Carlo

sampling section)� probability density function� � variance ( � is standard deviation)� period (of random number generator)	 � ��%���
� mean of property � � %�� over domain �� ���
largest integer smaller than or equal to

�

It is a pollster’s maxim that the truth lies not in any one poll but at
the center of gravity of several polls.

Michael R. Kagay, New York Times (Week in Review), 19 October 1998.

11.1 MC Popularity

From Washington D.C. to Wall Street to Los Alamos, statistical techniques termed
collectively as Monte Carlo (MC) are powerful problem solvers. Indeed, disci-
plines as disparate as politics, economics, biology, and high-energy physics rely
on MC tools for handling daily tasks.

Many problems that can be formulated as stochastic phenomena and studied by
random sampling can be solved through MC simulations. Essentially, a game of
chance is played, but with theoretical and practical rules from probability theory,
stochastic processes, and statistical physics (Markov chains, Brownian motion,
ergodic hypothesis) that lend the ‘sport’ practical utility.

11.1.1 A Winning Combination

MC methods are used for numerical integration, global optimization, queuing
theory, structural mechanics, and solution of large systems of linear, partial dif-
ferential or integral equations. MC methods are employed widely in statistical
physics and chemistry, where the behavior of complex systems of thousands or
more atoms in space and time is studied. Their appeal can be explained by a
winning combination of simplicity, efficiency, and theoretical grounding.
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11.1.2 From Needles to Bombs

Early records of random sampling to solve quantitative problems can be found in
the 18th and 19th centuries with needle throwing experiments to calculate geo-
metrical probabilities (George Louis Leclerc, a.k.a. Comte de Buffon, 1777)1 or
to determine � (Simon de Laplace, 1886). In 1901, Lord Kelvin also described
an important application to the evaluation of time integrals in the kinetic theory
of gases. Yet a novel class of MC methods (using Markov chains) provides the
modern roots of MC theory, and is largely credited to the Los Alamos pioneers
(Von Neumann, Fermi, Ulam, Metropolis, Teller, and others).

These brilliant scholars studied properties of the newly discovered neutron par-
ticles in the middle of the 20th century by formulating mathematical problems in
terms of probability and solving analogues by stochastic sampling. Their work led
to a surge of publications in the late 1940s and early 1950s on solving problems
in statistical mechanics, radiation transport, and other fields by carefully-designed
sampling experiments.

Most notable among these works was the famous algorithm of Metropolis et al.
in 1953 [58]. With the rapid growth of computer speed and the development of
many techniques to improve sampling, reduce errors, and enhance efficiency, MC
methods have become a powerful utility in many areas of science and engineering.

11.1.3 Chapter Overview

In this chapter, only the most elementary aspects of MC simulations are described,
including the generation of uniform and normal random variables, basic probabil-
ity theory background (see also Box 11.1), and the Metropolis algorithm (due also
to A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller).

Such methods can be used in molecular simulations to generate efficiently con-
formational ensembles that obey Boltzmann statistics, that is, the probability of
a configuration

�
with energy � � � � is proportional to � ��� �&��� � � ��� ���	� � (

�
�
is Boltzmann’s constant and

�
is the temperature). From such ensembles, vari-

ous geometric and energetic means estimated. Low-energy regions can also be
identified by decreasing the temperature in the sampling protocol (this is termed
“simulated annealing”). Method extensions that are of particular interest to the
biomolecular community, such as hybrid MC, are also mentioned.

The codes illustrated in this chapter are provided in Fortran, still the language
of choice in some of the popular molecular mechanics and dynamics packages

1Buffon used a Monte Carlo integration procedure to solve the following problem: a needle of
length � is thrown at a horizontal plane ruled with parallel straight lines separated by ���� ; what is
the probability that the needle will intersect one of these lines? Buffon derived the probability as an
integral and attempted an experimental verification by throwing the needle many times and observing
the fraction of needle/line intersections. It was Laplace who in the early 1800s generalized Buffon’s
probability problem and recognized it as a method for calculating � .
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like CHARMM and AMBER. Analogous routines written in the C language can
be obtained from the course website.

Since MC methods rely strongly on random number generators, the first section
of this chapter is devoted to the subject. Students can skip Sections 11.2 and 11.3
if they wish to read material related to other aspects of MC simulations. To see
immediately why random number generators are important and how they are used
in MC simulations, students may wish to read at the onset Subsection 11.5.4 and
see the example there (subroutine monte) for calculating � by MC sampling.

Good general introductions to MC simulations can be found in the texts
by Kalos and Whitlock [40], Bratley, Fox and Schrage [8], and Frenkel
and Smit [25]. There are many web resources for Monte Carlo tutorials,
for example, obtained through the Molecular Monte Carlo Home Page of
www.cooper.edu/engineering/chemechem/monte.html.

11.1.4 Importance of Error Bars

A point which cannot be overstressed in any introduction to MC methods is the
fundamental importance of error bars in any MC estimate. Unlike in politics,
perhaps, the reliability of any conclusion (e.g., estimate) in science depends on
the associated accuracy. Scientists would no doubt have discarded the results of
an election whose “margin of error /0/�/ is far greater than the margin of victory,
no matter who wins”, an assessment by mathematician John Allen Paulos of the
rocky 2000 U.S. Presidential race, between Texas governor George W. Bush (who
became President) and former President Clinton’s Vice President Albert Gore.

11.2 Random Number Generators

11.2.1 What is Random?

The computer sampling performed in MC simulations of stochastic processes re-
lies on generation of “random” numbers. Actually, those numbers are typically
pseudorandom since a deterministic recursion rule is used to generate a sequence
of numbers given an initial seed � � : �>� � � ( ���'� �;�&� � ��� �&�>� �
	 ��/0/�/ � , where � is a
function.2 This reproducibility of the sequence is an essential requirement for de-
bugging computer programs. Even sequences obtained via chaos theory (see [31],
for example, and references cited therein) are deterministic.

It is essential to use ‘good’ random number generators in MC applications
to avoid artifacts in the results. (The statement by Dilbert’s cartoon character, a
horned accounting troll, that “you can never be sure” [of randomness] is not an op-
tion for scientists! See cartoon posting on the dilbert.com archives for 10/25/01).

2We use the term random for brevity in most of this chapter, though the terms pseudorandom or
quasi-random are technically correct.
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The quality of a generator is determined not only by subjecting the generating al-
gorithm to a large number of established tests (both empirical and theoretical). It
is also important to test the combination of generator and application. The two ex-
amples described in the Artifacts subsection below (following the introduction of
generator algorithms) illustrate how the performance of generators is application
specific.

Much work has gone into developing random number generators on both serial
and parallel computer platforms, as well as associated criteria for testing them.
Concurrently, work has focused on the careful implementation of the mathemat-
ical expressions to ensure good numerical performance (e.g., avoid overflow or
systematic loss in accuracy) and efficiency, on both general and special-purpose
hardware.

Novices are well advised to use a routine from a reputable library of programs
rather than programming a simple procedure reported in the literature, since many
such procedures have not been actually tested comprehensively. Still, caveats are
warranted even for some library routines; see below.

The reader is referred to classic texts by Kalos and Whitlock [40], Knuth
[41], and Law and Kelton [44] for general introductions into random number
generators. Some of these books also review basic probability theory. Good re-
views by L’Ecuyer can be found in [45, 48] (see also www.iro.umontreal.ca/ �
lecuyer) and [57].

11.2.2 Properties of Generators

Let

��� � �&� 	 �0/�/0/�� /0/�/ 

be a sequence of numbers. In theory, we aim for sequences of numbers that exhibit
independence, uniformity, and a long period � . In addition, it is important that
such generators be as portable and efficient as possible.

Uniformity and Subtle Correlations

Most MC algorithms manipulate hypothetical independent uniformly distributed
random variables (variates). That is, the independent variables are assumed to
have a probability density function 
 (see Box 11.1) that satisfies 
�� ���	�<( �

for �
in the interval 	 � � � � and 
�� ���	��( �

elsewhere.3 From such uniform variates, we
can obtain other probability distributions than the uniform distribution, such as the
normal, exponential, Gamma, or Poisson distributions; see subsection below on
normal variates and [44] for generating continuous and discrete random variates
from many distributions.

3We say that % lies in
� � ,���� if ��� % � �

and that % lies in
� � , � � if �	� %�
 �

; similarly, % in� � ,�� � means � 
 %�
 �
.
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Roughly speaking, independence of two random variables means that knowl-
edge of one random variate reveals no information about the distribution of the
other variate. In the strict sense of probability theory,4 it is impossible to ob-
tain true independence for random numbers. Generating uncorrelated random
variates is a weaker goal than independence. (This is because independent ran-
dom variables are uncorrelated but uncorrelated variables are not independent in
general). Though correlations exist even in the best known random number gener-
ators, quality random number generators can defer correlations to high-order and
high-complexity relations.

Long Period

The period � associated with a sequence of random numbers is the number of
sequential random values before the series repeats itself, that is,

� � ��� (7� � for all integers
- � �

.

We require the sequence to have as long a period as possible to allow long
simulations of independent measures.

The period length is an important consideration for modern large-scale sim-
ulations.5 For a 32-bit computer, if the generator’s state uses only 32 bits, the
maximum period is usually

� � � � ��� �
(assuming 2 bits are lost). This number

is not a large number by today’s standards. More than one million iterations may
be performed in dynamics simulations and far more in MC sampling simulations.
Moreover, each iteration may require large random vectors (e.g., in Langevin dy-
namics). Thus, the random number generators that might have been adequate only
a decade ago on 32-bit machines quickly exhaust their values for the complex ap-
plications at present. Unfortunately, many such generators, which experts deem
unacceptable [48], are often the default methods for many operating systems and
software packages.

State-of-the-art generators use more bits for their state than the computer type
and employ combinations of methods to defer correlations to high-order and high-
complexity relations. This makes possible formulation of sequences with very
long periods. For example, the codes given in [49] produce sequences with period
lengths of up to order

� 	 � �
on 32-bit computers and

� # � �
on 64-bit machines!

Portability

Portability and efficiency are also important criteria of generators.
Portable generators are those that produce the same sequence across standard

compilers and machines, within machine accuracy. Portability permits code com-

4The random variables % @ and % � are independent if the joint probability density function� ��% @ , % � � is equal to the product of the individual probability density functions: � � % @ , % � � =
� @ ��% @ � � � ��% � �5Though for complex systems, the state descriptors (e.g., coordinates) are unlikely to be repeated
in phase with the cycle of a (short) random number generator, subtle problems may occur in some
applications, making the goal of long period generally desirable.
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parison and repeatability on different platforms. This requirement is nontrivial
because even if the mathematical recipe is identical certain floating-point calcu-
lations may involve hardware-wired instructions and branched directives for the
sub-operations.

Efficiency

The issue of speed of random number generators can be important for some prob-
lems that involve a large number of computationally-intensive iterations. (See
Table 11.1 for CPU data on different generators). Even if the relative compu-
tational cost of random number generators in large-scale applications is small, it
is important to use quality compiler optimization utilities to reduce most of the
overhead associated with calling the random number generator function itself. For
this reason, it is also important to use a subroutine that returns a vector of random
variates if an array of such numbers is desired, rather than calling the function
multiple times for each vector component.

Box 11.1: The Probability Density and Distribution Functions

Let
�

be a random variable that takes on values
�

. We say that
�

is a discrete ran-
dom variable if it takes on a countable number of values and continuous if it takes on
an uncountably-infinite number of values.

The distribution function � � � � (also termed the cumulative distribution function) of a
random variable

�
defined as the probability that

�
takes on a values no larger than

�
(a

real number), that is � � � � ��� � � 	 � � � � � � � ��� � (11.1)

A continuous random variable
�

has the closely related probability density function � � � � .
(For discrete random variables, analogous definitions are formulated using a probability
function � � � � ). This relation is given by:

� � � � ��� � � 	 � � � ���
%
� � � � �	� � � � � � � ��� � (11.2)

Thus, � � � � is closely related to the derivative of � � � � (under some additional assump-
tions of regularity, we have � � � � � � � � � � ).

For example, a uniform random variable on � � � # � has the probability density function

� � � � ��
 # � 	 � 	 #������������ ���� �
(11.3)

and the corresponding density function � is defined by:

� � � � � ���F � � � �	� � �
� @
F #
� � � � � (11.4)

The reader can verify that the mean � (or expected value) of this continuous uniform ran-
dom variable (by definition, ����� � � � ��� �% � � � � � �	� � ) is � � � @F � � � � �!� � � @

�
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and that the variance � � (by definition, � � � � � � � � � � � � � � � � � � � ) is � � �� @F � � � � � �	� � � � @� � � � @
' �

@
�
�

@@ � .

A Gaussian (or normal) random variable with mean � and variance � � has the density
function

� � � � � #
� � !�� �����

� � � � � � � �
! � � � � � � � � ��� � (11.5)

The associated distribution function is often denoted as � � � � � � � . The probability density
function for a standard normal random variable (with � � � � # � ) is

� � � � � #� !�� ����� � � � � � ! � � � � � � � � � (11.6)

11.2.3 Linear Congruential Generators (LCG)

The simplest type of random number method is a linear congruential generator
(LCG), first used in 1948 by D. H. Lehmer.

Basic Recipe

LCGs compute successive iterates by multiplying the previous iterate by a con-
stant, 	 , adding this product to another constant, % , and then taking the modulus
of this result with respect to another large number, � .

Specifically, the LCG recipe relies on three integers. � (the modulus) is a large
positive number; 	 (the multiplier) is a positive integer less than � and shares no
divisors with � ; and % (the increment) is less than � .

We then generate a sequence of variates from an initial integer seed 
� � less than� , namely ��
� � ��
� 	 ��/0/�/ 
 , according to the recursion relation:


�>� � � ( ��	
�>�>9 % � � * � � � - ( � � � ��/0/0/	/ (11.7)

The uniform variates for this LCG are then obtained by division as:

� � (�
� � � � /
If % ( �

, these real numbers ��� � 
 are in the open unit interval � � � � � , and if% �( �
they are contained in the interval 	 � � � � . When % ( �

, this LCG is called
multiplicative linear congruential generator (MLCG).

The recurrence relation of eq. (11.7) has a period no greater than � . If the in-
tegers are properly chosen, the period will have the maximal length � . Judicious
choice of 	>� % , and � must be made, as well as thorough tests for randomness of
the resulting sequences. See [41, pp. 170–171] for specific recommendations.
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Simple Example

As a simple illustration, consider the MLCG sequence with � ( � �
and 	 (��

( % ( �
). From 
� � ( �

, we generate the sequence


� � � � ( ��� 
� � � � * � � � � (��
� � ��� � %?��� ��� � � � � �?� � � �C�
	C� � ��� � %?� /�/0/ 
6/ (11.8)

We see that this sequence has the maximal period length of � � � ( ���
and that

each integer in the interval 	 � � ��� � is generated exactly once per cycle. The reader
can verify that, for this choice of � (with % ( �

), the values 	 ( � ���?��	:��� also
have these favorable properties; the other values generate sequences with only two
or five elements and hence violate the uniformity criteria strongly. However, as
will also be discussed below, even the full-length sequences exhibit unacceptable
correlations.

Of course, we are interested in much longer sequence lengths in real appli-
cations. Often, � is taken to be the word size of the machine and 	 is a prime
number. However, � and 	 must be chosen with care, and the resulting algorithm
carefully programmed, to avoid an integer overflow for the product 	 
� � ; this is
explained further below.

IBM’s SURAND and Unix’s rand and drand48

One old and still widely used MLCG method (possibly because its modulus � is
the largest prime that fits in the 32-bit signed integer word used by many comput-
ers [3]) is SURAND, though it is considered poor by experts [48] (see discussion
under Lattice Structure below and Figure 11.2). Developed by IBM for its sys-
tem/360 series, SURAND has the values:

SURAND MLCG:

	 (	 � ( � ��� � 	 � � ( � � � � � ( � � ��	���� ������	 � % ( � /
A ‘naive’ FORTRAN implementation of this generator might be the simple

implementation above, that is, include the two statements:

seed = mod (a * seed, m)
ranu = seed / m.

However, this would not produce the right sequence because of overflow.
To avoid the overflow in the product 	 
� � (or a * seed in the code), it is

necessary to ensure that all intermediate integers are bounded by � � �
. The

basic idea, based on [70], is outlined in Box 11.2.
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Box 11.2: Avoiding Overflow in Linear Congruential Generator Implementation

To avoid overflow in the computation of the product � � in the implementation of eq. (11.7)
(we suppress subscripts for clarity), let us assume for the moment that we could factor �
as

� � � � � � � ��!����� ��� � (11.9)

Then, we could write the MLCG recursion relation as
� � � � � � � � ��� � � � � � ��� � � � � � � � � � ��� � � �

Of course � is a prime, and no such factorization � � � � exists. However, instead of
eq. (11.9), we can approximately factor � as:

� � � � ��� � # 	 � 	 � � # � (11.10)

where
� � � �&�	 � ��
�� � �� � � � � � ��� � � (11.11)

Here 
 �  denotes the largest integer smaller than, or equal to,
�

; in other words, 
�� � ��
is the integer division of � by � . If � � � , this approximate factorization is useful since
then the magnitude of the intermediate product is not greater than � � # .
For the SURAND MLCG ( � �
#���� ��� and � � ! '

@ � # ), we obtain � � #�! ����� . + � �
!�� . � .

This better implementation leads to the following correct implementation of
SURAND (see [70, 8] for further details):

c*******************************************************************
double precision function ranu ()

c Good implementation of SURAND. See Park & Miller,
c Comm. ACM 31:1192, 1988. Subroutine ranset should be called
c (once) before the first function call.

integer a, m, q, r, seed
double precision rm
parameter (a=16807, m=2147483647, q=127773, r=2836, rm=1d0/m)
common /random/ seed
save /random/
data seed /1/
seed = a * mod(seed, q) - r * (seed/q)
if (seed .le. 0) seed = seed + m
ranu = seed * rm
return
end

c*******************************************************************

However, this LCG is not recommended since there are far better procedures
today. There are also faster and simpler ways to implement this recursion [49].
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Other known MLCG combinations are the default random number genera-
tors available at the time of this writing on our SGI’s Unix System Library,
rand and drand48, using 32-bit and 48-bit integer arithmetic, respectively. Their
parameters are as follows.

rand MLCG:

	 ( � ��� � � � � � � � � � ( � � � ( � � � 	���� ������� � % ( � � ��� � /
drand48 MLCG:

	 ( � � ��� � % � � % � 	 � � ( � # � � % ( � � /
Note the somewhat confusing online documentation for drand48, which

reports 	 and % in base 8 rather than 10 (
� 	 ����	 � � � � � � � � and

� � � , respectively).
We discuss some of the defects of rand and drand48 below (see also

Figure 11.2).

Lattice Structure in Linear Congruential Generators

Many statistical tests have been formulated to assess the suitability of random
number generators. Linear congruential methods, for example, are known to ex-
hibit correlations in certain hyperspaces; this basic defect is termed coarse lattice
structures. Essentially, this means that when subsets of such sequences are repre-
sented in Euclidean space (two dimensions or higher), a lattice structure emerges;
in other words, points lie on a number of hyperplanes rather than cover the space
in a random-like manner. This pattern indicates that the sequence is not truly as
random and uniform as sought. One way to visualize lattice structure is to plot

�
-

lag pairs of numbers of the sequence, namely ��� �;�?� � � � 
 in the unit-square plane
for fixed

�
. Often, we plot pairs of consecutive numbers in the sequence on the

unit square and triplets of consecutive numbers in the sequence on the unit cube.
This defect of LCG methods has been credited to G. Marsaglia in 1968; see also

[72]. Spectral tests have since been developed to measure such
�

-dimensional
uniformities. Such tests essentially determine the maximum distance between
adjacent hyperplanes; the larger this value, the worse the generator.

To illustrate, consider
� ( �

-lag pairs for our simple MLCG above with� ( � �
and 	 ( � (see expression in (11.8)). If we plot in two dimensions

all consecutive pairs of points, that is:

� � ���?
6�1���?� %C
6�0��% ���C
6�1� �?� �?
6� /�/0/#� ��	:� � 
<� (11.12)

we see alarmingly that these points lie on four parallel lines with either posi-
tive and negative slopes (see Fig. 11.1). The spectral test would determine the
maximum distance between these parallel lines.

Figure 11.1 shows the lattice structure generated from the four 	 values that
yield full periods for this generator ( 
� � � � ( � 	 
� � � � * � � �

). Clearly, defects
emerge.

You might think that this toy problem is especially misleading. Unfortu-
nately, even long LCG sequences are known to display such uniform patterns
or structures that indicate imperfect uniform sampling.
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Figure 11.1. Lattice structure in two dimensional space for the multiplicative linear con-
gruential generator (MLCG) generator

� � ?I@ � � � � � � � ��� # # for various values of � .

Figure 11.2 shows the structure obtained for SURAND resulting from generat-
ing 5 billion random numbers and plotting pairs (in two dimensions) and triplets
(in three dimensions) of consecutive (lag

� ( �
) numbers that appear on a sub-

region of the unit square. Clearly, defects are evident: a regular pattern emerges,
indicating limited coverage. These defects would not have been apparent from a
similar plot using far fewer numbers in the sequence — say 50,000 — as done in
[3, Figure 3.3].

Figure 11.2 also shows patterns obtained from the Unix default generators rand
and drand48 discussed above. For both rand and drand48, we also generated
5 billion consecutive numbers in the sequence. The corresponding (lag

� ( �
)

plots on subregions of the unit square reveal a lattice pattern for rand but not
drand48.

Most texts and review articles on the subject illustrate such patterns (e.g., [3,
Figure 3]). For vivid color illustrations of the artifacts introduced by poor ran-
dom number generators on the lattice structure of a polycrystalline Lennard-Jones
spline, see [37], for example.

See also the related Monte Carlo exercise which involves generating 2D and
3D plots to search for structure of a particular (faulty!) random number generator
termed RANDU. The LCG RANDU defined in that exercise can already exhibit
a high degree of correlation when a relatively small number of sequence points
(e.g., 2500) is generated!

11.2.4 Other Generators

To overcome some of these deficiencies of linear congruential generators,
other methods have been designed. Two alternative popular classes are lagged
Fibonacci and shift-register generators.

Fibonacci Series

A Fibonacci series is one in which each element is the sum of the two preced-
ing values, e.g., � � � � � � � �C���?� � �?� � � � ��� � � �?��� % � � ���?� � � �?� ��	�	C�0/0/�/ 
 . The series is
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Figure 11.2. Structure corresponding to three linear congruential generators, with basic
formula

� � ?A@ � � � � � ��� � � ��� � , and displayed on subregions of the unit square or
cube: SURAND ( � � #���� ��� , � � ! # � � � � . � � � , � � � ); rand ( � ��# # � . 2 # 2 ! � 2 ,
� � ! '

@
, � � #�! . � 2 ); and drand48 ( � � ! 2 ! # ��� � . � # � , � � ! � � , � � # # ). In all

cases, 5 billion numbers in the sequence were generated; fewer numbers correspond to the
points displayed on the subregions in view (pairs in 2D and triplets in 3D). The code for
SURAND was based on the one given in this text, and the codes for rand and drand48
were these available internally on our SGI’s Unix System Library. The programs used for
plotting the data are available on the text’s website. See also Tables 11.1 and Figure 11.3
for Monte Carlo averages using rand and drand48.

named after the master of unit fractions, made famous for his rabbit breeding
question;6 the answer is 377, the 13th element of the Fibonacci series above.

6How many pairs of rabbits can be produced in a year from one rabbit pair? Assume that ev-
ery month each pair produces a new offspring couple, which from the second month also becomes
productive.
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A Fibonacci random number generator computes each variate by performing
some operation on the previous two iterates. Schematically, we write:


�>� � � ( ��
� � � �� 
�>� � � � � * � � � � � � � (11.13)

where � is an arithmetic or logical operation and � and
�

are integer lags.
Multiplicative or additive lagged Fibonacci generators are common, and their

periods can be quite long. Popular, easy-to-implement additive generators in this
class have the form


� � � � ( ��
�>� �  9 
� � � � � � * � � � � � � � � (11.14)

where
�

is sufficiently large (e.g., 1279). The maximal period of such a generator
is � � � � � � � � � � [41], and the procedure has the advantage of working directly in
floating point, without the usual integer-to-floating point conversion.

An example of an additive lagged Fibonacci generator used by the Think-
ing Machines Library has � ( �C� � ( � 	:�&$ ( � � (period around

� # �
). A

multiplicative lagged Fibonacci generator considered better has the form


� � � � ( ��
�>� � �� 
� � � � � � * � � � � � � � � (11.15)

though its period, � � � � � � � � ��� , is smaller by a factor of 4. This class of gen-
erators is the recommended choice by Knuth [41] and Marsaglia [56], though it
was noted [41] that little theory exists to demonstrate their desirable randomness
properties. L’Ecuyer later cautioned against the use of these lagged Fibonacci gen-
erators, as they display highly unfavorable properties when subjected to certain
spectral tests [47].

Shift-Register Generators

Shift-register (or Tausworthe) random number generators have a similar form to
lagged Fibonacci series generators but employ � ( �

in eq. (11.13). This means
that only binary bits of a variate are generated and then collected into words by
relying on a shift register. The operation � is the ‘exclusive or’.

An example of a shift-register generator is a
�

-step method which generates a
sequence of

�
random numbers by splitting this sequence into consecutive blocks

and then taking each block as the digit expansion in base � (typically 2). We can
thus write this family of generators as:


� � � � (
��
� ����

 � �
	  
� � � ��� � * � � � (11.16)

where the � 
� � 
 and � 	  
 are either 0 or 1. The output values ��� � 
 are constructed
from these bits.

Shift register methods with carefully chosen parameters are very fast, have
strong uniformity properties, and possess period lengths that are not bounded by
the word size of the machine. Though they may not exhibit lattice structure in the
same space as LCGs, quality parameters must be selected based on analysis of
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lattice structure in a different space (of formal series); see [46, 50] for example.
The maximal length of series (11.16) is

� � ��� .

Combination Generators

Many other methods exist, including linear matrix generators, nonlinear re-
currence generators such as inversive congruential and quadratic, and various
combination of these generators. Combining output of good basic generators
to create new random sequences can improve the quality of the sequence and
increase the length. Schematically, we form ��
� ��
 from � 
�>� 
 and ��
�6� 
 by defining


��� ( 
� � � 
�,�C�
where � is typically a logical (e.g., exclusive-or operator) or addition modulo� . If the associated periods of each sequence, � � and � � , are relatively prime,
the cycle length of ��
� � 
 can be as large as the product � � � � . The properties of
the combination sequence will be no worse than those of either sequence and
typically better.

L’Ecuyer proposes good combined generators based on the addition of linear
congruential sequences of higher order [49]. Three such highly efficient methods
are offered programmed in the C language. The two sequences for 32-bit ma-
chines have lengths of

� � � � � � ��� � � � and
� � � � � � ��� � � � , and the 64-bit version

has the impressive length of
� � � � � � � � � � � � . All combine two sequences defined

by


� � � � ( � 	 � � � 
� � � � ��� 9 	 � � 	 
� � � � �
	 9 � � � 	 � � � 
� � � � � � � � * � � � � (11.17)


� 	 � � ( � 	 	 � � 
� 	 � � ��� 9 	 	 � 	 
� 	 � � �
	 9 � � � 	 	 � � 
� 	 � � � �.� � * � � 	 � (11.18)

for
- ( � � � �0/�/0/ , where � � and � 	 are distinct primes and the two sequences

have period lengths � �
� � �

and � �
	 � �

, respectively.
A combined multiplicative linear congruential generator can be formed by

adding
�

multiples of the variates from the two series, or by forming
� � ( � �

� 
� � � � � � � 9 �
	 
� 	 � � � � 	 �	� (11.19)

where
�
� and

�
	 are integers, each relatively prime to its associated sequence

modulus ( � � and � 	 ). With properly chosen parameters, the period length of
� � ��
 will be � � �

� � � �0� � �
	 � � ��� � . These formulas can be generalized to more

than two sequences.
L’Ecuyer’s sequence of length

� � � �
[49] combines two sequences by using

� (
� (the number of prior sequence iterates), � � ( � � 	 � � � % , � 	 ( � � 	 � � � � � � ,
and 	 � � � ( 	 	 � 	 ( �

, 	 � � 	 ( � � � � ��� � � 	 � � � ( � � ��� 	 � � , 	 	 � � ( � � 	 � � � � 	 	 � � (
� � ��	 � ��� % . The second 32-bit-machine generator uses more terms with

� ( � ,
and the long, 64-bit generator has

� ( � but two larger moduli, of order
� � �

. See
the programs for these generators (in the C language) in [49].

FORTRAN and C codes for another generator of length � � � 	 �
with good statis-

tical properties [51] are available on the course website. This generator combines
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four MLCGs defined by


�  � � ( � 	  
� �� � � � � � * � �  � � ( � � � � � � � � (11.20)

via
� ��( � # � � � �  
�  � � � � �� � * � � � � �( � � � �  � � / (11.21)

The respective multipliers and moduli are set to 	 � ( � � % % � , 	 	 ( � � 	�	 � 	 ,
	 � ( � ��� � ��� , 	 # ( ��%���� % , and � � ( � � � 	���� ������	 , � 	 ( � � ��	���� � � � � , � � (� � � 	���� ��� � � , � # ( � � � 	���� � � � � , respectively [51].

11.2.5 Artifacts

Two interesting examples that illustrate the importance of quality random num-
ber generators and their appropriate testing with the application at hand are
summarized in Boxes 11.3 and 11.4.

The first, from a real situation in 1989, reflects a coincidental relationship
between the problem (matrix) size and the period of the generator (the ma-
trix dimension divides the period � ), as well as short � and limited accuracy
(single-precision computer arithmetic). These problems could have been avoided
by averting this matrix-dimension/generator-period relationship, increasing the
generator period, and using double-precision arithmetic.

The second instructive example of “hidden errors” stemming from apparently
good random number generators was reported in 1992 [20]. Essentially, the
researchers showed that incorrect results can be produced under certain circum-
stances by random number generators that have a long period and have passed
certain tests for randomness. Thus, a careful testing of the combination of ran-
dom number generator and application is generally warranted. Though thought
to be generators of high-quality, the generators used in [20] are known to have
unfavorable lattice structure [47]. Of course, these examples also argue for using
generators with as-long-a-period as possible.

In addition to possible systematic errors with high-quality random number gen-
erators for some algorithms due to subtle correlations, researchers showed that
even good generators can yield inconsistent results regardless of the algorithm
[76]. Though researchers believed that the two used generators had passed all
known statistical tests, the generators produced (with the same algorithm) critical
temperature estimates for the continuous clock model that differed by 2%, much
higher than intrinsic errors. This model has a second-order phase transition, and
the exact answer is not known. Thus, it cannot be determined which result is more
reliable.

The best advice, therefore, appears to be not only to use reliable generators
with as long periods as possible, but also to experiment with several generators
as well as algorithms to the extent possible.
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Box 11.3: Accidental Relationship Between Problem Size and Generator Length
(1989 Linpack Benchmarks)

In 1989, David Hough, a numerical analyst working at Sun Microsystems, noticed very
peculiar behavior in benchmark testing of the package Linpack. (The original posting can
be found on the archived NA Digest, Volume 89, Issue 1, 1989). The single-precision fac-
torization of 512 � 512 randomly-generated matrices produced a perplexing underflow
(roughly around # � %�� F ) in the diagonal pivot values. (Sherlocks: note that

2 #*! � ! �
).

However, matrices composed of random data from a uniform distribution are known to be
remarkably well conditioned! So how can this seemingly well conditioned matrix be nearly
singular?

The answer came upon examination of the random number generator and how it was
used to set the matrix elements. Specifically, the matrix elements � � � were set to be in the
range � � ! � ! � according to the following subprogram, which relies on a simple MLCG with� � . #�! 2 and � � � 2�2 . � . (Holmes fans: note that � � !

@  ).
c*******************************************************************

subroutine matgen(amat,Lda,n,b,norma)
real amat(Lda,1), b(1), norma, halfm, quartm
integer a, m
parameter (a = 3125, m = 65536)
parameter (halfm = 32768.0, quartm = 16384.0)
iseed = 1325
norma = 0.0
do 30 j = 1, n

do 20 i = 1, n
iseed = mod (a * iseed, m)
amat(i,j) = (iseed - halfm) / quartm
norma = max (amat(i,j), norma)

20 continue
30 continue

return
end

c*******************************************************************

A quick examination first showed that the period of this MLCG is only � � � � � �
# � . � � ; the full period of � could have easily been generated by changing one line above,
to incorporate the nonzero � � � # increment value. Still, this would have only delayed the
underflow problem to a # � ! � � # � ! � matrix.

The main problem here lies in the fact that the matrix size chosen,
2 #�! � ! �

, divides the
modulus, also a power of 2 ( � � !

@  � . Hence, the period � � !
@
� factors � � 2 #*! � . ! .

This means that the first 32 columns of the “random” matrix are repeated 16 times! The
matrix is subsequently singular, and after each 32 steps of Gaussian elimination the zeros
in the lower triangular part of the matrix are reduced by a factor of order ( # � %�� ). Clearly,
after six rounds of such transformations (each treating 32 columns), the element size in
the lower triangle would drop to order

� � # � %�� � � , explaining the underflow. This problem
could have been removed by using matrix sizes that do not divide the period, resorting to
double precision arithmetic (underflow threshold of # � % ' F F ), and by increasing the period
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of the generator substantially.

Note also that besides underflow, the generator could have experienced other problems
for matrices smaller than

2 #*! �
2 #*! , since

2 #*! �
2 #�! � ! @ � , and !

@
� is greater than !

@
� ,

the generator’s period.

11.2.6 Recommendations

In sum, high-quality, long-sequence random number generators are easy to
find in the literature, but they are not necessarily available on default system
implementations.

For the best results, an MC simulator is well advised to consult the resident
mathematical expert for the most suitable generator and computing platforms
with respect to the application at hand.

Certainly, the user should compare application results as obtained for several
random number generators. Indeed, L’Ecuyer likens generators to cars [49]: no
single model nor size of an automobile can possibly be a universal choice. Good
expert advice can be obtained by examining Pierre L’Ecuyer’s website (presently
at www.iro.umontreal.ca/ � lecuyer). Certainly, given today’s computationally-
intensive biomolecular simulations, it is advisable to use sequences with long
periods. Combined multiplicative linear congruential generators are good choices.
See [49] for good recommendations. See also [38, pp. 76–78] for an efficient
FORTRAN implementation of a good combination MLCG used for DNA work,
though with a small period by today’s standards (

����� �
).

Generators particularly suitable for parallel machines are also available [71,
37], characterized by different streams of variates produced by good seeding
algorithms and variations in the parameters of the underlying recursion for-
mulas. See the SPRNG scalable library package (Scalable Parallel Random
Number Generation) targeted for large-scale parallel Monte Carlo applications:
sprng.cs.fsu.edu, for software. The package can be used in C, C++, and Fortran
and has been ported to most major computer platforms.

Box 11.4: Accidental Relationship Between Simulation Protocol and Generator
Structure (Ising Model)

Ferrenberg et al. [20] used different generators in the context of simulating an Ising
model, a model characterized by an abrupt, temperature-dependent transition from an
ordered to a disordered state. The states, characterized by the spin directionality of the
particles, were generated by an algorithm termed Wolff that determines the flips of a clus-
ter on the basis of a random number generator. Surprisingly, the researchers found that the
correct answer was approximated far better by the 32-bit multiplicative linear congruen-
tial generator SURAND, well recognized to have lattice-structure defects. So why does
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the apparently-superior shift register generator produce systematically incorrect results —
energies that are too low and specific heats that are too high?

An explanation to these observations came upon inspection of the Wolff algorithm.
Namely, subtle correlations in the random number sequence affect the Wolff algorithm
in a specific manner! If the high order bits are zero, they will remain zero according to
the spin generation algorithm. This in turn leads to a bias in the cluster size generated and
hence the type of equilibrium structures generated.

The main message from this work was a note of caution on the effect of subtle cor-
relations within random number generators on the system generation algorithms used for
simulating the physical system. This suggests that not only should a generator be tested
on its own; it should be tested together with the algorithm used in the MC simulation to
reduce the possibility of artifacts.

11.3 Gaussian Random Variates

11.3.1 Manipulation of Uniform Random Variables

Our uniform random variates computed in the last section, � , can be used to gen-
erate variates

�
that correspond to a more general, given probability distribution

by a simple transformation. To generate a continuous variate
�

with distribution
function �����	� (see Box 11.1) which is continuous and strictly increasing on � � � � �
(i.e.,

� �����'�>� � �
), we set � to � ��� ��A � where � ���

is the inverse of the func-
tion � . The challenge in practice is to establish good algorithms for evaluating
� ��� �'A	� to the desired accuracy.

Below we only describe generating variates from a Gaussian (normal) distribu-
tion, commonly needed in molecular simulations. For information on generating
variates from many other distributions, see [44] and the web page of Luc Devroye
(cgm.cs.mcgill.ca/ � luc/), for example.

11.3.2 Normal Variates in Molecular Simulations

A vector of normally-distributed random variates satisfying a given mean ( � ) and
variance ( � 	 ) (see Box 11.1, eq. (11.5)) is often required in molecular simulations.
One example is the initial velocity vector (of components ��� ��
 ) in a molecu-
lar dynamics simulation corresponding to the target temperature of an � -atom
system,

� "�
��� �
$3��� 	� ( � � � � � /
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Another example is the Gaussian random force vector � in Langevin dynamics
with zero mean and variance chosen so as to satisfy:� �����&������� 2 ���<( ��� �
� � � � ��� ��� 2 �<� (11.22)

where � is the mass matrix and
�

is the damping constant.
In the molecular and Langevin dynamics cases above, we first set each compo-

nent of the vector vec from a standard normal distribution (zero mean and unit
variance) so that the sum is also a normal distribution with the additive means and
variances (see Central Limit Theorem below); to obtain the desired variance � 	

rather than unit variance, we then modify each component according to the vector
update relation

	�
��� � 	�
�� 9 � /
Since, by this modification, it is easy to generate normal variates from the normal
distribution with mean � and variance � 	 (� � � � � 	 � ) from variates sampled from
a standard normal distribution (� � � � � � ), it suffices to generate standard normal
variates.

There are several techniques to set a variate
� � from a Gaussian or normal dis-

tribution on the basis of a uniformly distributed variate � (for which procedures
were discussed above). Two are described below.

11.3.3 Odeh/Evans Method

One efficient approach was described by Odeh and Evans [67]. For a given A
value in the range

� � A � �
, the corresponding normal variable � � is computed

to satisfy:

A (
�

� � �
� ���
��� � ��� � ��� 	 � � �����	/ (11.23)

This is accomplished by approximating � � as the sum of two terms:

� � ( � 9��#� �C����� � �?�	� � ( 0 � � � � � � A 	 � 
 �
where � and � are polynomials of degree 4 chosen to yield the minimal degree
rational approximation to � � � � with maximum error less than

��� � �
.

In practice, a vector of random variates is first formed ( � � ��A � �&A 	 � � � � � A " 

in the notation above; see subroutine ranuv below, based on function ranu), from
which a standard normal distribution is formulated (

��� � ��� � � �&� � � � � � � �;� ��� 
 );
each component is then adjusted to yield the desired mean and standard deviation
(see subroutine rannv1 below).

c*******************************************************************
subroutine rannv1 (n, vec, mean, var)

c A vector of n pseudorandom numbers is generated, each from a
c standard normal distribution (mean zero, variance one), based on
c Odeh and Evans, App. Stat. 23:96 (1974).
c For a nonzero mean MU and/or non unity variance,
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c set vec(i) = mu + sqrt(sigma(i))*vec(i).
c Subroutine ranset should be called before the first subroutine
c call.

integer n
double precision vec(n),mean,var(n),

* temp,p0,p1,p2,p3,p4,q0,q1,q2,q3,q4
parameter (p0=-.322232431088d0, p1=-1d0, p2=-.342242088547d0,

* p3=-.204231210245d-1, p4=-.453642210148d-4,
* q0=.99348462606d-1, q1=.588581570495d0, q2=.531103462366d0,
* q3=.10353775285d0, q4=.38560700634d-2)
if (n .lt. 1) return
call ranuv(n, vec)
do 10 i = 1, n

temp = vec(i)
if (temp .gt. 0.5d0) vec(i) = 1d0 - vec(i)
vec(i) = sqrt(log(1d0/vec(i)**2))
vec(i) = vec(i) +

* ((((vec(i) * p4 + p3) * vec(i) + p2) *
* vec(i) + p1) * vec(i) + p0) /
* ((((vec(i) * q4 + q3) * vec(i) + q2) *
* vec(i) + q1) * vec(i) + q0)

if (temp .lt. 0.5d0) vec(i) = -vec(i)
10 continue

do 20 i = 1, n
vec(i) = sqrt(var(i)) * vec(i) + mean

20 continue
return
end

c*******************************************************************
subroutine ranuv (n, vec)

c Generate a vector of n pseudorandom uniform variates
integer n, a, m, q, r, seed
double precision vec(n), rm
parameter (a=16807, m=2147483647, q=127773, r=2836, rm=1d0/m)
common /random/ seed
save /random/
if (n .lt. 1) return
do 10 i = 1, n

seed = a * mod(seed, q) - r * (seed/q)
if (seed .le. 0) seed = seed + m
vec(i) = seed * rm

10 continue
return
end

c*******************************************************************

For example, to set the initial velocity vector according to the target temperature
using the equipartition theorem (each degree of freedom has

� � � � � energy at
thermal equilibrium), the routines above are used for the velocity vector � of � �
components ���,� 
 with � ( �

and var(i) = � � � � ��� $8� . For the Langevin random
force vector, the variance for each vector coordinate

-
is: � � � ��� $3� � ��� � � , where
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the delta function
�

in eq. (11.22) is discretized on the basis of the timestep
� �

(see also Chapter 12 on molecular dynamics).

11.3.4 Box/Muller/Marsaglia Method

Another popular algorithm to form normal variates � � and � 	 is the Box/
Muller/Marsaglia method [41, pp. 117–118]. It involves generating two uniformly
distributed random variates A � and A 	 , setting � � and � 	 as uniform variates be-
tween � � and 9 � � � �  � A � � � � � 	  � A 	 � � � , checking that � (�� 	� 9 � 		 is
less than 1 (if � � �

, the procedure is repeated), and then setting the two normal
variates � � and � 	 as:

� � ( � � 0 � �� � �����.� � 	 ( � 	 0 � �� � ����� / (11.24)

Essentially, we are using the polar-coordinate representation of � � and � 	 by
� � and � 	 ��� � ( 
� � * � 
� �&� 	 ( 
� � �� 
� � 
� ( � � � � � �<� 
� ( � � � � � � � 	 � � � � ) to
construct the joint probability distribution of the two normal variates in polar
coordinates: � �

� � �
� � �
��� � � � ��� 	 �,� � � �

� � �
� � �
��� � � � �� 	 � � �

(
�

� �
�

��� � �	��
 �� ���� ��� � �� � � ����� � ���
� � � � � 	 � � ��� � / (11.25)

11.4 Means for Monte Carlo Sampling

11.4.1 Expected Values

Armed with a uniform random variate generator, we can now address the im-
portant task of estimating a mean property of interest. In molecular simulations,
we might seek the average geometric and energetic properties associated with an
equilibrium distribution of conformations.

MC Estimate

In its simplest form, we write such a mean, or expected value, as an integral

� (
�
� 
 �'�>� �6�3(

� 
 ���	��� � (11.26)

where the average is computed over the uniformly distributed elements � � � .
For example, assume that the function 
 �'�>� is defined on [0, 1]. Choose a
sequence of � random variates for large � ,

� � �&� 	 �0/�/0/��&���B�
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and generate corresponding function values � � (�
 ��� � � :
� � � � 	 ��/0/�/1� � � /

Then we compute the average, termed the Monte Carlo estimate of
�
, by:

�

� � (
�

�

��

��� �
� � / (11.27)

Simple Example: Calculate � by MC

As a simple example, consider calculating � by Monte-Carlo integration of the
area of a quarter-circle of radius 1 circumscribed inside the unit square in the
plane (with center at the origin of the plane). The integral to be evaluated is:� �

�

� �

�


 �'��� �?� �6��� �
where


 ��� � �?� ( 
 � � 	 9 � 	 5 �

�
else

/
This integral’s value is � ��� . A simple Fortran program to perform this integration
by Monte Carlo sampling consists of the following:

c*******************************************************************
subroutine monte(nstep)
implicit none
integer nstep, i, nin, iseed
double precision x, y, tmp, rand

nin = 0
iseed = 12345
call srand(iseed)

do 30 i = 1, nstep *
x = rand() /|\
y = rand() | ˆ
tmp = sqrt(x*x + y*y) | ˆ
if (tmp .lt. 1.d0) then |

nin = nin + 1 | ˆ
endif | \

30 continue +-----------*
/

print *, nstep, (4.d0 * nin)/nstep
return
end

c*******************************************************************

Results as a function of the sample size (nstep) are presented in Table 11.1 and
Figure 11.3 using the Unix rand and drand48 random number generators and
also more sophisticated methods. Since drand48 is the fastest of the generators,
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Figure 11.3. Results (means and error bars) of MC estimates for � based on different
random number generators, as tabulated in Table 11.1.

we also record the estimated value corresponding to
����� 	

steps (only up to
��� �

steps for the rest).
Note that, unfortunately, this procedure for calculating � is not very accurate.

At best, the first six decimal places of � ( � / � � � � % � � � � ��� %�	&% � � ������� /�/0/ are
obtained. The accuracy is limited not only by the sample size — statistical error
— but also by any possible defects of the random number generator (e.g., lattice
structure and limited coverage; see Figure 11.2). Here we see that the accuracy
of the means starts to deteriorate after the number of steps exceeds the period
length. We also learn from this example that the longer-period generators have
greater resolution (another order of magnitude of two).

11.4.2 Error Bars

Law of Large Numbers

According to the Law of Large Numbers in probability theory, the average of �
sampled random variables converges (in probability) to its expected value. Stated
more formally, if the uniform variates are independent and drawn from the same
distribution so that the expected value of each �:� is � , then as � � � the average
value

�

��� converges to � asymptotically:
� � � ����� � � �

��� � ( � 
�( � /
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However, the rate of convergence to the expected value is a different matter and
requires stronger assumptions.

Variance

As stressed in this chapter’s introduction, it is essential to provide error bars when
reporting an MC average. The variance of

�

� � is defined as

�
	 �

� ( � � + � �

�?�<(
�

�

��

��� �
� �,� � �

����� 	 / (11.28)

The variance measures the distribution of
�

� about its mean � ; the larger � is, the
narrower the interval about

�
where

�

� � can be found.

Variance Relation to Central Limit Theorem

This interval can be determined as a probability of deviation in units of � on the
basis of the Central Limit Theorem. This beautiful and powerful result states that
as � � � , the limiting distribution for a sum of random variates is the normal
distribution.

Specifically, if � � � � � 	 �0/�/0/�
 is a sequence of independent, identically distributed
random variates having mean � and finite nonzero variance � 	 , then the random
variable

��� (�� � 9 � 	 9 � � � 9 � �
has the normal density with mean � � and variance � � 	 , � � � � � � � 	 � . In other
words, the normalized random variable

� � � � �

0 � �,+ � ��� � (
� � � � �

�
�
�

has the standard normal distribution:

�  �
� � �

�
� ��� � � �

�
�
�

5 � � ( �

� � �
� �
��� � ��� 	 ��� 	 � � � ���	/

Thus, in reporting an MC average, we say that we have estimated
�

within one
standard error (i.e., � � � � ) of

�

� � as:

� ( �

� � � �
�

� � � � / (11.29)

For example, � ( ��� � � � � yields a result that is at best roughly 1% accurate;
for correlated data, such as from molecular dynamics simulations, a much larger
� is required for that accuracy. Note that this

� � � � scaling of errors is a general
feature of MC methods and is independent of the space dimension involved; that
is why MC is frequently the method of choice for multidimensional integrals.

Since we know that the limiting distribution for
�

� � is the normal distribution
� , we say that 68.3% of the time this estimate is within one standard error of
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�
[40]. The above integral estimates can be generalized to independent random

samples from other probability densities, as described in the next section.

Note that the above errors are statistical and can be controlled. The more seri-
ous errors in MC algorithms are the systematic errors, such as discussed above
in connection with random-number-generator artifacts. Both errors should be
monitored to the extent possible.

11.4.3 Batch Means

When the MC data are highly correlated, the error bars may decrease much more
slowly with � as in the above idealized case. The effective number of samples
is then � � � where � is the decorrelation time (number of steps) for the data.
This value can be determined by examining auto and cross-correlation functions
for the most slowly-varying properties of the system or by using the method of
batch means. Extensive mathematical/statistical tests for independence are also
available to estimate confidence intervals of independent means [44, Chapter 4].

Essentially, we divide the sample size � into � batches ��� � ��� 	 �0/�/0/������ 

each of � ( � ��$ elements where � should be significantly greater than � ; we
then obtain a mean over each batch sample:

�

�
��� (

�

�
�

�
�	�
��� �6�C� - ( � �0/�/0/1� � � (11.30)

and then set the
�

� � estimate as the average over all these means:

�

�
� (
�

�
��
��� �

�

�
��� / (11.31)

In reporting the estimator of form (11.29), the relevant sample size ( � rather than
� ) and variance to is determined from the above mean, that is:

�
	 �

��� ( � � + � �

� � � (
�

�
��
��� �
� �

�
� � � �

� � � 	 / (11.32)

It can be shown that if the batch size � is sufficiently large, the means of the
batches are approximately uncorrelated. In practice, variations on the basic batch
means method sketched above, and additional tests, are needed to yield good
statistics [44, pages 528–530].
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11.5 Monte Carlo Sampling

11.5.1 Density Function

The properties of many molecular systems can be described by a separable
Hamiltonian of general form

� � � �
�	� ( � � � �	� 9 ��� � � � (
�

� � � � ��� � 9 ��� � � � � (11.33)

where � � and � � are the kinetic and potential energy components, respectively,
and � and � are the collective position and momentum vectors of the system. This
Hamiltonian function forms the basis for MC simulations applied to estimate var-
ious properties of large molecular systems, such as geometric and thermodynamic
functions. However, the MC estimates must emulate a probability density func-
tion 
 � � � �&� or 
 � � �
��� �&� appropriate for the statistical ensemble ( � denotes time).
This probability density 
 may or may not be known.

11.5.2 Dynamic and Equilibrium MC: Ergodicity, Detailed
Balance

MC simulations can be used to mimic a dynamic process ( 
 depends on time � ), as
in Brownian dynamics. They can also generate an ensemble around a statistical
equilibrium, as in some conformational sampling studies.

Dynamic Process

In the former case, a deterministic rule (such as based on Newton’s equations
of motion in the diffusive limit) is used to generate each configuration from the
previous configuration given initial conditions 
 � � �
� ��� � � , and that rule determines
the resulting 
 � � �
��� �&� for � � � � .

Below we use the notation
�

to represent the collective phase-space vector
( � � � ); when discussing the Metropolis algorithm later, the momentum component
drops out. (This variable

�
should not be confused with the random variable

�
defined in Box 11.1).

Equilibrium Process

The equilibrium ensemble regime is appropriate when 
 � � ���&� ( 
 � � � � for some
� � � � , as in the Metropolis algorithm (see below). The ensemble average is then
considered as an estimate for the time average, which may be much more complex
to follow. This assumption, though very difficult to prove in practice, is known as
the ergodic hypothesis.

In this statistical equilibrium case, the rule that generates
�
" � � from

�
" need

not have a clear physical interpretation. However, to be useful for sampling, the
rule must ensure that any starting distribution 
 � � ���&� should tend to the stationary
density 
 � � � � and that the system be ergodic (i.e., as � � � , the system spends



88 11. Monte Carlo Techniques

equal times in equal volumes of phase space); see [33] for a rigorous definition.
When the rule also obeys detailed balance (i.e., moving from state

�
to
�

is as
likely as returning to

�
from

�
), an equilibrium process is approached (though

biased techniques may violate detailed balance and still approach the right answer
through correcting for violations).

These criteria are crucial for constructing practical sampling algorithms for
physical systems; efficient sampling of configurational space is another important
aspect of computer simulations, especially for large systems where configuration
space cannot be sampled exhaustively.

11.5.3 Statistical Ensembles

Common statistical ensembles used in biomolecular simulations are the canonical
or constant–NVT (N = number of particles, V = volume, T = temperature), micro-
canonical or constant–NVE (E = energy), isothermal-isobaric or constant–NPT
(P = pressure), and grand canonical or constant– � VT ( � = chemical potential)
[2].

Canonical Ensemble and Boltzmann Factor

The probability density function for the canonical ensemble is proportional to the
Boltzmann factor:


���� � � � ��� � ��� � � � � � � �&� � (11.34)

where � is the total energy of the system and � ( � � � � � � � .
(In the Metropolis algorithm, it is sufficient to work with the potential energy,

since the potential energy is independent of momenta; see below).

Hence for two system states
�

and
� 2 , the corresponding probability ratio is:


���� � � � �
 ��� � � � 2 � (
� ��� � � � � � �	� (11.35)

where
� � ( � � � � � � � � 2 �	/

See the sketch of Figure 11.4. The normalizing factor in the proportionality re-
lation (eq. (11.34)) is the total partition function for all of phase space. That
is:


 ��� � � � � (
�

� � � � �
	��
� ��� �&� � � � � �&� ��� � (11.36)

where � is Planck’s constant, the factor 	�� accounts for the indistinguishability of
the 	 particles, and

 ��� � is the canonical partition function:

 ��� � (
�

� � � � � ���
� � ��� � � � � ���>�;� �6� � (11.37)
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Figure 11.4. The Boltzmann probabilities for two system states
�

and
� �

with energies� � � � and � � � � � are related at equilibrium by the probability ratio
����� � ��� � � ) ��� � .

where � is a point in phase space.
The corresponding means for the system for a function 
 can then be written

as:
� 
 ���	��� ��� � (

� 
���� � ���>� 
 ���	� �6� / (11.38)

The Metropolis algorithm described below is used to generate an appropriate
Markov chain (see below) from which the expected value of 
 is calculated as:

� 
 ���	��� ��� � ( �  �� � �
�

�
��
��� �
� 
 �'� ���&�	/ (11.39)

In other words, the density function is already built into the generation algorithm
through an appropriate acceptance probability.

11.5.4 Importance Sampling: Metropolis Algorithm and Markov
Chains

To obtain reliable statistical averages, it is essential to use computer time effi-
ciently to concentrate calculations of the configurational-dependent functions in
regions that make important contributions. This concept is known as importance
sampling.

In many applications, it is possible to focus sampling on the configurational
part of phase space (i.e., � is the potential energy component) since the pro-
jection of the corresponding trajectory on the momentum subspace is essentially
independent from that projection on the coordinate subspace. Hence

�
below is

the collective position vector only.

Markov Chain

Metropolis et al. [58] described such an efficient and elegantly simple procedure
for the canonical ensemble. In mathematical terms, we generate a Markov chain
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of molecular states � � � � � 	 � � � ��/0/0/�
 constructed to have the limiting distribution
 ��� � � � � . In a Markov chain, each state belongs to a finite set of states contained
in the state space � � � � , and the conditional distribution of each state relative
to all the preceding states is equivalent to that conditional distribution relative to
the last state:

� � � " � � �8� � �
�
� �0/�/0/0� � " 
�(

� � � " � � �8� � �
�
" 
 �

in other words, the outcome
�
" � � depends only on

�
" . The Metropolis algorithm

constructs a transition matrix for the Markov chain that is stochastic and ergodic
so that the limiting distribution for each state

� � is 
 � ( 
 ��� � � � � � and thereby
generates a phase space trajectory in the canonical ensemble.

This transition matrix is defined by specifying a transitional probability � �  for� � to
�  so that microscopic reversibility is satisfied:


 � � �  ( 
  � ;� / (11.40)

In other words, the ratio of transitional probabilities depends only on the energy
change between states

-
and � :
 �
  (

� ;�
� �  �

� ��� �&� � � � �  �	� (11.41)

where
� ���  ( � � � �4� � � � �  � . See subsection below on MC Moves with

examples of biased sampling.

Metropolis Algorithm

Briefly, the Metropolis algorithm generates a trial 
� � � � from
� � by a system-

appropriate random perturbation (satisfying detailed balance) and accepts that
state if the corresponding energy is lower. If, however, � � 
� � � � � � � � � �4� , then
the new state is accepted with probability � ( � ��� �&� � � � � , where

� � (
� � 
� � � � � � � � � � � � �

, by comparing � to a uniformly-generated number on
(0,1): if � �

ran, accept 
� � � � , and if ��� ran, generate another trial 
� � � � but
recount

� � in the Markov chain (see Fig. 11.4).
The result of this procedure is the acceptance probability at step

-
of:

��� � � ��� � ( ���� 	 � � � ��� � � � � � � �

( ����
�
� �

���� � � 
� � � � �
 ��� � � � � ��� / (11.42)

In this manner, states with lower energies are always accepted but states with
higher energies have a nonzero probability of acceptance too. Consequently, the
sequence tends to regions of configuration space with low energies, but the system
can always escape to other energy basins.

Simulated Annealing

An extension of the Metropolis algorithm is often employed as a global-
minimization technique known as simulated annealing where the temperature is
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lowered as the simulation evolves in an attempt to locate the global energy basin
without getting trapped in local wells.

Simulated annealing can be considered an extension of either MC or molec-
ular/Langevin dynamics. Simulated annealing is often used for refinement of
experimental models (NMR or crystallography) with added nonphysical, con-
straint terms that direct the search to target experimental quantities (e.g.,
interproton distances or crystallography R factors; see [42], for example, for a
review of the application of simulated annealing in such contexts.

Noteworthy is also a Monte Carlo sampling/Minimization (MCM) hybrid
method developed by Scheraga and coworkers [52] to search for the global en-
ergy minimum of a protein. It generates a large random conformational change
followed by local minimization of the potential energy and applies the Metropolis
criterion for acceptance or rejection of the new conformation. This procedure is
then iterated. Friesner and coworkers have found this MC method to perform well
in a variety of applications [19]. Other stochastic global optimization methods
have been developed and successfully applied by the Scheraga group [74].

In this connection, see homework 13 for the deterministic global optimiza-
tion approach based on the diffusion equation as suggested and implemented for
molecular systems by Scheraga and colleagues [73].

Metropolis Algorithm Implementation

The Metropolis algorithm for the canonical ensemble can be implemented with
the potential energy � � rather than the total energy when the target measurement

 for MC averaging is velocity independent. This is because the momentum in-
tegral can be factored and canceled. From eq. (11.38) combined with eq. (11.34),
we expand the state variable � to represent both the momentum (� ) and position
( � ) variables, both over which integration must be performed:

� 
 �'�>� � ( � � ��� 	 � � � � � � � � 
 � � � � ��� 	 � � � � � � �� � ��� 	 � � � � � ��� � � ��� 	 � � ��� � � �
( � 
 � � � � ��� 	 � � ��� � � �� � ��� 	 � � ��� � � � / (11.43)

The Metropolis algorithm is summarized below.

Metropolis Algorithm (Canonical Ensemble)

For
- ( � � � � � ��/0/0/�� given

�
� :

1. Generate 
� � � � from
� � by a perturbation technique that satisfies detailed

balance (i.e., the probability to obtain 
� � � � from
� � is identical to that

going to
� � from 
� � � � ).

2. Compute
� � ( � � 
� � � � ��� � � � � � .

3. If
� � 5 �

(downhill move), accept
� � � � � � � � � ( 
� � � � ;
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Else, set � ( � ��� � � � � � � . Then
If � � ran, accept 
� � � � � � � � � ( 
� � � � .
Else, reject 
� � � � � � � � � ( � � .

4. Continue the
-

loop.

MC Moves

Specifying appropriate MC moves for step 1 is an art by itself. Ideally, this could
be done by perturbing all atoms by independent (symmetric) Gaussian variates
with zero mean and variance � 	 , where � 	 is parameterized to yield a certain
acceptance ratio (e.g., 50%). However, in biomolecular simulations, moving all
atoms is highly inefficient (that is, leads to a large percentage of rejections) [25],
and it has been more common to perturb one or few atoms at each step.

The type of perturbations depends on the system and the energy represen-
tation (e.g., rigid or nonrigid molecules, a biomolecule or pure liquid system,
Cartesian or internal degrees of freedom). The perturbation can be set as trans-
lational, rotational, local, and/or global moves. For example, in the atomistic
CHARMM molecular mechanics and dynamics program, protein moves are pre-
scribed from a list of possibilities including rigid-residue translation/rotation,
single-atom translation, and single or multiple torsional motions.

For MC simulations of a bead/wormlike chain model of long DNA, we use lo-
cal translational moves of one bead at a time combined with a rotational move of a
chain segment [38]; we must also ensure that no move changes the system’s topol-
ogy (e.g., linking number of a closed chain) for simulating the correct equilibrium
ensemble.

Figure 11.5 illustrates such moves for long DNA. Figure 11.6 illustrates cor-
responding MC (versus Brownian dynamics) distributions of the DNA writhing
number ( � � ) and the associated mean, as a function of length for two salt envi-
ronments. Figure 11.7 demonstrates how a faulty move (like moving only a subset
of the DNA beads instead of all) can corrupt the probability distributions of � �
and the radius of gyration ( � � ). Not only do we note a corruption of the distribu-
tions when incorrect MC protocols are used, but a large sensitivity to the initial
configuration (sharp distributions around starting configurations).

The rule of thumb usually employed in MC simulations is to aim for a pertur-
bation in Step 1 (e.g., displacement magnitude or the variance � 	 associated with
the random Gaussian variate) that yields about 50% acceptance. Thus, we seek
to balance too small a perturbation that moves the system in state space slowly
with too large a perturbation that yields high trial-energy configurations, most of
which are rejected. However, the appropriate percentage depends on the applica-
tion and is best determined by experimentation guided by known outcomes of the
statistical means sought. Much smaller acceptance probabilities may be perfectly
adequate for some systems.
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Figure 11.5. Translational and rotational MC moves for a bead model of DNA.
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Figure 11.6. MC distributions (curves) versus Brownian dynamics data (circles) of the
writhing number ( � � ) distribution of supercoiled DNA (left), and mean values of � �
(normalized by the linking number difference) as a function of the DNA length (right), at
two salt concentrations. The DNA superhelical density is � � � � � � � in both panels, and
the left panel involves DNA of length 3000 base pairs. Error bars for BD are shown only if
they are larger than the circle symbol.

11.6 Hybrid Monte Carlo

11.6.1 Exploiting Strengths of MC and MD

To enhance the efficiency of MC simulations, a simple idea emerged that attempts
to combine the favorable properties of molecular dynamics (MD) simulations —
sampling phase space in a directed manner guided by the shape of the energy
gradient — with that of MC — sampling phase space more globally. Ideally,
following conformation space by MD would generate a correct Boltzmann dis-
tribution of states, but the relatively short simulation lengths that are possible (see
MD chapters) imply local rather than global sampling.
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Figure 11.7. DNA writhing number � � (left) and radius of gyration ��� distributions as
generated by one correct versus three incorrect MC procedures. The incorrect MC proto-
cols allow only a subset of the beads to move: 25 out of 30 (“Incorrect 1”), or 5 out of
30 (“Incorrect 2, 3”); the last two schemes are started from different initial points. The
DNA modeled has 600 base pairs, with superhelical density of � � � � � � � , and the MC
simulations consist of ten million steps.

Though in theory a good MC protocol would sample configuration space ex-
haustively, this becomes more difficult and inefficient in practice as the system
size increases. When the cost of evaluating the energy function for large bio-
molecular systems is also a factor, millions of MC steps (with possibly many
rejections) can become quite expensive.

11.6.2 Overall Idea

The idea to overcome these MC difficulties with hybrid Monte Carlo (HMC) [18]
is to combine global updates in position space via MD with reasonable acceptance
criteria by MC.

The first step of a hybrid MC method uses a molecular dynamics framework to
specify the system’s candidate move:

� 	 - � � � � � � 	 � - 9 � � � � � where
� � is the

timestep. The MD algorithm must be time reversible and volume preserving so as
to ensure detailed balance. The commonly used symplectic Verlet method satisfies
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this requirement (see Chapters 12 and 13). Since the recursive MD recipe relies on
the velocities in addition to positions, the required velocity vectors � (�� ��� �

(
�

here designates momentum, not to be confused with the symbol used earlier
for probability) are generated from a Gaussian distribution so as to obtain the
target kinetic energy at the temperature

�
assuming energy equipartition. That is,

the velocity components are drawn from a Gaussian distribution proportional to
the Boltzmann factor applied to the kinetic energy:


 � � ��� � ��� 	 � � � � � � � � / (11.44)

Following this MD-guided step, the second step of the hybrid MC method
applies the standard Metropolis acceptance criterion where the energy in the
Boltzmann factor is the Hamiltonian (potential plus kinetic energy). Namely, the
Metropolis criterion is applied to accept the new candidate 
� � � � with probability

��� � � � � � � ��� ( ���� 	 � � � ��� 	 � �
� � � 
� � � � � 
� � � � ��� � � � � � � � ��� 
 


( ����
�
� �
� ��� 	 � � � � � 
� � � � � � � ��� 	 � � � �C� 
� � � � � �� ��� 	 � � � �?� � �4� � � ��� 	 � � � � � � ��� � �

( ����
�
� �

���� � � 
� � � � � � ��� 	 � � � � � 
� � � � � �
 ��� � � � � � � ��� 	 � � � �C� � � � � � / (11.45)

HMC methods have been quite successful for biomolecular sampling, and
many other extensions to general ensembles and hybrid methods have been
described.

Note that generalized ensembles can be emulated by HMC methods by ap-
plying weighting factors to the Metropolis-generated configurations. That is,
to sample from a general ensemble with � �'�>� rather than 
 �'�>� , we adjust the
acceptance criteria of eq. (11.45) to be:

��� � � � � � � ����( �  � �
� �

� � 
� � � � � � ��� 	 � � � �C� 
� � � � � �
� � � �4� � ��� 	 � � � � � � �4� � � / (11.46)

The weighting must be accomplished to maintain detailed balance.

11.6.3 Variants and Other Hybrid Approaches

MC variants include Smart MC, J-walking, stochastic dynamics, umbrella sam-
pling, various methods to enhance barrier crossing events (e.g., the transition path
sampling method of Chandler and coworkers [6]), and potential-modification ap-
proaches such as smoothing techniques. See [5], for example, for a perspective.
Interesting also are papers describing an adaptive-temperature HMC method for
a mixed-canonical ensemble that enhances sampling [21] and an efficient Monte
Carlo method based on known molecular minima for medium-sized flexible mol-
ecules [84]. The simple MC/MD combination [43] — moving some particles by
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MC rules and others by MD — may be more effective for solvated biomolecular
systems than either MC or MD alone.

There has been continued discussion on the relative merits of MC and MD
for biomolecules (e.g., [13, 39]). The limits of MD for simulating slow molec-
ular events is clearly recognized, as is its high computational cost, though only
MD can ultimately yield detailed dynamic information such as folding pathways
and rates of conformational changes. At present, a practitioner is well-advised to
use a combination of MC, MD, and local and global minimization algorithms, as
appropriate, for the problems at hand.



11.6. Hybrid MC 97

Table 11.1. Results of computing � by MC integration with various random number gen-
erators and sample sizes by the procedure described in the text, subroutine monte (on an
SGI R12K/300 MHz Octane processor). The value � is computed from 100 runs for each
NSTEP value, except for # �

@ � , for which it is based on one run. rand has ��� ! '
@
; # � �

calls require 771 seconds (13 min.). drand48 has ��� ! � � ; # � �
calls require 656 seconds

(11 min.). clg4 has ��� ! '
@
; # � �

calls require 5205 seconds (87 min.). lfg has ��� !  � ;
# � �

calls require 2106 seconds (35 min.). See also Figure 11.3.

Nstep Estimate Error � , s.d.

rand, IRIX 6.5 system library
� � 	

3.1604000000000E+00
� / ��� � 	 ������� � � � � � � � � �

1.59E � 01
� � �

3.1346800000000E+00 � � / % � � � � � ��� %�	&% ��� � � � � 4.75E � 02
� � #

3.1383680000000E+00 � � / � � ��� � � ��� %�	&% � � � � � � 1.79E � 02
� � �

3.1416736000000E+00 � / � %������ � � � � � � � � � � � � 5.22E � 03
� � �

3.1416646400000E+00 	C/ � %������ � � � � � � � � � � � � 1.61E � 03
� � �

3.1416831800000E+00 % / � � � ��� � � � � 	 ��	 � � � � � 4.74E � 04
� � �

3.1416971676000E+00
� / � � � � � � ��� � � ��	 � � � � � 1.65E � 04

� � �
3.1417139545200E+00

� / ��� � � � % � � � � � ��	 � � � � 1.37E � 05

drand48, IRIX 6.5 system library
� � 	

3.1408000000000E+00 � 	C/ % � � � � ��� %�	 % � � � � � � � 1.72E � 01
� � �

3.1456400000000E+00 � / � ��	 ������� ��� � � %�� � � � � 5.62E � 02
� � #

3.1431880000000E+00
� / � % � ������� ��� � � � � � � � � 1.53E � 02

� � �
3.1418572000000E+00

� / ��� � ����� ��� � � � % � � � � � 5.92E � 03
� � �

3.1416580000000E+00 � / � ������� � � � � � %���� � � � � 1.61E � 03
� � �

3.1415415040000E+00 � �?/ � � � % ��� %�	&% � % � � � � � � 4.97E � 04
� � �

3.1415733104000E+00 � � / % ��� � � � %�	&% ����� � � � � � 1.79E � 04
� � �

3.1415892614400E+00 � � / � % � � � %�	&% � � � � % � � � � 4.70E � 05
� � � 	

3.1415928451280E+00
� / % � � ��� � � 	 � 	 � 	 � � � � 	 1.00E � 06

clg4, based on four linear congruential generators [51]
� � 	

3.1600000000000E+00
� / ��� � 	 ������� � � � � � � � � �

1.51E � 01
� � �

3.1413200000000E+00 � � / 	 � � � � ��� %�	 % � � % � � � � 4.98E � 02
� � #

3.1405440000000E+00 � � / � ����� � � ��� %�	&% � � � � � � 1.74E � 02
� � �

3.1416476000000E+00 �?/ ��%������ � � � � ��	 � � � � � � 4.94E � 03
� � �

3.1416064800000E+00
� / ��� � ��� � � � � � � � � � � � � 1.59E � 03

� � �
3.1415008760000E+00 � % / � 	�	�	 ��� %�	&% � ��� � � � � � 4.92E � 04

� � �
3.1415751016000E+00 � � / 	 � � � %�� %�	&% � � � � � � � � 1.82E � 04

� � �
3.1415925054000E+00 � � / ��� � � %�	 % � � � � � � � � � 	 5.05E � 05

lfg, SPRNG package, modified lagged-Fibonacci generator
� � 	

3.1372000000000E+00 � � / � % � � � � ��� %�	&% � � � � � � 1.70E � 01
� � �

3.1414400000000E+00 � � / � � � � � ��� %�	 % � ��� � � � � 5.20E � 02
� � #

3.1442160000000E+00
� / � � � ������� ��� � � � � � � � � 1.55E � 02

� � �
3.1431008000000E+00

� / � � � � ����� ��� � � 	 � � � � � 5.23E � 03
� � �

3.1419958000000E+00 � / � � � ����� ��� � � � � � � � � � 1.64E � 03
� � �

3.1415909920000E+00 � � / ��� � ��� %�	&% � � % � � � � � � 5.46E � 04
� � �

3.1415866680000E+00 � �?/ %�� � ��� %�	&% � ��� � � � � � � 1.72E � 04
� � �

3.1415854581200E+00 � 	C/ � % � ��� %�	&% ��	�	 ��� � � � � 5.03E � 05



This is page 115
Printer: Opaque this

References

[1] L. Adams and J. L. Nazareth, editors. Linear and Nonlinear Conjugate Gradient-
Related Methods. SIAM, Philadelphia, PA, 1996.

[2] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University
Press, New York, NY, 1990.

[3] S. L. Anderson. Random number generators on vector supercomputers and other
advanced architectures. SIAM Rev., 32:221–251, 1990.

[4] D. Beard and T. Schlick. Modeling salt-mediated electrostatics of macromolecules:
The algorithm DiSCO (Discrete Charge Surface Charge Optimization) and its
application to the nucleosome. Biopolymers, 58:106–115, 2001.

[5] B. J. Berne and J. E. Straub. Novel methods of sampling phase space in the simulation
of biological systems. Curr. Opin. Struct. Biol., 7:181–189, 1997.

[6] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sampling:
Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem,
53:291–318, 2002.

[7] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. The-
ory and Examples, volume 3 of Canadian Mathematical Society (CMS) Books in
Mathematics. Springer-Verlag, New York, NY, 2000.

[8] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New
York, NY, 1987.

[9] S. Broyde and B. E. Hingerty. Effective computational strategies for determining
structures of carcinogen damaged DNA. J. Comput. Phys., 151:313–332, 1999.

[10] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Stat. Comput., 16:1190–1208, 1995.

[11] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton
matrices and their use in limited memory methods. Math. Prog., 63:129–156, 1994.



116 References

[12] R. H. Byrd, J. Nocedal, and C. Zhu. Towards a discrete Newton method with mem-
ory for large-scale optimization. In G. Di Pillo and F. Giannessi, editors, Nonlinear
Optimization and Applications. Plenum, 1996.

[13] J. B. Clarage, T. Romo, B. K. Andrews, B. M. Pettitt, and G. N. Philipps, Jr. A
sampling problem in molecular dynamics simulations of macromolecules. Proc. Natl.
Acad. Sci. USA, 92:3288–3292, 1995.

[14] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A FORTRAN Package
for Large-Scale Nonlinear Optimization (Release A), volume 17 of Springer Series
in Computational Mathematics. Springer-Verlag, New York, NY, 1992.

[15] R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale uncon-
strained optimization. Math. Prog., 26:190–212, 1983.

[16] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1983. (Reprinted by SIAM, 1996).

[17] P. Derreumaux, G. Zhang, B. Brooks, and T. Schlick. A truncated-Newton method
adapted for CHARMM and biomolecular applications. J. Comput. Chem., 15:532–
552, 1994.

[18] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Phys. Lett. B, 195:216–222, 1987.

[19] V. A. Eyrich, D. M. Standley, and R. A. Friesner. Prediction of protein tertiary struc-
ture to low resolution: Performance for a large and structurally diverse test set. J. Mol.
Biol., 14:725–742, 1999.

[20] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte Carlo simulations: Hidden
errors from “good” random number generators. Phys. Rev. Lett., 69:3382–3384, 1992.
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