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Outline
• Parallel Computing:

– Challenges and Opportunities
– Survey of CPU speeds trends
– Trends: parallel machines
– Trends: Clusters

• Challenges: 
– Communication costs
– Memory Performance
– Complex algorithms
– Parallel Performance issues
– Virtualization
– Principle of persistence, 
– Measurementt load balancing

• Case Studies:
• NAMD parallelization

– Scalability
– Analysis of other approaches
– NAMD approach:

• Hybrid  decomposition
• Virtual processors

– Performance Optimizations

• Car-Parinello ab Initio MD
– Algorithm
– Parallelization strategy
– Initial results
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Overview and Objective

• What is parallel computing
• What opportunities and challenges are presented by 

parallel computing technology
• Focus on basic understanding of issues in parallel 

computing
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CPU speeds continue to increase

• Current speeds: 3 Ghz on PCs
– I.e. 330 picosecond for each cycle
– 2 floating point operations each cycle

• On some processors, it is 4 per cycle

• Implications
– We can do a lot more computation in a reasonable time 

period
– Do we say “that’s enough”? No!
– It just brings new possibilities within feasibility horizon
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Parallel Computing Opportunities
• Parallel Machines now

– With thousands of powerful  processors, at national centers
• ASCI White, PSC Lemieux

– Power: 100GF – 5 TF (5 x 1012) Floating Points Ops/Sec
• Japanese Earth Simulator

– 30-40 TF!
• Future machines on the anvil

– IBM Blue Gene / L 
– 128,000 processors!
– Will be ready in 2004

• Petaflops around the corner
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Clusters Everywhere

• Clusters with 32-256 processors commonplace in  
research labs

• Attraction of clusters
– Inexpensive
– Latest processors
– Easy to put them together: session this afternoon

• Desktops in a cluster
– “Use wasted CPU power”
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Parallel Applications Opportunities
• Unprecedented opportunities for breakthroughs

– Rational Drug Design
– Molecular machines and nanotechnology
– Optimized engineering designs based on simulations

• Rockets
• Materials
• Industrial Processes: Quenching, Dendritic Growth..

– Understanding of the Universe
• Computational Cosmology

– Operations Research
– Data Mining
– Artificial Intelligence?
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Parallel Computing Challenges

• It is not easy to develop an efficient parallel program
• Some Challenges:

– Parallel Programming
– Complex Algorithms
– Memory issues
– Communication Costs
– Load Balancing
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Why Don’t Applications Scale?
• Algorithmic overhead

– Some things just take more effort to do in parallel
• Example: Parallel Prefix (Scan)

• Speculative Loss
– Do A and B in parallel, but B is ultimately not needed

• Load Imbalance
– Makes all processor wait for the “slowest” one
– Dynamic behavior

• Communication overhead
– Spending increasing proportion of time on communication

• Critical Paths: 
– Dependencies between computations spread across processors

• Bottlenecks:
– One processor holds things up
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Complex Algorithms

• Consider the problem of computing Electrostatic forces 
on a set of N atoms due to each other
– Straightforward algorithm: 

• Calculate force for each pair of atoms
• O(N2) computations
• Relatively easy to parallelize

– Modern algorithms: 
• Particle-Mesh Ewald (PME) or Fast Multipole
• O(N. log N) operations
• But much complex parallelization

– Multiple time-stepping
– QM/MM
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Memory Performance

• DRAM Memory
– (the kind you buy from Best Buy) is dense, cheap
– 30-50 nanoseconds to get data from memory into CPU

• CPU can do 2-4 operations every 300 picoseconds
– 100+ times slower than CPU!

• Solution:
– Memory Hierarchy: 
– Use small amount fast but expensive memory (Cache)
– If data fits in Cache, you get Gigaflops performance per proc.
– Otherwise, can be 10-50 times slower!
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Communication Costs

• Normal Ethernet is slow compared with CPU
– Even 100 Mbit ethernet..

• Some basic concepts:
– How much data can you get across per unit time: bandwidth
– How much time it needs to send just 1 byte : Latency
– What fraction of this time is spent by the processor?

• CPU overhead
• Problem:

– CPU overhead is too high for ethernet
– Because of layers of software and Operating System (OS) 

involvement
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Communication Basics: Point-to-point

Sending processor

Sending Co-processor

Network

Receiving co-processor

Receiving processor

Elan-3 cards on alphaservers (TCS):
Of 2.3 µs “put” time
1.0 : proc/PCI
1.0 : elan card
0.2: switch
0.1 Cable

Each component has a 
per-message cost, and 
per byte cost 
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Communication Basics
• Each cost, for an n-byte message 

– = ά + n β

• Important metrics: 
– Overhead at Processor, co-processor
– Network latency
– Network bandwidth consumed

• Number of hops traversed
• Elan-3 TCS Quadrics data:

– MPI send/recv: 4-5 µs
– Shmem put: 2.5 µs
– Bandwidth : 325 MB/S (about 3 ns per byte)
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Communication network options

325 MB (about 
3 ns/byte)

100+ MB5-10 MBBandwidth

$$$$$$$$Cost

LowLowHighCPU overhead

3-5 µs15 µs100 µsLatency

QuadricsMyrinet100Mb ethernet
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Ping Pong Time on Lemieux
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Parallel Programming

• Writing Parallel programs is more difficult than writing 
sequential programs
– Coordination
– Race conditions
– Performance issues

• Solutions:
– Automatic parallelization: hasn’t worked well
– MPI: message passing standard in common use
– Processor virtualization: 

• Programmer decompose the program into parallel parts, 
but the system assigns them to processors

– Frameworks: Commonly used parallel patterns are reused
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Virtualization: 
Object-based Parallelization

User is only concerned with interaction between objects
System implementation

User View
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Data driven execution

Scheduler

Message Q

Scheduler

Message Q



20

Charm++ and Adaptive MPI
Realizations of Virtualization Approach

Charm++ 
• Parallel C++

– Asynchronous methods

• In development for over a 
decade

• Basis of several parallel 
applications

• Runs on all popular parallel 
machines  and clusters

AMPI
• A migration path for MPI 

codes 
– Allows them dynamic load 

balancing capabilities of 
Charm++

• Minimal modifications to 
convert existing MPI 
programs 

• Bindings for 
– C, C++, and Fortran90

Both available from http://charm.cs.uiuc.edu
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Benefits of Virtualization
• Principle of Persistence:

– Enables Runtime 
Optimizations

– Automatic Dynamic Load 
Balancing

– Communication 
Optimizations

– Other Runtime Optimizations

• Software Engineering
– Number of virtual processors can 

be independently controlled
– Separate VPs for modules

• Message Driven Execution
– Adaptive overlap
– Modularity
– Predictability: 

• Automatic Out-of-core
• Dynamic mapping

– Heterogeneous clusters:
• Vacate, adjust to speed, share

– Automatic checkpointing
– Change the set of processors

More info:

http://charm.cs.uiuc.edu
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NAMD: A Production MD program

NAMD
• Fully featured program
• NIH-funded development
• Distributed free of charge 

(~5000 downloads so far)
• Binaries and source code
• Installed at NSF centers
• User training and support
• Large published simulations 

(e.g., aquaporin simulation 
featured in keynote)
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NAMD, CHARMM27, PME
NpT ensemble at 310 or 298 K 
1ns equilibration, 4ns production

Protein: ~   15,000 atoms
Lipids (POPE): ~   40,000 
atoms
Water: ~   51,000 
atoms
Total: ~ 106,000 
atoms

3.5 days / ns - 128 O2000 CPUs
11 days / ns - 32 Linux CPUs
.35 days/ns–512 LeMieux CPUs

Acquaporin Simulation

F. Zhu, E.T., K. Schulten, FEBS Lett. 504, 212 (2001)
M. Jensen, E.T., K. Schulten, Structure 9, 1083 (2001)
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Molecular Dynamics
• Collection of [charged] atoms, with bonds

– Newtonian mechanics
– Thousands of atoms (10,000 - 500,000)

• At each time-step
– Calculate forces on each atom 

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Short-distance: every timestep
– Long-distance: using PME (3D FFT)
– Multiple Time Stepping : PME every 4 timesteps 

– Calculate velocities and advance positions

• Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers
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Sizes of Simulations Over Time

ATP Synthase
327K atoms

(2001)

BPTI
3K atoms

Estrogen Receptor
36K atoms (1996)
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Parallel MD: Easy or Hard?
• Easy

– Tiny working data
– Spatial locality
– Uniform atom density
– Persistent repetition
– Multiple timestepping

• Hard
– Sequential timesteps
– Short iteration time
– Full electrostatics
– Fixed problem size
– Dynamic variations
– Multiple timestepping!
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Other MD Programs for Biomolecules
• CHARMM
• Amber
• GROMACS
• NWChem
• LAMMPS



28

Scalability
• The Program should scale up to use a large number of 

processors. 
– But what does that mean?

• An individual simulation isn’t truly scalable
• Better definition of scalability:

– If I double the number of processors,  I should be able to 
retain parallel efficiency by increasing the problem size
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Scalability
• The Program should scale up to use a large number of 

processors. 
– But what does that mean?

• An individual simulation isn’t truly scalable
• Better definition of scalability:

– If I double the number of processors,  I should be able to 
retain parallel efficiency by increasing the problem size
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Isoefficiency
• Quantify scalability
• How much increase in problem size is needed to retain 

the same efficiency on a larger machine?
• Efficiency : Seq. Time/ (P · Parallel Time)

– parallel time = 
• computation + communication  + idle

• Scalability:
– If P increases, can I increase N, the problem-size so that the 

communication/computation ratio remains the same?
• Corollary:

– If communication /computation ratio of a problem of size N 
running on P processors increases with P, it can’t scale
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Traditional Approaches
• Replicated Data:

– All atom coordinates stored on each processor
– Non-bonded Forces distributed evenly
– Analysis: Assume N atoms, P processors

• Computation: O(N/P)
• Communication: O(N log P)
• Communication/Computation ratio: P log P
• Fraction of communication increases with number of 

processors, independent of problem size!
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Atom decomposition

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– Communication: O(N) per processor
– Communication/Computation: O(P)
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Force Decomposition
• Distribute  force matrix to processors

– Matrix is sparse, non uniform
– Each processor has one block
– Communication: N/sqrt(P)
– Ratio: sqrt(P)

• Better scalability (can use 100+ processors)
– Hwang, Saltz, et al: 
– 6% on 32 Pes                 36% on 128 processor
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Traditional Approaches: non isoefficient
• Replicated Data:

– All atom coordinates stored on each processor
• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute  force matrix to processors
– Matrix is sparse, non uniform,
– C/C Ratio: sqrt(P)
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Spatial Decomposition

• Allocate close-by atoms to the same processor
• Three variations possible:

– Partitioning into P boxes, 1 per processor
• Good scalability, but hard to implement

– Partitioning into fixed size boxes, each a little larger than 
the cutoff disctance

– Partitioning into smaller boxes

• Communication: O(N/P)
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Spatial Decomposition in NAMD

• NAMD 1 used spatial decomposition
• Good theoretical isoefficiency, but for a fixed size 

system, load balancing problems
• For midsize systems, got good speedups up to 16 

processors….
• Use the symmetry of Newton’s 3rd law to 

facilitate load balancing
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Spatial Decomposition Via Charm

•Atoms distributed to cubes based on 
their location
• Size of each cube :

•Just a bit larger than cut-off radius
•Communicate only with neighbors
•Work: for each pair of nbr objects

•C/C ratio: O(1)
•However: 

•Load Imbalance
•Limited Parallelism

Cells, Cubes or“Patches”

Charm++ is useful to handle this
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Object Based Parallelization for MD:
Force Decomposition + Spatial Decomposition

•Now, we have many 
objects to load balance:

–Each diamond can be 
assigned to any proc.
– Number of diamonds 
(3D): 
–14·Number of Patches
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Bond Forces
• Multiple types of forces:

– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!
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Bond Forces
• Multiple types of forces:

– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!

• Instead, we do:
– Send to (7) upstream nbrs
– Each force calculated at one patch

B

CA
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Performance Data: SC2000

Speedup on Asci Red
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New Challenges
• New parallel machine with faster processors

– PSC Lemieux
– 1 processor performance: 

• 57 seconds on ASCI red to 7.08 seconds on Lemieux
– Makes is harder to parallelize: 

• E.g. larger communication-to-computation ratio
• Each timestep is few milliseconds  on 1000’s of processors

• Incorporation of Particle Mesh Ewald (PME)
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F1F0 ATP-Synthase (ATP-ase)

Converts the electrochemical energy 
of the proton gradient into the 
mechanical energy of the central stalk 
rotation, driving ATP synthesis (∆G = 
7.7 kcal/mol).

327,000 atoms total,
51,000 atoms -- protein and nucletoide
276,000 atoms -- water and ions

The Benchmark
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700 
VPs

NAMD Parallelization using Charm++

These Virtual Processors (VPs)  are mapped to real 
processors by charm runtime system

9,800 VPs
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Overview of Performance Optimizations
• Grainsize Optimizations
• Load Balancing Improvements:

– Explicitly model communication cost

• Using Elan library instead of MPI
• Asynchronous reductions
• Substep dynamic load adjustment

• PME Parallelization
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Grainsize and Amdahls’s law
• A variant of Amdahl’s law, for objects:

– The fastest time can be no shorter than the time for the 
biggest single object!

– Lesson from previous efforts

• Splitting computation objects:
– 30,000 nonbonded compute objects
– Instead of approx 10,000
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700 
VPs

NAMD Parallelization using Charm++

These 30,000+ Virtual Processors (VPs)  are mapped to real 
processors by charm runtime system

30,000 VPs
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Distribution of execution times of 
non-bonded force computation objects (over 24 steps)

Mode: 700 us
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Periodic Load Balancing Strategies
• Centralized strategy:

– Charm RTS collects data (on one processor) about:
• Computational Load and Communication for each pair

– Partition the graph of objects across processors
• Take communication into account

– Pt-to-pt, as well as multicast over a subset
– As you map an object, add to the load on both sending and 

receiving processor

• The red communication is free, if it is a multicast.
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Measurement Based Load Balancing
• Principle of persistence

– Object communication patterns and computational loads
tend to persist over time

– In spite of dynamic behavior
• Abrupt but infrequent changes
• Slow and small changes

• Runtime instrumentation
– Measures communication volume and computation time

• Measurement based load balancers
– Use the instrumented data-base periodically to make new 

decisions
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Load Balancing Steps

Regular 
Timesteps

Detailed, aggressive Load 
Balancing

Instrumented 
Timesteps

Refinement Load 
Balancing
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Another New Challenge
• Jitter due small variations

– On 2k processors or more
– Each timestep, ideally, will be about 12-14 msec for ATPase
– Within that time: each processor sends and receives :

• Approximately 60-70 messages of 4-6 KB each
– Communication layer and/or OS has small “hiccups”

• No problem until 512 processors
• Small rare hiccups can lead to large performance impact

– When timestep is small (10-20 msec), AND
– Large number of processors are used
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Benefits of Avoiding Barrier
• Problem with barriers:

– Not the direct cost of the operation itself as much
– But it prevents the program from adjusting to small variations

• E.g. K phases, separated by barriers (or scalar reductions)
• Load is effectively balanced. But,

– In each phase, there may be slight non-determistic load imbalance
– Let Li,j be the load on I’th processor in j’th phase.

• In NAMD, using Charm++’s message-driven execution:
– The energy reductions were made asynchronous
– No other global barriers are used in cut-off simulations

∑
=
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j
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, }{max }{max
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100 milliseconds
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Substep Dynamic Load Adjustments
• Load balancer tells each processor its expected (predicted) load

for each timestep
• Each processor monitors its execution time for each timestep 

– after executing each force-computation object

• If it has taken well beyond its allocated time:
– Infers that it has encountered a “stretch”
– Sends a fraction of its work in the next 2-3 steps to other processors

• Randomly selected from among the least loaded processors

migrate Compute(s) away in this step
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NAMD on Lemieux without PME
Procs Per Node Time (ms) Speedup GFLOPS

1 1 24890 1 0.494
128 4 207.4 119 59
256 4 105.5 236 116
512 4 55.4 448 221
510 3 54.8 454 224

1024 4 33.4 745 368
1023 3 29.8 835 412
1536 3 21.2 1175 580
1800 3 18.6 1340 661
2250 3 14.4 1728 850

ATPase: 327,000+ atoms including water
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Adding PME
• PME involves:

– A grid of modest size (e.g. 192x144x144)
– Need to distribute charge from patches to grids
– 3D FFT over the grid

• Strategy:
– Use a smaller subset (non-dedicated) of processors for PME
– Overlap PME with cutoff computation
– Use individual processors for both PME and cutoff 

computations
– Multiple timestepping
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700 
VPs

192 + 
144 VPs

30,000 VPs

NAMD Parallelization using Charm++ : PME

These 30,000+ Virtual Processors (VPs)  are mapped to real 
processors by charm runtime system
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Optimizing PME
• Initially, we used FFTW for parallel 3D FFT

– FFTW is very fast, optimizes by analyzing machine and FFT 
size, and creates a “plan”.

– However, parallel FFTW was unsuitable for us:
• FFTW not optimize for “small” FFTs needed here
• Optimizes for memory, which is unnecessary here.

• Solution:
– Used FFTW only sequentially (2D and 1D)
– Charm++ based parallel transpose
– Allows overlapping with other useful computation
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Communication Pattern in PME

192

procs

144 procs
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Optimizing Transpose
• Transpose can be done using MPI all-to-all

– But: costly
• Direct point-to-point messages were faster

– Per message cost significantly larger compared with total 
per-byte cost (600-800 byte messages)

• Solution:
– Mesh-based all-to-all
– Organized destination processors in a virtual 2D grid
– Message from (x1,y1) to (x2,y2) goes via (x1,y2)
– 2.sqrt(P) messages instead of P-1.
– For us: 28 messages instead of 192.
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All to all via Mesh
Organize processors in a 
2D (virtual) grid

Phase 1:
Each processor sends       
messages within its row

Phase 2:
Each processor sends       
messages within its column

( )1−P

( )1−P

2. messages instead of P-1( )1−PMessage from (x1,y1) to (x2,y2) 
goes via (x1,y2) For us: 26 messages instead of 192
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All to all on Lemieux for a 76 Byte Message
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Impact on Namd Performance
Namd Performance on Lemieux, with the transpose step 

implemented using different all-to-all algorithms
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PME parallelization

Impor4t 
picture from 
sc02 paper 
(sindhura’s)
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Performance: NAMD on Lemieux
Time (ms) Speedup GFLOPS

Procs  Per Node  Cut  PME  MTS  Cut  PME  MTS  Cut  PME  MTS 
1 1 24890 29490 28080 1 1 1 0.494 0.434 0.48

128 4 207.4 249.3 234.6 119 118 119 59 51 57
256 4 105.5 135.5 121.9 236 217 230 116 94 110
512 4 55.4 72.9 63.8 448 404 440 221 175 211
510 3 54.8 69.5 63 454 424 445 224 184 213

1024 4 33.4 45.1 36.1 745 653 778 368 283 373
1023 3 29.8 38.7 33.9 835 762 829 412 331 397
1536 3 21.2 28.2 24.7 1175 1047 1137 580 454 545
1800 3 18.6 25.8 22.3 1340 1141 1261 661 495 605
2250 3 14.4 23.5 17.54 1728 1256 1601 850 545 770

ATPase: 320,000+ atoms including water
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Namd Peak Performance
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Conclusion: NAMD case study
• We have been able to effectively parallelize MD, 

– A challenging application
– On realistic Benchmarks
– To 2250 processors, 850 GF, and 14.4 msec timestep 
– To 2250 processors, 770 GF, 17.5 msec timestep with PME and multiple 

timestepping

• These constitute unprecedented performance for MD
– 20-fold improvement over our results 2 years ago
– Substantially above other production-quality MD codes for biomolecules

• Using Charm++’s runtime optimizations
• Automatic load balancing
• Automatic overlap of communication/computation

– Even across modules: PME and non-bonded
• Communication libraries: automatic optimization
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