
1

Introduction to
Parallel Computing Issues

Laxmikant Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Dept. of Computer Science

And Theoretical Biophysics Group
Beckman Institute

University of Illinois at Urbana Champaign

2

Outline
• Parallel Computing:

– Challenges and Opportunities
– Survey of CPU speeds trends
– Trends: parallel machines
– Trends: Clusters

• Challenges:
– Communication costs
– Memory Performance
– Complex algorithms
– Parallel Performance issues
– Virtualization
– Principle of persistence,
– Measurementt load balancing

• Case Studies:
• NAMD parallelization

– Scalability
– Analysis of other approaches
– NAMD approach:

• Hybrid decomposition
• Virtual processors

– Performance Optimizations

• Car-Parinello ab Initio MD
– Algorithm
– Parallelization strategy
– Initial results

3

Overview and Objective

• What is parallel computing
• What opportunities and challenges are presented by

parallel computing technology
• Focus on basic understanding of issues in parallel

computing

4

CPU speeds continue to increase

• Current speeds: 3 Ghz on PCs
– I.e. 330 picosecond for each cycle
– 2 floating point operations each cycle

• On some processors, it is 4 per cycle

• Implications
– We can do a lot more computation in a reasonable time

period
– Do we say “that’s enough”? No!
– It just brings new possibilities within feasibility horizon

5

Parallel Computing Opportunities
• Parallel Machines now

– With thousands of powerful processors, at national centers
• ASCI White, PSC Lemieux

– Power: 100GF – 5 TF (5 x 1012) Floating Points Ops/Sec
• Japanese Earth Simulator

– 30-40 TF!
• Future machines on the anvil

– IBM Blue Gene / L
– 128,000 processors!
– Will be ready in 2004

• Petaflops around the corner

6

Clusters Everywhere

• Clusters with 32-256 processors commonplace in
research labs

• Attraction of clusters
– Inexpensive
– Latest processors
– Easy to put them together: session this afternoon

• Desktops in a cluster
– “Use wasted CPU power”

7

Parallel Applications Opportunities
• Unprecedented opportunities for breakthroughs

– Rational Drug Design
– Molecular machines and nanotechnology
– Optimized engineering designs based on simulations

• Rockets
• Materials
• Industrial Processes: Quenching, Dendritic Growth..

– Understanding of the Universe
• Computational Cosmology

– Operations Research
– Data Mining
– Artificial Intelligence?

8

Parallel Computing Challenges

• It is not easy to develop an efficient parallel program
• Some Challenges:

– Parallel Programming
– Complex Algorithms
– Memory issues
– Communication Costs
– Load Balancing

9

Why Don’t Applications Scale?
• Algorithmic overhead

– Some things just take more effort to do in parallel
• Example: Parallel Prefix (Scan)

• Speculative Loss
– Do A and B in parallel, but B is ultimately not needed

• Load Imbalance
– Makes all processor wait for the “slowest” one
– Dynamic behavior

• Communication overhead
– Spending increasing proportion of time on communication

• Critical Paths:
– Dependencies between computations spread across processors

• Bottlenecks:
– One processor holds things up

10

Complex Algorithms

• Consider the problem of computing Electrostatic forces
on a set of N atoms due to each other
– Straightforward algorithm:

• Calculate force for each pair of atoms
• O(N2) computations
• Relatively easy to parallelize

– Modern algorithms:
• Particle-Mesh Ewald (PME) or Fast Multipole
• O(N. log N) operations
• But much complex parallelization

– Multiple time-stepping
– QM/MM

11

Memory Performance

• DRAM Memory
– (the kind you buy from Best Buy) is dense, cheap
– 30-50 nanoseconds to get data from memory into CPU

• CPU can do 2-4 operations every 300 picoseconds
– 100+ times slower than CPU!

• Solution:
– Memory Hierarchy:
– Use small amount fast but expensive memory (Cache)
– If data fits in Cache, you get Gigaflops performance per proc.
– Otherwise, can be 10-50 times slower!

12

Communication Costs

• Normal Ethernet is slow compared with CPU
– Even 100 Mbit ethernet..

• Some basic concepts:
– How much data can you get across per unit time: bandwidth
– How much time it needs to send just 1 byte : Latency
– What fraction of this time is spent by the processor?

• CPU overhead
• Problem:

– CPU overhead is too high for ethernet
– Because of layers of software and Operating System (OS)

involvement

13

Communication Basics: Point-to-point

Sending processor

Sending Co-processor

Network

Receiving co-processor

Receiving processor

Elan-3 cards on alphaservers (TCS):
Of 2.3 µs “put” time
1.0 : proc/PCI
1.0 : elan card
0.2: switch
0.1 Cable

Each component has a
per-message cost, and
per byte cost

14

Communication Basics
• Each cost, for an n-byte message

– = ά + n β

• Important metrics:
– Overhead at Processor, co-processor
– Network latency
– Network bandwidth consumed

• Number of hops traversed
• Elan-3 TCS Quadrics data:

– MPI send/recv: 4-5 µs
– Shmem put: 2.5 µs
– Bandwidth : 325 MB/S (about 3 ns per byte)

15

Communication network options

325 MB (about
3 ns/byte)

100+ MB5-10 MBBandwidth

$$$$$$$$Cost

LowLowHighCPU overhead

3-5 µs15 µs100 µsLatency

QuadricsMyrinet100Mb ethernet

16

Ping Pong Time on Lemieux

1

10

100

1000

0 10000 20000 30000 40000 50000 60000 70000

Message Size (Bytes)

T
im

e
(u

s)

Pingpong Compute Time Pingpong Time

Ping Time

Ping CPU Time

10 µs

17

Parallel Programming

• Writing Parallel programs is more difficult than writing
sequential programs
– Coordination
– Race conditions
– Performance issues

• Solutions:
– Automatic parallelization: hasn’t worked well
– MPI: message passing standard in common use
– Processor virtualization:

• Programmer decompose the program into parallel parts,
but the system assigns them to processors

– Frameworks: Commonly used parallel patterns are reused

18

Virtualization:
Object-based Parallelization

User is only concerned with interaction between objects
System implementation

User View

19

Data driven execution

Scheduler

Message Q

Scheduler

Message Q

20

Charm++ and Adaptive MPI
Realizations of Virtualization Approach

Charm++
• Parallel C++

– Asynchronous methods

• In development for over a
decade

• Basis of several parallel
applications

• Runs on all popular parallel
machines and clusters

AMPI
• A migration path for MPI

codes
– Allows them dynamic load

balancing capabilities of
Charm++

• Minimal modifications to
convert existing MPI
programs

• Bindings for
– C, C++, and Fortran90

Both available from http://charm.cs.uiuc.edu

21

Benefits of Virtualization
• Principle of Persistence:

– Enables Runtime
Optimizations

– Automatic Dynamic Load
Balancing

– Communication
Optimizations

– Other Runtime Optimizations

• Software Engineering
– Number of virtual processors can

be independently controlled
– Separate VPs for modules

• Message Driven Execution
– Adaptive overlap
– Modularity
– Predictability:

• Automatic Out-of-core
• Dynamic mapping

– Heterogeneous clusters:
• Vacate, adjust to speed, share

– Automatic checkpointing
– Change the set of processors

More info:

http://charm.cs.uiuc.edu

22

NAMD: A Production MD program

NAMD
• Fully featured program
• NIH-funded development
• Distributed free of charge

(~5000 downloads so far)
• Binaries and source code
• Installed at NSF centers
• User training and support
• Large published simulations

(e.g., aquaporin simulation
featured in keynote)

23

NAMD, CHARMM27, PME
NpT ensemble at 310 or 298 K
1ns equilibration, 4ns production

Protein: ~ 15,000 atoms
Lipids (POPE): ~ 40,000
atoms
Water: ~ 51,000
atoms
Total: ~ 106,000
atoms

3.5 days / ns - 128 O2000 CPUs
11 days / ns - 32 Linux CPUs
.35 days/ns–512 LeMieux CPUs

Acquaporin Simulation

F. Zhu, E.T., K. Schulten, FEBS Lett. 504, 212 (2001)
M. Jensen, E.T., K. Schulten, Structure 9, 1083 (2001)

24

Molecular Dynamics
• Collection of [charged] atoms, with bonds

– Newtonian mechanics
– Thousands of atoms (10,000 - 500,000)

• At each time-step
– Calculate forces on each atom

• Bonds:
• Non-bonded: electrostatic and van der Waal’s

– Short-distance: every timestep
– Long-distance: using PME (3D FFT)
– Multiple Time Stepping : PME every 4 timesteps

– Calculate velocities and advance positions

• Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

25

Sizes of Simulations Over Time

ATP Synthase
327K atoms

(2001)

BPTI
3K atoms

Estrogen Receptor
36K atoms (1996)

26

Parallel MD: Easy or Hard?
• Easy

– Tiny working data
– Spatial locality
– Uniform atom density
– Persistent repetition
– Multiple timestepping

• Hard
– Sequential timesteps
– Short iteration time
– Full electrostatics
– Fixed problem size
– Dynamic variations
– Multiple timestepping!

27

Other MD Programs for Biomolecules
• CHARMM
• Amber
• GROMACS
• NWChem
• LAMMPS

28

Scalability
• The Program should scale up to use a large number of

processors.
– But what does that mean?

• An individual simulation isn’t truly scalable
• Better definition of scalability:

– If I double the number of processors, I should be able to
retain parallel efficiency by increasing the problem size

29

Scalability
• The Program should scale up to use a large number of

processors.
– But what does that mean?

• An individual simulation isn’t truly scalable
• Better definition of scalability:

– If I double the number of processors, I should be able to
retain parallel efficiency by increasing the problem size

30

Isoefficiency
• Quantify scalability
• How much increase in problem size is needed to retain

the same efficiency on a larger machine?
• Efficiency : Seq. Time/ (P · Parallel Time)

– parallel time =
• computation + communication + idle

• Scalability:
– If P increases, can I increase N, the problem-size so that the

communication/computation ratio remains the same?
• Corollary:

– If communication /computation ratio of a problem of size N
running on P processors increases with P, it can’t scale

31

Traditional Approaches
• Replicated Data:

– All atom coordinates stored on each processor
– Non-bonded Forces distributed evenly
– Analysis: Assume N atoms, P processors

• Computation: O(N/P)
• Communication: O(N log P)
• Communication/Computation ratio: P log P
• Fraction of communication increases with number of

processors, independent of problem size!

32

Atom decomposition

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– Communication: O(N) per processor
– Communication/Computation: O(P)

33

Force Decomposition
• Distribute force matrix to processors

– Matrix is sparse, non uniform
– Each processor has one block
– Communication: N/sqrt(P)
– Ratio: sqrt(P)

• Better scalability (can use 100+ processors)
– Hwang, Saltz, et al:
– 6% on 32 Pes 36% on 128 processor

34

Traditional Approaches: non isoefficient
• Replicated Data:

– All atom coordinates stored on each processor
• Communication/Computation ratio: P log P

• Partition the Atoms array across processors
– Nearby atoms may not be on the same processor
– C/C ratio: O(P)

• Distribute force matrix to processors
– Matrix is sparse, non uniform,
– C/C Ratio: sqrt(P)

35

Spatial Decomposition

• Allocate close-by atoms to the same processor
• Three variations possible:

– Partitioning into P boxes, 1 per processor
• Good scalability, but hard to implement

– Partitioning into fixed size boxes, each a little larger than
the cutoff disctance

– Partitioning into smaller boxes

• Communication: O(N/P)

36

Spatial Decomposition in NAMD

• NAMD 1 used spatial decomposition
• Good theoretical isoefficiency, but for a fixed size

system, load balancing problems
• For midsize systems, got good speedups up to 16

processors….
• Use the symmetry of Newton’s 3rd law to

facilitate load balancing

37

Spatial Decomposition Via Charm

•Atoms distributed to cubes based on
their location
• Size of each cube :

•Just a bit larger than cut-off radius
•Communicate only with neighbors
•Work: for each pair of nbr objects

•C/C ratio: O(1)
•However:

•Load Imbalance
•Limited Parallelism

Cells, Cubes or“Patches”

Charm++ is useful to handle this

38

Object Based Parallelization for MD:
Force Decomposition + Spatial Decomposition

•Now, we have many
objects to load balance:

–Each diamond can be
assigned to any proc.
– Number of diamonds
(3D):
–14·Number of Patches

39

Bond Forces
• Multiple types of forces:

– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!

40

Bond Forces
• Multiple types of forces:

– Bonds(2), Angles(3), Dihedrals (4), ..
– Luckily, each involves atoms in neighboring patches only

• Straightforward implementation:
– Send message to all neighbors,
– receive forces from them
– 26*2 messages per patch!

• Instead, we do:
– Send to (7) upstream nbrs
– Each force calculated at one patch

B

CA

41

Performance Data: SC2000

Speedup on Asci Red

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Processors

Sp
ee

du
p

42

New Challenges
• New parallel machine with faster processors

– PSC Lemieux
– 1 processor performance:

• 57 seconds on ASCI red to 7.08 seconds on Lemieux
– Makes is harder to parallelize:

• E.g. larger communication-to-computation ratio
• Each timestep is few milliseconds on 1000’s of processors

• Incorporation of Particle Mesh Ewald (PME)

43

F1F0 ATP-Synthase (ATP-ase)

Converts the electrochemical energy
of the proton gradient into the
mechanical energy of the central stalk
rotation, driving ATP synthesis (∆G =
7.7 kcal/mol).

327,000 atoms total,
51,000 atoms -- protein and nucletoide
276,000 atoms -- water and ions

The Benchmark

44

700
VPs

NAMD Parallelization using Charm++

These Virtual Processors (VPs) are mapped to real
processors by charm runtime system

9,800 VPs

45

Overview of Performance Optimizations
• Grainsize Optimizations
• Load Balancing Improvements:

– Explicitly model communication cost

• Using Elan library instead of MPI
• Asynchronous reductions
• Substep dynamic load adjustment

• PME Parallelization

46

Grainsize and Amdahls’s law
• A variant of Amdahl’s law, for objects:

– The fastest time can be no shorter than the time for the
biggest single object!

– Lesson from previous efforts

• Splitting computation objects:
– 30,000 nonbonded compute objects
– Instead of approx 10,000

47

700
VPs

NAMD Parallelization using Charm++

These 30,000+ Virtual Processors (VPs) are mapped to real
processors by charm runtime system

30,000 VPs

48

Distribution of execution times of
non-bonded force computation objects (over 24 steps)

Mode: 700 us

49

Periodic Load Balancing Strategies
• Centralized strategy:

– Charm RTS collects data (on one processor) about:
• Computational Load and Communication for each pair

– Partition the graph of objects across processors
• Take communication into account

– Pt-to-pt, as well as multicast over a subset
– As you map an object, add to the load on both sending and

receiving processor

• The red communication is free, if it is a multicast.

50

Measurement Based Load Balancing
• Principle of persistence

– Object communication patterns and computational loads
tend to persist over time

– In spite of dynamic behavior
• Abrupt but infrequent changes
• Slow and small changes

• Runtime instrumentation
– Measures communication volume and computation time

• Measurement based load balancers
– Use the instrumented data-base periodically to make new

decisions

51

Load Balancing Steps

Regular
Timesteps

Detailed, aggressive Load
Balancing

Instrumented
Timesteps

Refinement Load
Balancing

52

Another New Challenge
• Jitter due small variations

– On 2k processors or more
– Each timestep, ideally, will be about 12-14 msec for ATPase
– Within that time: each processor sends and receives :

• Approximately 60-70 messages of 4-6 KB each
– Communication layer and/or OS has small “hiccups”

• No problem until 512 processors
• Small rare hiccups can lead to large performance impact

– When timestep is small (10-20 msec), AND
– Large number of processors are used

53

Benefits of Avoiding Barrier
• Problem with barriers:

– Not the direct cost of the operation itself as much
– But it prevents the program from adjusting to small variations

• E.g. K phases, separated by barriers (or scalar reductions)
• Load is effectively balanced. But,

– In each phase, there may be slight non-determistic load imbalance
– Let Li,j be the load on I’th processor in j’th phase.

• In NAMD, using Charm++’s message-driven execution:
– The energy reductions were made asynchronous
– No other global barriers are used in cut-off simulations

∑
=

k

j
jii L

1
, }{max }{max

1
,∑

=

k

j
jii LWith barrier: Without:

54

100 milliseconds

55

Substep Dynamic Load Adjustments
• Load balancer tells each processor its expected (predicted) load

for each timestep
• Each processor monitors its execution time for each timestep

– after executing each force-computation object

• If it has taken well beyond its allocated time:
– Infers that it has encountered a “stretch”
– Sends a fraction of its work in the next 2-3 steps to other processors

• Randomly selected from among the least loaded processors

migrate Compute(s) away in this step

56

NAMD on Lemieux without PME
Procs Per Node Time (ms) Speedup GFLOPS

1 1 24890 1 0.494
128 4 207.4 119 59
256 4 105.5 236 116
512 4 55.4 448 221
510 3 54.8 454 224

1024 4 33.4 745 368
1023 3 29.8 835 412
1536 3 21.2 1175 580
1800 3 18.6 1340 661
2250 3 14.4 1728 850

ATPase: 327,000+ atoms including water

57

Adding PME
• PME involves:

– A grid of modest size (e.g. 192x144x144)
– Need to distribute charge from patches to grids
– 3D FFT over the grid

• Strategy:
– Use a smaller subset (non-dedicated) of processors for PME
– Overlap PME with cutoff computation
– Use individual processors for both PME and cutoff

computations
– Multiple timestepping

58

700
VPs

192 +
144 VPs

30,000 VPs

NAMD Parallelization using Charm++ : PME

These 30,000+ Virtual Processors (VPs) are mapped to real
processors by charm runtime system

59

Optimizing PME
• Initially, we used FFTW for parallel 3D FFT

– FFTW is very fast, optimizes by analyzing machine and FFT
size, and creates a “plan”.

– However, parallel FFTW was unsuitable for us:
• FFTW not optimize for “small” FFTs needed here
• Optimizes for memory, which is unnecessary here.

• Solution:
– Used FFTW only sequentially (2D and 1D)
– Charm++ based parallel transpose
– Allows overlapping with other useful computation

60

Communication Pattern in PME

192

procs

144 procs

61

Optimizing Transpose
• Transpose can be done using MPI all-to-all

– But: costly
• Direct point-to-point messages were faster

– Per message cost significantly larger compared with total
per-byte cost (600-800 byte messages)

• Solution:
– Mesh-based all-to-all
– Organized destination processors in a virtual 2D grid
– Message from (x1,y1) to (x2,y2) goes via (x1,y2)
– 2.sqrt(P) messages instead of P-1.
– For us: 28 messages instead of 192.

62

All to all via Mesh
Organize processors in a
2D (virtual) grid

Phase 1:
Each processor sends
messages within its row

Phase 2:
Each processor sends
messages within its column

()1−P

()1−P

2. messages instead of P-1()1−PMessage from (x1,y1) to (x2,y2)
goes via (x1,y2) For us: 26 messages instead of 192

63

All to all on Lemieux for a 76 Byte Message

0

10

20

30

40

50

60

16 32 64 96 128 192 256 512 1024 1280 1536 2048
Processors

Ti
m

e
(m

s)

MPI
Mesh
Hypercube
3d Grid

64

Impact on Namd Performance
Namd Performance on Lemieux, with the transpose step

implemented using different all-to-all algorithms

0
20
40
60
80

100
120
140

Step Time

256 512 1024
Processors

Mesh
Direct
MPI

65

PME parallelization

Impor4t
picture from
sc02 paper
(sindhura’s)

66

Performance: NAMD on Lemieux
Time (ms) Speedup GFLOPS

Procs Per Node Cut PME MTS Cut PME MTS Cut PME MTS
1 1 24890 29490 28080 1 1 1 0.494 0.434 0.48

128 4 207.4 249.3 234.6 119 118 119 59 51 57
256 4 105.5 135.5 121.9 236 217 230 116 94 110
512 4 55.4 72.9 63.8 448 404 440 221 175 211
510 3 54.8 69.5 63 454 424 445 224 184 213

1024 4 33.4 45.1 36.1 745 653 778 368 283 373
1023 3 29.8 38.7 33.9 835 762 829 412 331 397
1536 3 21.2 28.2 24.7 1175 1047 1137 580 454 545
1800 3 18.6 25.8 22.3 1340 1141 1261 661 495 605
2250 3 14.4 23.5 17.54 1728 1256 1601 850 545 770

ATPase: 320,000+ atoms including water

67

Namd Peak Performance

0

5

10

15

20

25

30

1000 1500 2000 2500 3000

Processors

St
ep

 T
im

e
(m

s)

0

200

400

600

800

1000

1200

Pe
rfo

rm
an

ce
 G

FL
OP

S

Namd Step Time (ms)
Performance (GF)

68

Conclusion: NAMD case study
• We have been able to effectively parallelize MD,

– A challenging application
– On realistic Benchmarks
– To 2250 processors, 850 GF, and 14.4 msec timestep
– To 2250 processors, 770 GF, 17.5 msec timestep with PME and multiple

timestepping

• These constitute unprecedented performance for MD
– 20-fold improvement over our results 2 years ago
– Substantially above other production-quality MD codes for biomolecules

• Using Charm++’s runtime optimizations
• Automatic load balancing
• Automatic overlap of communication/computation

– Even across modules: PME and non-bonded
• Communication libraries: automatic optimization

	Introduction to Parallel Computing Issues
	Outline
	Overview and Objective
	CPU speeds continue to increase
	Parallel Computing Opportunities
	Clusters Everywhere
	Parallel Applications Opportunities
	Parallel Computing Challenges
	Complex Algorithms
	Memory Performance
	Communication Costs
	Communication network options
	Parallel Programming
	Virtualization: Object-based Parallelization
	Charm++ and Adaptive MPIRealizations of Virtualization Approach
	Benefits of Virtualization
	NAMD: A Production MD program
	Molecular Dynamics
	Sizes of Simulations Over Time
	Parallel MD: Easy or Hard?
	Other MD Programs for Biomolecules
	Scalability
	Scalability
	Isoefficiency
	Traditional Approaches
	Atom decomposition
	Force Decomposition
	Traditional Approaches: non isoefficient
	Spatial Decomposition
	Spatial Decomposition in NAMD
	Spatial Decomposition Via Charm
	
	Bond Forces
	Bond Forces
	Performance Data: SC2000
	New Challenges
	Overview of Performance Optimizations
	Grainsize and Amdahls’s law
	Periodic Load Balancing Strategies
	Measurement Based Load Balancing
	Load Balancing Steps
	Another New Challenge
	Benefits of Avoiding Barrier
	
	Substep Dynamic Load Adjustments
	NAMD on Lemieux without PME
	Adding PME
	Optimizing PME
	Communication Pattern in PME
	Optimizing Transpose
	All to all via Mesh
	All to all on Lemieux for a 76 Byte Message
	Impact on Namd Performance
	PME parallelization
	Performance: NAMD on Lemieux
	Conclusion: NAMD case study

