Molecular Dynamics Simulation of Membrane Channels

Part III. Nanotubes Theory, Methodology

Emad Tajkhorshid Beckman Institute, UIUC

Summer School on Theoretical and Computational Biophysics June 2004, University of Western Australia

Carbon Nanotubes Hydrophobic channels - Perfect Models for Membrane Water Channels

A balance between the size and hydrophobicity

Carbon Nanotubes Hydrophobic channels - Perfect Models for Membrane Water Channels

- Much better statistics
- No need for membrane and lipid molecules

Carbon Nanotubes Hydrophobic channels - Perfect Models for Membrane Water Channels

- Much better statistics
- No need for membrane and lipid molecules

Water Single-files in Carbon Nanotubes

Water files form polarized chains in nanotubes

Water-Nanotube Interaction can be Easily Modified

Hummer, et. al., Nature, 414: 188-190, 2001

Tight-Binding Self-Consistent Field Model for Nanotube Wall Electrons

Calculation of Diffusion Permeability from MD

 Φ_0 : number of water molecules crossing the channel from the left to the right in unit time

 Φ_0 can be directly obtained through equilibrium MD simulation by counting "full permeation events"

Liposome Swelling Assay

Realizing a Pressure Difference in a Periodic System

Fangqiang Zhu

f is the force on each water molecule, for *n* water molecules

The overall translation of the system is prevented by applying constraints or counter forces to the membrane.

F. Zhu, et al., Biophys. J. 83, 154 (2002).

Applying a Pressure Difference Across the Membrane

Applying force on all water molecules.

Not a good idea!

Applying a Pressure Difference Across the Membrane

Applying force on bulk water only.

Very good

Applying a Pressure Difference Across the Membrane

Applying force only on a slab of water in bulk. Excellent

 P_f can be calculated from these simulations

Calculation of osmotic permeability of water channels

Channel Constriction

HOLE2: O. Smart et al., 1995

Observed Induced Fit in Filter

Confinement in Filter

- Selection occurs in most constrained region.
- Caused by the locking mechanism.

Evidence for Stereoselectivity

Ribitol

Optimal hydrogen bonding and hydrophobic matching

Arabitol

10 times slower

Dipole Reversal in Channel

- Dipole reversal pattern matches water.
- Selects large molecules with flexible dipole.

