ATPase Synthase - A Molecular Double Motor




Photosynthesic Unit of Purple Bacteria
Module that converts sun light into chemical energy (ATP)
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Mechanism of the bcl Complex in the Photosyntehtic Unit
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Enforcing domain rotation in the bc, complex

Events during torque application to ISP head

Izrailev et al., Biophys J.,
77:1753-1768 (1999)
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Mechanisms of Rotatory Molecular
Motor that Converts Voltage (proton
gradient) into ATP Synthesis
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Adenosine Triphosphate (ATP) Synthase
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Rotary catalysis: Two protein motors
coupled via common central stalk yo
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1 Solvent exposed F, unit (o;p5y0¢):

central stalk rotation causes
b2 conformational changes in catalytic
J sites, driving ATP synthesis
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5 [°  Transmembrane F, unit (ab,c,):
° converts proton motive force into
mechanical rotation of central stalk



Animation of the ATP Synthase




ATP synthesis /

Mechanism of ATP synthase _ p,;aroiysis
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Reaction Mechanism of
ATP Hydrolysis
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Mechanism of ATP Hydrolysis in F1 ATPase




Let’s look at F1

Torque is transmitted between the motors via the central stalk.



Assembling ATP Synthase F,

o Start with DCCD-inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
processors.



Assembling ATP Synthase F,

o Start with DCCD-1inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
processors.



Assembling ATP Synthase F,

o Start with DCCD-1inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
processors.



Assembling ATP Synthase F,

o Start with DCCD-1inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
processors.



Assembling ATP Synthase F,

o Start with DCCD-1inhibited structure, has near-
complete stalk. (Gibbons 2000, PDB code 1E79)
*Total 327,000 atoms (3325 residues, 92,000 water
molecules, nucleotides, and ions).

» The 1.2 ns equilibration + 10.5 ns torque application
were performed on NCSA Platinum and PSC
Lemieux as parallel NAMD jobs using up to 512
processors.



Torque application to F,

Torque 1s applied to the central stalk atoms at the F,-F_ interface to
constrain their rotation to constant angular velocity w = 24 deg/ns.

central stalk,
vOe

applied torque

0.0 to 5.0 ns (0 to 120 deg) of torqued F,
rotation, w = 24 deg/ns.



Stalk analysis

Using best RMSD rotation fit for stalk sections binned along axis direction

at 3.0 ns (72 deg) of rotation, we observe:

* slowed torque transmission along central stalk
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Winding of vy coiled-coil

t= 3.0 ns
0= 72°

Different coupling for the two y helices:
1—50, partially via 6 subunit
197—272, directly to F




Rotation Produces Synthesis-like Events (1)

Around 3 ns (72 deg) of rotation, we observe:
* slowed torque transmission along central stalk
e cooperative interactions at stalk - 3 subunit interfaces
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Rotation Produces Synthesis-like Events (3)

At 3.0 ns (72 deg) of rotation, we observe:
* slowed torque transmission along central stalk
* unbinding from ATP at the P, catalytic site
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Let’s Look at Fo ATP Motor

Asp 61 (D61) side groups take protons

converts proton motive force into
mechanical rotation of central stalk




Key Amino Acids Participating in
Electro-Mechanical Motor
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Transmembrane F unit
(ab,c,,): converts proton
motive force into
mechanical rotation of
central stalk

YA\

A. Aksimentiev, 1. Balabin, R. Fillingame, K. Schulten, Biophys. J. 86: 1332-1344 (2004)



System Simulated
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A. Aksimentiev, I. Balabin, R. Fillingame, K. Schulten, Biophys. J. (in press)



Forced Rotation of the c10 Subunit

applied torques:
~10,500 kcal M~
7.= 5,050 kcal M~
7.= 2,030 kcal M~
7,= 1,000 kcal M~

T

b

o

angle (deg)

time (ns)

Estimated friction coefficient
C ~10° kcal/(M sec)

Forces were applied to all
backbone atoms of ¢,

A. Aksimentiev, I. Balabin, R. Fillingame, K. Schulten, Biophys. J. (in press)




Salt Bridge Arg,,,-Asp, 1s Formed

With only one Asp, residue deprotonated, SMD rotation of
c;o breaks the structure apart.

No restraints Subunit ¢ 1s restrained

A. Aksimentiev, 1. Balabin, R. Fillingame, K. Schulten, Biophys. J. (in press)
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Single Helix Rotation is Feasible

To minimize steric hindrance (critical on
nanosecond time scale), helix was forced
to rotate 1n a reptation tube (local pivot
points and directors).

A. Aksimentiev, I. Balabin, R. Fillingame, K. Schulten, Biophys. J. (in press)



Salt Bridge Cannot be Broken, but Transfered

The salt bridge can
be transferred by the
concerted rotation of
the c¢,, complex and

the outer TMH of
subunit ¢
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A. Aksimentiev, 1. Balabin, R. Fillingame, K. Schulten, Biophys. J. (in press)



Overall Mechanism:
Theoretical Challenge
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Key Steps in the Mechanlsm of the Fo Motor




Stochastic Model
Extends S_mulation to ms Time Scale

6 degrees of

L‘ 3 freedom:
N 0,, 0,, 0,, 0,, 0, are

s

' ‘l. ' TMH rotation
; ’ 184 ' , " -
. @ﬁx , % '*f* angles; 0, - position
%y’. . b, T of the a subunit.
Each Asp61 can be in

either of two chemical
states (protonated or
deprotonated).

do. d
=T E [Ugroup + Uhydroph. + Uinternal] + Tli (t)

dt
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StOChaStiC SimulatiOnS Of Time evolution of rotation angles 0, (black), 0,

(red), 6, (green), and 6, (blue). Motor rotation

F 0 Operation speed is close to physiological.
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