ATPase Synthase - A Molecular Double Motor

Mechanism of the bc1 Complex in the Photosyntehtic Unit

www.ks.uiuc.edu

Enforcing domain rotation in the bc₁ complex Events during torque application to ISP head

Adenosine Triphosphate (ATP) Synthase

Rotary catalysis: Two protein motors coupled via common central stalk $\gamma\delta$

Solvent exposed F_1 unit ($\alpha_3\beta_3\gamma\delta\epsilon$): central stalk rotation causes conformational changes in catalytic sites, driving ATP synthesis

Transmembrane F_0 unit (ab_2c_{10}) : converts proton motive force into mechanical rotation of central stalk

Animation of the ATP Synthase

Reaction Mechanism of ATP Hydrolysis

alpha

beta

Mechanism of ATP Hydrolysis in F1 ATPase

Let's look at F1

Torque is transmitted between the motors via the central stalk.

Start with DCCD-inhibited structure, has near-complete stalk. (Gibbons 2000, PDB code 1E79)
Total 327,000 atoms (3325 residues, 92,000 water molecules, nucleotides, and ions).

Start with DCCD-inhibited structure, has near-complete stalk. (Gibbons 2000, PDB code 1E79)
Total 327,000 atoms (3325 residues, 92,000 water molecules, nucleotides, and ions).

Start with DCCD-inhibited structure, has near-complete stalk. (Gibbons 2000, PDB code 1E79)
Total 327,000 atoms (3325 residues, 92,000 water molecules, nucleotides, and ions).

Start with DCCD-inhibited structure, has near-complete stalk. (Gibbons 2000, PDB code 1E79)
Total 327,000 atoms (3325 residues, 92,000 water molecules, nucleotides, and ions).

Start with DCCD-inhibited structure, has near-complete stalk. (Gibbons 2000, PDB code 1E79)
Total 327,000 atoms (3325 residues, 92,000 water molecules, nucleotides, and ions).

Torque application to F₁

Torque is applied to the central stalk atoms at the F_1 - F_0 interface to constrain their rotation to constant angular velocity $\omega = 24$ deg/ns.

0.0 to 5.0 ns (0 to 120 deg) of torqued F_1 rotation, $\omega = 24$ deg/ns.

Stalk analysis

Using best RMSD rotation fit for stalk sections binned along axis direction, at 3.0 ns (72 deg) of rotation, we observe:

• slowed torque transmission along central stalk

Winding of γ coiled-coil

t = 3.0 ns

 $\theta = 72^{\circ}$

Different coupling for the two γ helices: 1—50, partially via δ subunit 197—272, directly to F_o

Rotation Produces Synthesis-like Events (1)

Around 3 ns (72 deg) of rotation, we observe:

- slowed torque transmission along central stalk
- cooperative interactions at stalk β subunit interfaces

Rotation Produces Synthesis-like Events (3)

At 3.0 ns (72 deg) of rotation, we observe:

- slowed torque transmission along central stalk
- unbinding from ATP at the β_{TP} catalytic site

0 ns: active site closed

3 ns: active site open

Let's Look at Fo ATP Motor

β ATP

C.

a

Asp 61 (D61) side groups take protons

Transmembrane F_0 unit (ab_2c_{10}) : converts proton motive force into mechanical rotation of central stalk

Key Amino Acids Participating in Electro-Mechanical Motor

A. Aksimentiev, I. Balabin, R. Fillingame, K. Schulten, Biophys. J. 86: 1332-1344 (2004)

System Simulated

Forced Rotation of the c10 Subunit

Forces were applied to all backbone atoms of c_{10}

Estimated friction coefficient $\zeta \sim 10^5$ kcal/(M sec)

Salt Bridge Arg₂₁₀-Asp₆₁ is Formed

With only one Asp_{61} residue deprotonated, SMD rotation of c_{10} breaks the structure apart.

Subunit *a* is restrained

No restraints

Single Helix Rotation is Feasible

To minimize steric hindrance (critical on nanosecond time scale), helix was forced to rotate in a reptation tube (local pivot points and directors).

Salt Bridge Cannot be Broken, but Transfered

The salt bridge can be transferred by the concerted rotation of the c_{10} complex and the outer TMH of subunit *c*

Overall Mechanism: Theoretical Challenge

From ns simulation to ms model!

 $c_{1_{I}}$

a5

a2

c1

cl_R

 θ_3

$$\xi_{i} \frac{d\theta_{i}}{dt} = -\frac{d}{d\theta_{i}} \left[U_{\text{group}} + U_{\text{hydroph.}} + U_{\text{internal}} \right] + \eta_{i}(t)$$

Key Steps in the Mechanism of the Fo Motor

Stochastic Model Extends Simulation to ms Time Scale

C $c1'_{\rm L}$ C cl_R θ_0 $c1_{T}$ D61 θ θ θ_3 D61 H. a3 a5 a $\zeta_{i} \frac{d\theta_{i}}{dt} = -\frac{d}{d\theta} \left[U_{\text{group}} + U_{\text{hydroph.}} + U_{\text{internal}} \right] + \eta_{i}(t)$

6 degrees of freedom: $\theta_0, \theta_1, \theta_2, \theta_3, \theta_4$ are TMH rotation angles; θ_A - position of the *a* subunit. Each Asp61 can be in either of two chemical states (protonated or deprotonated).

