Free Energy Calculations

• Non-equilibrium SMD simulations using Jarzynski equality

• Equilibrium MD simulations Umbrella Sampling (WHAM)

2nd Law: $\langle W \rangle \ge \Delta F = F(\lambda_{f}) - F(\lambda_{i})$ Jarzynski (1997): $\langle \exp(-\beta W) \rangle = \exp(-\beta \Delta F)$ $e^{-\beta \langle W \rangle} \le \langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$ $\langle W \rangle \ge \Delta F$ JE \Rightarrow 2nd law

Derivation of Jarzynski Identity

• Hamiltonian systems:

energy conservation, Liouville's theorem

• Stochastic systems:

Markov property, balance condition

Stochastic algorithms in MD:

- NVT (Nose-Hoover)
- NpT (Langevin piston) (Gibbs free energy)

markovian (no History) Balance Condition

=> Jarzynski Identity

Helix-Coil Transition of Deca-alanine in vacuum

•Small, but not too small: 104 atoms

•Short relaxation time \rightarrow reversible pulling \rightarrow exact PMF

A system with Hamiltonian H₀
\$\overline{4}\$ free energy along the reaction pathway

External potential: h (r) = k (r - λ)²/2

$$\Delta F = -(1/\beta) \log \langle e^{-\beta W} \rangle$$

For stiff springs (large spring constant)

 $\Delta F \approx \Delta \phi$

here we have used 500pN/A, Covalent bond strength 3500pN/A **Stiff!**

Reversible Pulling (v = 0.1 Å/ns)

Park, Khalili-Araghi, Tajkhorshid & Schulten, J Chem Phys 119, 3559 (2003)

Sampling Error and Truncation Error

Example: Guassian Shift = $\sigma^2 / k_B T$ shift/width ~ $\sigma / k_B T$ **f** big in strong nonequilibrium

Biggest contribution to ΔF comes from small values of work, far from its average value, which requires ample sampling

Guassian Work Distribution

PMF from Umbrella Sampling

Equilibrium sampling of the configuration space. Takes very long time

Confine the system to a small region, by applying a biasing potential

$$V_i(x) = k (x - x_i)^2 / 2$$

Choice of biasing harmonic potential $k \Delta x^2 \approx k_B T$

WHAM

Weighted Histogram Analysis Mehtod

To minimize the statistical error, a weight function is used.

Weight function that minimizes the error:

 $w_i(x) = [exp(-V_i(x)/k_BT)Z_0/Z_i] / \sum_i exp(-V_i(x)/k_BT)Z_0/Z_i]$

This results in a set of equations that has to be solved self consistently for Z_i

 $P_0^{est} = \sum_i w_i(x) \exp[V_i / (k_B T)] Z_i / Z_0 P_i(x)$

 $F(x) = -k_B T \log (P_0^{est} (x))$

Umbrella Sampling w/ WHAM

