Organization of NAMD Tutorial Files

namd—tutorial —files

— 1—1-buwld

— 1-2—sphere

— 1-3-box

2—1-rmsd — 3—1-pullcv

2—2—-maxwell — 3-2-—pullct

2-5—energics

2=7—echoes

COITIT O



2.1.1. RMSD for individual residues

Objective: Find the average RMSD over time of each
residue in the protein using VMD. Display the protein
with the residues colored according to this value.
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2.1.2 Maxwell-Boltzmann Distribution

Objective: Confirm that the kinetic energy
distribution of the atoms in a system corresponds to
the Maxwell distribution for a given temperature.
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2.1.3 Energies

Objective: Plot the various energies (kinetic and the
different internal energies) as a function of temperature.
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2.1.4 Temperature Fluctuations
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Analysis of MD Data

1. Structural properties
2. Equilibrium properties
3.Non-equilibrium properties

Can be studied via both equilibrium
and/or non-equilibrium MD simulations



Time Correlation Functions

Cup(t—1)={A(t) B(t')) = (A(t - 1) B(0))

. .
since P, is 7independent |

A# B cross-

=B au‘ro-} correlation function

Correlation time: T, = [dtC ,,(1)/C,,,(0)
0

Estimates how long the "memory” of the system lasts

In many cases (but not always): C(¢) = C(0)exp(—t/t,)



Free Diffusion (Brownian Motion) of Proteins

» in living organisms proteins exist and function
in a viscous environment, subject to
stochastic (random) thermal forces

» the motion of a globular protein in a viscous
aqueous solution is diffusive

» e.qg., ubiguitin can be
modeled as a spherical
particle of radius
R~1.6nm and mass
M=6.4kDa=1.1x10-23 kg




Diffusion can be Studied by MD Simulations!

ubiguitinin water

PDB entry:

solvate

A =

total # of atoms: 7051 = 1231 (protein) + 5820 (water)

simulation conditions: NpT ensemble (T=310K, p=1atm),
periodic BC, full electrostatics, time-step 2fs (SHAKE)

simulation output: Cartesian coordinates and velocities of
all atoms saved at every other time-step (10,000 frames =
40 ps) in separate DCD files



Goal: calculate D and T

by fitting the theoretically calculated center of
mass (COM) velocity autocorrelation function to the
one obtained from the simulation

> theory:  C,(0)=(v()v(0))=(v;)e""
o k,T D
<Vo>: Y, — . (equipartition theorem)

» simulation: consider only the x-component (v, = v)
replace ensemble avemge by time average
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Velocity Autocorrelation Function
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NAMD Tutorial (Part 2)

» 2 Analysis

» 2.1 Equilibrium
» 2.1.1 RMSD for individual residues
» 2.1.2 Maxwell-Boltzmann Distribution
» 2.1.3 Energies
» 2.1.4 Temperature distribution
» 2.1.5 Specific Heat

» 2.2 Non-equilibrium properties of protein

»2.2.1 Heat Diffusion
p 2.2.2 Temperature echoes



Organization of NAMD Tutorial Files

namd—tutorial —files

— 1—1-buwld

— 1-2—sphere

— 1-3-box

— 2—-1-rmsd — 3—1-pullcv

— 2-2-maxwell — 3-2-—pullct
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— 2—d—temp
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Simulated Cooling of Ubiquitin

* Proteins function in a narrow (physiological)

temperature range. What happens to them when the
temperature of their surrounding changes significantly
(temperature gradient) ?

» Can the heating/cooling process of a protein be

simulated by molecular dynamics ? If yes, then how?

+ What can we learn from the
simulated cooling/heating of
a protein ?




Nonequilibrium (Transport)
Properties

» macromolecular properties of proteins, which are
related to their biological functions, often can be
probed by studying the response of the system to an
external perturbation, such as thermal gradient

» "small” perturbations are described by linear response
theory (LRT), which relates transport (nonequilibrium)
to thermodynamic (equilibrium) properties

> on a "mesoscopic” scale a globular protein can be
regarded as a continuous medium = within LRT, the
local temperature distribution 7(r,¢) in the protein is
governed by the heat diffusion (conduction) equation

oT (r,t)
ot

= DV°T(r,?)



Atomic VS Mesoscopic

- each atom is treated - one partitions the protein
individually in small volume elements
. length scale ~ 0.1 X and average over the

contained atoms

* time scale ~ 1 fs - length scale > 10 & = 1nm

- time scale 2 1 ps



Heat Conduction Equation

oT(r,t) )
or bv T(l‘,t)A/ mass density
thermal diffusion D=K/
coefficient > = A/p0C

Y ™~

thermal conductivity

specific heat

- approximate the protein with a

homogeneous sphere of radius
R~20 A

- calculate T{r,1)assuming initial
and boundary conditions:

T(r,0)=1, for r <R
T(R,t)=T,

ath



Solution of the Heat Equation

(AT (1)) = (AT(0)) x%i %exp (-n*n’tiz,)

TN
where (AT(2))=(T(¢))-T,,,, 7,=R’/D

averaged over the entire protein!
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How to simulate cooling ?

In laboratory, the protein is immersed in a coolant and the
temperature decreases from the surface to the center

Cooling methods in MD simulations:

1

. Stochastic boundary method
2.

Velocity rescaling (rapid cooling, biased velocity
autocorrelation)
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. Random reassignment of atomic velocities according

to Maxwell's distribution for desired temperature
(velocity autocorrelation completely lost)



Stochastic Boundary Method

Heat transfer through
mechanical coupling between
atoms in the two regions
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oolant layer of atoms

motion of atoms is subject
to stochastic Langevin
dynamics

mr=Fg.+F,+F,+F,

F,,. — force field

F,, —harmonic restrain
F, — friction

F, —Langevin force

atoms in the inner region
follow Newtonian dynamics

mr=F,,




Determine D by Fitting the Data
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Thermal Conductivity of UBQ
K=Dpc
C, =(OE*) | kyT* =((E*)—(E)* )/ k,T"

D~097x107 cm?/s

o =1x10° kg/m’
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