Part III - Bioinformatics Study of Aminoacyl tRNA Synthetases

VMD Multiseq TutorialWeb tools

Perth, Australia 2004 Computational Biology Workshop

Multiple Sequence Alignments

• "The aminoacyl-tRNA synthetases, perhaps better than any other molecules in the cell, eptiomize the current situation and help to under standard (the effects) of HGT" Woese (PNAS, 2000; MMBR 2000)

The Universal Phylogenetic Tree inferred from comparative analyses of rRNA sequences: Woese(PNAS, 1990)

Horizontal Gene Transfer

O'Donoghue and Luthey-Schulten, MMBR, 2004

Standard Dogma Molecular Biology

25-trna.ppt

Charging the tRNA

amidotransferase

Woese, Olsen (UIUC), Ibba (Panum Inst.), Soll (Yale) Micro. Mol. Biol. Rev. March 2000..

Aminoacyl-tRNA Synthetases catalyze linkage of the appropriate amino acid to each tRNA. The reaction occurs in two steps.

In step 1, an O atom of the amino acid α -carboxyl attacks the P atom of the initial phosphate of ATP.

www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/25-trna.ppt

In step 2, the 2' or 3' OH of the terminal adenosine of tRNA attacks the amino acid carbonyl C atom.

Aminoacyl-tRNA Synthetase

Summary of the 2-step reaction:

- 1. amino acid + ATP \rightarrow aminoacyl-AMP + PP_i
- 2. aminoacyl-AMP + tRNA \rightarrow aminoacyl-tRNA + AMP

Overall Reaction:

amino acid + ATP + tRNA \rightarrow aminoacyl-tRNA + AMP

+ **PP**_i

Next step: EF and Ribosome for Protein Synthesis

Structure of the E. coli Ribosome

The cutaway view at right shows positions of tRNA (P, E sites) & mRNA (as orange beads).

Figure: Laboratory of Joachim Frank, Wadsworth Center cryo-EM and 3D image reconstruction

The cutaway view at right shows that the **tunnel** in the yeast large ribosome subunit, through which nascent polypeptides emerge from the ribosome, **lines up** with the lumen of the ER **Sec61 channel**.

Figure provided by Joachim Frank, whose lab carried out the cryo-EM & image reconstruction on which these images are based.

University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics School of Chemical Sciences and Beckman Institute

Evolution of Protein Structure Aspartyl-tRNA Synthetase

VMD Developers:	Dr. Zan Luthey-Schulten
Dan Wright	Brijeet Dhaliwal
John Eargle	Patrick O'Donoghue
John Stone	Rommie Amaro
	April 2004.

Step 1: Explore active site in catalytic domain and anticodon domain.

Horizontal Gene Transfer in Protein Structure

Sequence Phylogeny AspRS-AsnRS Group

Structure Phylogeny Class I AARSs

Structure Phylogeny Class II AARSs

O'Donoghue and Luthey-Schulten, MMBR 2004

Structure Phylogeny Class I AARSs

Structure Phylogeny Class II AARSs

Multiseq extension in VMD

Conservation

Core Structure Conserved

Sequence Identity of Core Less than 15%

Useful Web Tools

- SCOP Structure Database
- NCBI Genomes Sequence and Gene Information
- SWISSPROT Sequence Database
- **PFAM** Domain Architecture
- Clustal Multiple Sequence Alignments
- Hidden Markov Methods
- Phylip Phylogenetic Trees
- Matlab Statistics UPGMA

Structural Classification of Proteins

Scop (Astral Database)

Protein: Aspartyl-tRNA synthetase (AspRS) from Escherichia coli

Lineage:

- 1. Root: scop
- 2. Class: All beta proteins
- Fold: OB-fold barrel, closed or partly opened n=5, S=10 or S=8; greek-key
- 4. Superfamily: Nucleic acid-binding proteins
- Family: <u>Anticodon-binding domain</u> barrel, closed; n=5, S=10
- Protein: Aspartyl-tRNA synthetase (AspRS) this is N-terminal domain in prokaryotic enzymes and the first "visible" domain in eukaryotic enzymes
- 7. Species: Escherichia coli

PDB Entry Domains:

1. 1c0a ▲ < ≥ ≥

 region a:1-106 ▲ < □

 1i12 ▲ < ≥ ≥

 complexed with Img, 5mc, 5mu, amo, h2u, psu, so4
 region a:1-106 ▲ < □
 region b:1001-1106 ▲ < □

 1eqr ▲ < ≥ ≥

 region a:1-106 ▲ < □
 region b:1001-1106 ▲ < □
 region b:1-106 ▲ < □
 region b:1-106 ▲ < □
 region c:1-106 ▲ < □

Protein coding genes distribution map

To see map locations of genes, click on a region in the map, to zoom in on that region

NCBI: Genomes

Gene Classification based on COG functional categories Translation, ribosomal structure and biogenesis Transcription DNA replication, recombination and repair Cell division and chromosome partitioning Posttranslational modification, protein turnover Cell envelope biogenesis, outer membrane Cell motility and secretion Inorganic ion transport and metabolism Signal transduction mechanisms Energy production and conversion Carbohydrate transport and metabolism Amino acid transport and metabolism Nucleotide transport and metabolism Coenzyme metabolism Lipid metabolism Secondary metabolites biosynthesis, transport ar General function prediction only Function unknown No COG match

Organism: <u>Methanocaldococcus jannaschii</u> Genetic Code: <u>11</u> Lineage: Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanocaldococcaceae; Methanocaldococcus.

Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii

Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G., Blake, J.A.,
FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A.,
Tomb, J.-F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G.,
Merrick, J.M., Glodek, A., Scott, J.D., Geoghagen, N.S., Weidman, J.F.,
Fuhrmann, J.L., Nguyen, D.T., Utterback, T., Kelley, J.M., Peterson, J.D., Sadow, P.W.,
Hanna, M.C., Cotton, M.D., Hurst, M.A., Roberts, K.M., Kaine, B.B., Borodovsky, M.,
Klenk, H.P., Fraser, C.M., Smith, H.O., Woese, C.R. and Venter, J.C.
Science 273 (5278), 1058–1073 (1996)
96337999

1

Search	Your Favorite Sequence in Fasta Format
Set subsequence	From: To:
Choose database	swissprot
Do CD-Search	$\mathbf{\underline{\vee}}$
Now:	BLAST! Or Reset query Reset all

Report from SWISS-PROT

Comments

- CATALYTIC ACTIVITY: ATP + L-aspartate + tRNA(Asp) = AMP + diphosphate + L-asparty1-tRN
- COFACTOR: Binds 3 magnesium ions per subunit (By similarity).
- SUBCELLULAR LOCATION: Cytoplasmic.
- SIMILARITY: Belongs to class-II aminoacyl-tRNA synthetase family.

Copyright

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics a outstation – the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch/

Cross-references

EMBL	AB010464; BAA31457.1; [EMBL / GenBank / DDBJ] [CoDingSequence]
HSSP	Q52428; 1B8A. [HSSP ENTRY / PDB]
НАМАР	MF_00044; -; 1. PBIL [Family / Alignment / Tree]
InterPro	IPR004523; AspS_arch. IPR004364; tRNA-synt_2. IPR002312; tRNA-synt_asp. IPR004365; tRNA_anti. IPR006195; tRNA_ligase_II. Graphical view of domain structure.
Pfam	PF00152; tRNA-synt_2; 1. PF01336; tRNA_anti; 1.
PRINTS	PR01042; TRNASYNTHASP.
TIGRFAMs	TIGR00458; aspS_arch; 1.
PROSITE	PS50862; AA_TRNA_LIGASE_II; 1.
ProDom	[Domain structure / List of seq. sharing at least 1 domain]
HOBACGEN	[Family / Alignment / Tree]
BLOCKS	024822.
ProtoNet	024822.
ProtoMap	024822.

PFAM Report

Representative tRNA-synt_2 family proteins

CLUSTALW: Multiple Sequence Alignment[help]

General Setting Parameters:

Output Format: CLUSTAL -

Pairwise Alignment: SFAST/APPROXIMATE SLOW/ACCURATE

Enter your sequences (with labels) below (copy & paste): @PROTEIN @DNA

Support Formats: FASTA (Pearson), NBRF/PIR, EMBL/Swiss Prot, GDE, CLUSTAL, and GCG/MSF

>1 EOR: B(000:0-000)	4
VLPLDSNHVNTEEARLKYRYLDLRRPEMAQRLKTRAKITSLVRRFMDDHGFLDIETPMLT	
KATPEGARDYLVPSRVHKGKFYALPQSPQLFKQLLMMSGFDRYYQIVKCFRDEDLRADRQ PEFTQIDVETSFMTAPQVREVMEALVRHLWLEVKGVDLGDFPVMTFAEAERRYGSDKPDL	<u>-</u>
RDESKWAPLWVIDFPMFEDDGEGGLTAMHHPFTSPKDMTAAELKAAPENAVANAYDMVIN	V

Or give the file name containing your query

Sequence UPGMA Dendrogram - Clustal $1ATI_A_$ $1ADJ_C_$ $1BBW_A$ $1EQR_B$ $1EFW_A$ $1B8A_A_$

4107	
IASZ	$_A$

Specificity	Organism	PDB code:chain	ASTRAL catalytic domain
Aspartyl	Eubacteria	1EQR:B	d1eqrb3
Aspartyl	Archaea	1B8A:A	d1b8aa2
Aspartyl	Eukarya	1ASZ:A	d1asza2
Glycl	Archaea	1ATI:A	d1atia2
Histidyl	Eubacteria	1ADJ:C	d1adjc2
Lysl	Eubacteria	1BBW:A	d1bbwa2
Aspartyl	Eubacteria	1EFW:A	d1efwa3

Phylogenetic (UPGMA) Tree -Matlab

Pogorelov and Luthey-Schulten, UIUC 2003

Bioinformatics of Aquaporin Tutorial Week II Perth

Highlights:

- Structural overlap
- Correlation conserved residues and mechanism

University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute

Aquaporins

Aquaporin-0	Eye:lens fiber cells	Ruid balance of the
Aquaporin-1	Red blood cells Kidney: proximal tubules Eye: cillary epithelium Brain: choried plexus Lung: alveolar epithelial	Osmotic protection Concentration of urine Aqueous humor Production of CSF Alveolar hydration
Aquaporin-2	Ridney: collecting ducts	ADH hormone activity
Aquaporin-3	Kidney: collecting ducts Traches: epitheliai cells	Reabsoration of water Secretion of water
Aquaporin-4	Kidney: collecting ducts Brain: encodym if cells Brain: hypothalam us Lung: bronchial	Reabsorption of water CSF fluid balance Compsensing function?
Aquaporin-5	Salivary glands Lacrimal glands	Production of saliva Secretion of saliva Production of tears
Aquaporin-6	Hidney	Very low water permeability!
Aquaporin-7	Tests and sperm	
Aquaporin-8	Testis, pancreas, liver	
Aquaporin-9	Leukocyles	
Aquaporin-		

VMD Developers: Fatemeh Khalili John Stone Elizabeth Villa Dan Wright Emad Tajkhorshid John Eargle Brijeet Dhaliwal Zan Luthey-Schulten

Towards Understanding Membrane Channels *The versaltile, highly selective and efficent aquaporin*

GlpF Structure (Stroud et al)NAMD with full electrostaticsPeriodic boundary conditionsPeriodic boundary conditionsNpT ensemble at 310 KIns equilibrationProtein: ~ 15,000 atomsLipids: ~ 40,000 atomsWater: ~ 51,000 atomsTotal: ~ 106,000 atoms

4 hrs / ns - 1024 TSC CPUs

The Nobel Prize in Chemistry 2003

"for discoveries concerning channels in cell membranes"

"for the discovery of water channels" "for structural and mechanistic studies of ion channels"

Peter Agre 1/2 of the prize USA

Johns Hopkins University School of Medicine Baltimore, MD, USA b. 1949

Roderick MacKinnon

1/2 of the prize USA

Rockefeller University, Howard Hughes Medical Institute New York, NY, USA

b. 1956

The Aquaporin Superfamily

Heymann and Engel News Physiol. Sci. 14, 187 (1999)

Structure and Sequence Comparisons Water/Glycerol Channels

2 AQP1, GLPF, AQPZ from animal and bacteria

Acknowledgements - Tutorials

Seq Alignment

- Rommie Amaro
- Felix Autenrieth
- Brijeet Dhaliwal
- Barry Isralewitz
- Taras Pogorelov
- Anurag Sethi

Evolution AARS

- •Rommie Amaro
- •Patrick
- O'Donoghue
- •Brijeet Dhaliwa

Bioinformatics

Aquaporins

- •Fatemeh Araghi
- •Brijeet Dhaliwal
- •Elizabeth Villa

VMD Developers: Dan Wright, John Eargle, John Stone