
Chapter 5

Random Numbers

Contents

5.1 Randomness . 80

5.2 Random Number Generators . 83

5.2.1 Homogeneous Distribution . 83
5.2.2 Gaussian Distribution . 86

5.3 Monte Carlo integration . 88

In this chapter we introduce numerical methods suited to model stochastic systems. Starting point
is the Fokker-Planck equation (2.148) within the frame-work of Ito calculus

∂t p(x, t|x0, t0) = −
∑
i

∂iAi p(x, t|x0, t0) +
1
2

∑
i,j

∂i∂j [B·BT]ij p(x, t|x0, t0) . (5.1)

which proved useful in analytical descriptions of Brownian dynamics. There exist two approaches
to solve this equation by numerical means.
On the one hand one can treat the Fokker-Planck equation as an ordinary parabolic partial differ-
ential equation and apply numerical tools like finite differencing, spectral or variational methods
that are applicable to partial differential equations in general. These methods will be described in
a yet unwritten chapter of these notes.
On the other hand one can resort to the stochastic processes that underlie the Fokker-Planck
equation. We have shown in chapter 2.5 that the Fokker-Planck equation (2.148, 5.1) corresponds
to a stochastic differential equation [c.f., (2.135)]

dx(t) =
(
A[x(t), t] + B[x(t), t] · ξ(t)

)
dt

= A[x(t), t] dt + B[x(t), t] · dω(t) . (5.2)

Instead of solving (5.1) one may simulate, therefore, stochastic processes that obey the stochastic
differential equation (5.2). The probability distribution p(x, t|x0, t0) resulting from an ensemble
of simulated stochastic processes starting at x(t0) = x0 can then be taken as a solution of the
Fokker-Planck equation (5.1). This approach is called the Brownian dynamics method.
We will address the Brownian dynamics method first. Two ingredients are needed to generate
sample trajectories x(t) of stochastic processes as displayed in Figure 5.4.First, one has to generate
random numbers to simulate the random variables ξ(t) and dω(t). Second, one needs rules to

79

80 Random Numbers

Figure 5.1: Two dimensional random walk generated by adding up 1000 random number tuples
with a standard Gaussion distribution.

translate the stochastic differential equation (5.2) into a dicretized numerical form with which one
can generate discretized stochastic trajectories. The generation of random numbers is the subject of
the current chapter. In chapter 6 we derive rules for generating numerically stochastic trajectories.
In chapter 7 we consider typical applications.
We begin the current chapter about random numbers with a definition of randomness in mathe-
matical terms. We then address the problem of generating random numbers on a digital computer.
The chapter closes with a short introduction to the Monte Carlo integration method, one of the
most prominent random number applications and part in the derivation of the Brownian dynamics
method introduced in chapter 6.

5.1 Randomness

Microscopic systems down to the level of small molecules exhibit strong random characteristics when
one views selected degrees of freedom or non-conserved physical properties. The laws of statistical
mechanics, even though strictly applicable only to very large systems, are realized at the molecular
level, exceptions being rare. Underlying this behaviour are seemingly random events connected
with transfer of momentum and energy between degress of freedom of strongly coupled classical
and quantum mechanical systems. One can describe these events through random processes. We
have stated above that solutions to the Fokker-Planck equations which govern the approach to
statistical mechanical equilibrium can also be cast in terms of random processes. This leaves one
to consider the problem how random events themselves can be mathematically modelled. This is
achieved through so-called random numbers.
The concept of randomness and random numbers is intuitive and easily explained. The best known
example of randomness is the throw of a dice. With each throw, a dice reveals a random number r
between 1 and 6. A dice is thus a random number generator with a random number domain equal
to the set {1, 2, 3, 4, 5, 6}. Other random number generators and domains are of course possible;
take a dime, a roulet game, and so on.
Once a random number is obtained it is no longer random. The randomness refers to the process
generating the numbers, not to a single number as such. Nevertheless a sequence of random
numbers exhibits properties that reflect the generating process. In this section we will introduce

March 28, 2000 Preliminary version

5.1: Randomness 81

and investigate these properties. In the section thereafter we will address the problem of generating
random numbers on a digital computer.
What makes a sequence of numbers {ri} random? Certainly, it is not just the overall probability
distribution p(r). A sorted and, hence, non-random list of numbers could easily satisfy this cri-
terium. Instead, we approach randomness via the related notion of unpredictability. A sequence
{ri} is unpredictable if it is impossible to foretell the value of a subsequent element rm+1 based on
the occurence of preceding elements rl, . . . , rm. This criterium translates into

p(rm+1|rl, . . . , rm) = p(rm+1) ∀ 0 ≤ l ≤ m < n. (5.3)

The elements rl, . . . , rm must not condition rm+1 and, hence, conditional probabilities p(rm+1|rl, . . . , rm)
must equal the unconditional probabilities p(rm+1). Furthermore, p(rm+1) should be the same as
the probability distribution p(r) which applies to all elements of {ri}.
Since unconditional probabilities can be factorized by conditional probabilties one obtains

p(rl, . . . , rm, rm+1) = p(rm+1|rl, . . . , rm) p(rl, . . . , rm)
= p(rm+1) p(rl, . . . , rm) , (5.4)

and, since (5.4) holds true for any l ≤ m, one can write

p(rl, . . . , rm) =
m∏
j=`

p(rj) . (5.5)

Equation (5.5) provides a criterium for randomness. However, to verify criterium (5.5) for a given
number sequence one has to derive a measurable quantity. Note, that the probability distribu-
tions p(rl, . . . , rm) are unkown. We begin this endeavor by considering the generating functions
Grl...rm(sl . . . sm) of the unconditional probabilties p(rl, . . . , rm) and by applying these to equation
(5.5).

Grl...rm(sl . . . sm) =
∫
· · ·
∫ (

m∏
k=l

drk

)
p(rl, . . . , rm) exp

[
i
m∑
k=l

skrk

]

=
m∏
k=l

∫
drk p(rk) eiskrk

=
(
Gr(s)

)m−l+1
. (5.6)

Taking the logarithm of equation (5.6) and comparing the coefficients of the Taylor expansion

log[Grl...rm(sl . . . sm)] =
n∑

nl,...,nm=0

〈〈
rnll . . . rnmk

〉〉 (i sl)nl

nl!
. . .

(i sm)nm

nm!
(5.7)

one finds for the cumulants [c.f. Eq. (2.18) and Eq.(2.30)]〈〈
rnll . . . rnmm

〉〉
= 0 , if 1 ≤ n(l≤i≤m) and l < m . (5.8)

One can verify the criteria (5.8) of unpredictability and thus randomness by utilizing the relation

Preliminary version March 28, 2000

82 Random Numbers

between cumulants and moments〈〈
rk rl

〉〉
=

〈
rk rl

〉
−
〈
rk

〉 〈
rl

〉
, (5.9)〈〈

rk r
2
l

〉〉
=

〈
rk r

2
l

〉
−
〈
rk

〉 〈
r2
l

〉
− 2

〈
rl

〉 〈
rkrl

〉
+ 2

〈
rk

〉 〈
rl

〉2
, (5.10)〈〈

rk rl rm

〉〉
=

〈
rk rl rm

〉
−
〈
rk

〉 〈
rlrm

〉
−
〈
rl

〉 〈
rkrm

〉
−
〈
rm

〉 〈
rkrl

〉
+ 2

〈
rk

〉 〈
rl

〉 〈
rm

〉
, (5.11)

...

Each moment on the r.h.s. of (5.12) can be determined by taking the arithmetic average of the
expression within the brackets 〈. . .〉.
However, to take the arithmetic average one needs an ensemble of values. What, if only a single
random number sequence is given? In such a case it is often permissable to create an ensemble by
shifting the elements of the number sequence in a cyclic fashion. We denote a shift Sk of a sequence
{ri} by k numbers by

Sk
(
{r0, r1, . . . , rn}

)
= {rk, rk+1, . . . , rn, r0, . . . , rk−1} . (5.12)

The notation for a corresponding shift of a single numbers ri is

Sk
(
ri
)

= ri+k . (5.13)

It is permissable to create an ensembles of random number sequences through operation Sk if one
investigates a sequence that stems from an iterative generating process. This is usually the case
when working with random number generators on digital computers. Such routines start with an
initial number, a seed, and then generate a list of numbers by iteratively applying a mapping over
and over again. The resulting number sequence starts to repeat as soon as the routine returns
to the initial seed, thus forming a number cylce. This is inevitable for mappings that operate
in a discrete and finite number domain. To avoid short repetitious number cycles, good number
generators exhibit just one long number cycle that completely covers the available number domain.
No matter which seed one chooses, the routine produces the same cycle of numbers simply shifted
by a certain number of elements. Hence, applying the shift operation Sk j times with j different k’s
is equivalent to generating an ensemble of j sequences with j different seeds. One can thus write
for a statisitcal moment in (5.12)

〈
rnll . . . rnmm

〉
=

1
j

j−1∑
k=0

(
Sk (rl)

)nl . . . (Sk (rm)
)nm . (5.14)

To verify if a number sequence is truely random, one has to check all cumulants
〈〈
rnll . . . rnmm

〉〉
of

all orders (nl, . . . , nk) in (5.8). These correlations should be approximately zero. Of course, due to
statistical error, a variance around zero of the order of (1/

√
n)
〈〈
r2
l

〉〉
. . .
〈〈
r2
m

〉〉
is to be expected.

In practice cumulants of higher order are laborious to caluculate. One therefore performs the
verification of randomness (5.8) for low orders only. We will see that a correlation check of low
order is sometimes insufficient. We will give an example by applying criteria (5.8) to a linear
congruential random generator, the kind of generator that we are going to introduce next.

March 28, 2000 Preliminary version

5.2. RANDOM NUMBER GENERATORS 83

5.2 Random Number Generators

At the begining of this chapter we already encountered a random number generator; the dice. Obvi-
ously it is not feasible to role a dice to generate a large sequence of random numbers. To automate
the generation process one uses digital computers instead. A computer, however, is a deterministic
machine and, thus, cannot provide truely random numbers. Nevertheless, deterministic programs,
so-called random number generators, provide a good substitute.
Any program that creates a sequence of numbers {ri}, i = 0, 1, 2, . . . , n which appear to be ran-
dom with respect to the test (5.8) derived in the previous section can serve as a random number
generator. In this section we introduce some of the standard random number generating programs.
We begin with a mechanism that creates random number sequences with a uniform distribution
in a given interval. In the paragraph thereafter we outline techniques to generate sequences with
different probability distributions, in particular the Gaussian distribution. For further reading in
this matter we refer the reader to chapter 3.5 of [20] and to [37].

5.2.1 Homogeneous Distribution

The best known random number generators are so-called linear congruential generators. They
produce random numbers with a homogeneous probability distribution. Random number generators
which emulate other probability distributions are, in general, based on the method introduced here.
Linear congruential generators produce integer number sequences {rj} with a homogeneous prob-
ability distribution between 0 and some maximum number m using the recurrence relation

ri+1 = (a ri + c) mod m . (5.15)

a and c are positive integers called multiplier and increment. A sequence {ri} starts with an
arbitrarily chosen seed r0. The linear congruential generators exhibit features common to most
random number generators:

1. The sequence of random numbers is deterministic and depends on an intial value (or list of
values), the seed r0. Hence, the random number sequence is reproducible.

2. The random number generator is a mapping within a finite number range (or finite region of
number tuples). Such a generator can only produce a finite sequence of random numbers and
will eventually repeat that sequence all over again, thus, forming a number cycle.

3. The random number sequence tends to exhibit some sequential correlations.

Hence, before employing a random number generator one should check the following criteria.
To avoid a repitition of random numbers one should make sure that the random number cycle
produced by the generator contains more elements than the random number sequence that one
intends to use. A large value for m and carefully chosen parameters a and c can produce a
nonrepetitious sequence of up to m random numbers. A feasible set of constants is for example
m = 231 − 1, a = 75 and c = 0 [44].
One should verify, if sequential correlations in a random number sequence influence the result of
the calculation. One can do so by monitoring the cumulants

〈〈
rnll . . . rnmm

〉〉
of (5.8) or by apply-

ing different random number generators and comparing the results. If needed, one can suppress
sequential correlations by reshuffling a random number sequence, by merging two sequences or by
similar techniques [37].
So far we can generate homogeneously distributed positive random integers on an interval [0,m].
One can transform these integers r into fractions or floating point numbers with a homogenous

Preliminary version March 28, 2000

84 Random Numbers

Figure 5.2: Random number sequence with a homogenous distribution in [0, 1] generated using
(5.15) with m = 231, a = 65539, c = 0, and r0 = 1.

distribution on an arbitrary interval [l, u] by applying the linear mapping f(r) = u−l
m r+ l. Thus,

we can assume from now on to have available a basic random number generator with real-valued
(or rather floating point) numbers homogeneously distributed in the interval [0, 1].
Before one employs any random number generator needs to be concerned about its quality. Are
the numbers generated truely random? To demonstrate typical problems we will consider a patho-
logical example which arises if one chooses in (5.15) m = 231, a = 65539 and c = 0. Figure 5.2
demonstrates that the linear congruential generator (5.15) produces actually for the present pa-
rameters a homogeneous distribution in the interval [0, 1]. This figure displays a random number
sequence of 1000 elements starting in the front and proceeding in 1000 steps to the rear. To verify
the probability distribution a bin count with a bin width of 0.1 is displayed in the background. The
bar hights represent the normalized probability density in each bin. The line superimposed on the
bar chart depicts the ideal theoretical distribution.
The scattered plot in Fig. 5.3 showing the distribution of adjacent random number pairs in R× R
allows one to detect statistical correlations

〈〈
ri ri+1

〉〉
of second order. The homogeneous distribution

of points in the square [0, 1]× [0, 1] indicates that such correlations do not exist in the present case.
We can support the graphical correlation check in Fig. 5.3 numerically by calculating the correlation
coefficients of order k.

C
(k)
(n1,n2,...,nk)

(
{ri}

)
=

〈〈
rn1 . . . rnk

〉〉√〈〈
r2
n1

〉〉
. . .
〈〈
r2
nk

〉〉 . (5.16)

The correlation coefficients may be viewed as normalized correlations. We have seen in (5.8) that
one can detect correlations or rather the lack thereof by verifying if the cumulants

〈〈
rn1 . . . rnk

〉〉
are

zero. However, these verifications are subject to statistical errors that not only depend on the size

March 28, 2000 Preliminary version

5.2: Random Number Generators 85

r1

r2

Figure 5.3: Scattered plot of 10000 adjacent random number pairs generated as in Fig. 5.2.

C
(2)
(0,0)

(
{ri}

)
= 1.00000 = 1 , C

(4)
(0,0,0,0)

(
{ri}

)
= -1.19844 ∼ −6

5 ,

C
(2)
(0,1)

(
{ri}

)
= 0.01352 ∼ 0 , C

(4)
(0,0,0,1)

(
{ri}

)
= -0.02488 ∼ 0 ,

C
(3)
(0,0,0,)

(
{ri}

)
= -0.00099 ∼ 0 , C

(4)
(0,0,1,1)

(
{ri}

)
= 0.00658 ∼ 0 ,

C
(3)
(0,0,1)

(
{ri}

)
= -0.01335 ∼ 0 , C

(4)
(0,0,1,2)

(
{ri}

)
= 0.00695 ∼ 0 ,

C
(3)
(0,1,2)

(
{ri}

)
= -0.00670 ∼ 0 , C

(4)
(0,1,2,3)

(
{ri}

)
= -0.00674 ∼ 0 .

Table 5.1: The table lists the correlation coefficients of adjacent random numbers in a sequence {ri}
of 10000 elements generated by a linear congruential generator of equation (5.15) with m = 231,
a = 65539, c = 0, and r0 = 1.

of the ensemble of random number sequences, but are also influenced by the range of the random
number domain. A scaling of the random numbers by a factor s would result in a scaling of the
above cumulant by a factor sk. Hence, to achieve comparable results one divides the cumulant
by the square root of the variance of each random number. One normalizes the random number
domain according to the definition (5.16).
Table 5.2.1 lists all correlation coefficients up to fourth order for adjacent random numbers of a
sequence of 10000 elements. The results are compared with the ideal values of an ideal random
number sequence.
All simulated correlations coefficients of two or more different sequences are roughly zero, thus
satisfying the criterium in equation (5.8). To prove true randomness one would have to proceed
this way and determine all correlation coefficients of all orders. Since this is an impossible endeavor
one truncates the test at some low order. This, however, can be dangerous.
Figure 5.4 presents random number triplets as Figure 5.3 presented pairs of random numbers. At
first sight the left scatter plot displays a perfectly homogeneous distribution indicating perfect
randomness. However, rotating the coordinate system slightly reveals a different picture as shown
on the right side of Fig. 5.4. We can discern that the random number triplets gather on 15 planes.

Preliminary version March 28, 2000

86 Random Numbers

Figure 5.4: The left and right scatter plots display the same three-dimensional distribution of 10000
adjacent random number triplets as generated by the linear congruential generator used in Fig. 5.2.
The right results from the left plot through rotation around the ri+2-axis.

Hence, the numbers in these triplets are not completely independent of each other and, therefore,
not truely random.
The lack of randomness may or may not have influenced the result of a calculation. Imagine
sampling a three-dimenional density function using the pseudo random sampling points as displayed
in Figure 5.4. All features of the density function that lie inbetween those 15 planes would go
undetected. However, sampling a two-dimensional function with the same random numbers as
displayed in Figure 5.3 would be sufficient.
Unfortunately, it is impossible to give general guidelines for the quality and feasibility of random
number generators.

5.2.2 Gaussian Distribution

Random numbers with a homogeneous distribution are fairly easy to create, but for our purposes,
the simulation of random processes, random numbers with a Gaussian distribution are more im-
portant. Remember that the source of randomness in the stochastic equation (5.2) is the random
variable dω which exhibits a Gaussian and not a homogeneous distribution. Hence, we have to
introduce techniques to convert a random number sequence with homogeneous distribution into a
sequence with a different probability distribution, e.g., a Gaussian distribution.
Given a real valued random number sequence {ri} with a normalized, uniform probability distri-
bution in the interval [0, 1]

p(r) dr =

{
dr for 0 ≤ r ≤ 1
0 otherwise

(5.17)

one can create a new random number sequence {si} by mapping a strictly monotonous function
f(r) onto the sequence {ri}. The probability distribution of the new sequence {si} = {f(ri)} is

March 28, 2000 Preliminary version

5.2: Random Number Generators 87

Figure 5.5: The transformation f of homogeneous random numbers ri into random numbers si
with a probability distribution p(s).

then given by

p(s) ds = p(r)
∣∣∣∣∂r∂s

∣∣∣∣ ds . (5.18)

To find the function f(r) for a desired probability distribution p(s) one integrates both sides of
equation (5.18) over the interval s ∈ [f(0), f(1)] or s ∈ [f(1), f(0)] depending on f(r) being a
montonously increasing (i.e., ∂f(r)

∂r > 0) or decreasing (i.e., ∂f(r)
∂r < 0) function. We assume here

for simplicity ∂f(r)
∂r > 0. One obtains∫ s

f(0)
ds̃ p(s̃) =

∫ s

f(0)
ds̃ p(r)

∂r

∂s̃

=
∫ s

f(0)
ds̃

∂f (−1)(s̃)
∂s̃

= f (−1)(s̃)
∣∣∣s
f(0)

and, consequently,

f (−1)(s) =
∫ s

f(0)
ds̃ p(s̃) . (5.19)

The inverse of equation (5.19) renders f(r). The above calculation is depicted in Fig. 5.5. The
homogeneous distribution of r on the interval [0, 1] is placed on the vertial axes on the left. Each
(infinitesimal) bin dr is mapped by the function f(r) defined in (5.19) onto the horizontal s-axes.
Depending on the slope of f(r) the width of the bins on the s-axes increases or decreases. However,
the probability for each bin depicted by the area of the rectangles is conserved resulting in a new
probability density distribution p(s).
The method described here fails if one cannot find a closed or at least numerically feasable form
for f(r). Unfortunately, this is the case for the Gaussian distribution. Fortunately one can resort
to a similar, two-dimensional approach.

Preliminary version March 28, 2000

88 Brownian Dynamics

Equation (5.18) reads in a multi-dimensional case

p(s1, s2, . . .) ds1 ds2 . . . = p(r1, r2, . . .)
∣∣∣∣∂(r1, r2, . . .)
∂(s1, s2, . . .)

∣∣∣∣ ds1 ds2 . . . , (5.20)

where |∂()/∂()| is the Jacobian determinant. One obtains Gaussian-distributed random numbers
through the following algorithm. One first generates two random numbers r1 and r2 uniformly
distributed in the interval [0, 1]. The functions

s1 =
√
−2 ln r1 sin[2π r2]

s2 =
√
−2 ln r1 cos[2π r2] (5.21)

render then two Gaussian-distributed numbers s1 and s2. To verify this claim, one notes that the
inverse of (5.21) is

r1 = exp
[
−1

2
(
s2

1 + s2
2

)]
,

r2 =
1

2π
arctan

s1

s2
. (5.22)

Applying (6.57) one obtains

p(s1, s2) ds1 ds2 = p(r1, r2)

∣∣∣∣∣ ∂r1/∂s1 ∂r1/∂s2

∂r2/∂s1 ∂r2/∂s2

∣∣∣∣∣ ds1 ds2

= p(r1, r2)

∣∣∣∣∣ −s1 e
− 1

2
(s21+s22) −s2 e

− 1
2

(s21+s22)

1
2π

s2
s21+s22

− 1
2π

s1
s21+s22

∣∣∣∣∣ ds1 ds2

=
1

2π

(
s2

1

s2
1 + s2

2

+
s2

2

s2
1 + s2

2

)
e−

1
2

(s21+s22) ds1 ds2

=
(

1√
2π

e−s
2
1/2 ds1

)(
1√
2π

e−s
2
2/2 ds2

)
. (5.23)

This shows that s1 and s2 are independent Gaussian distributed numbers. Hence, one can employ
(5.21) to produce Gaussian random numbers, actually, two at a time.
Figure 5.6 displays a sequence of 1000 Gaussian random numbers generated with the algorithm
outlined above. The Gaussian random numbers around 0 with a standard deviation of 1 are
displayed by points starting in the front and proceeding to the rear. To verify the distribution, a
bin count with a bin width of 0.3 is displayed in the background. The bar hights represent the
normalized probability density in each bin. The line depicts the ideal theoretical distribution as in
(5.23).

5.3 Monte Carlo integration

The most prominent application of random numbers is the Monto Carlo integration method. The
concept is very simple. To evaluate an integral∫

Ω
dx f(x) (5.24)

March 28, 2000 Preliminary version

5.3: Monte Carlo integration 89

Figure 5.6: Gaussian random number sequence around 0 with a standard deviation of 1.

with the Monto Carlo method one samples the function f(x) at M homogeneously distributed
random points rk in the integration domain Ω. The average of the function values at these random
points times the volume |Ω| of the integration domain Ω can be taken as an estimate for the integral
(5.24), as shown in Figure 5.7∫

Ω
dx f(x) =

|Ω|
M

M∑
k=1

f(rk) + O
(

1√
M

)
. (5.25)

The more function values f(rk) are taken into account the more accurate the Monte Carlo method
becomes. The average 〈f(x)〉 exhibits a statistical errors proportional to 1/

√
M . Thus the error of

the numerical integration result is of the order of O(1/
√
M).

The integration by random sampling seems rather inaccurate at first. Systematic integration meth-
ods like the trapezoidal rule (see right Figure 5.7) appear more precise and faster. This is true in
many, but not all cases.
The trapezoidal rule approximates a function f(x) linearly. An approximation over intervals of
length h between sampling points is thus correct up to the order of f

′′
(x)h2. In one dimension

the length of the integration step h is given by the number of sampling points M and the length
of the integration domain Ω according to h = |Ω|/(M + 1). Hence, the trapezoidal rule is an
approximation up to the order of O(1/M2). Other systematic integration methods exhibit errors
of similar polynomial order. Obviously, systematic numerical integration techniques are superior to
the Monte Carlo method introduced above. However, the rating is different for integrals on higher
dimensional domains.
Consider an integration domain of n-dimensions. A systematic sampling would be done over an

Preliminary version March 28, 2000

90 Brownian Dynamics

f (x)

xh 2h 3h

Figure 5.7: Examples for the numerical integration of f(x) according to the Monte Carlo method
(left) and the trapezoidal rule (right).

n-dimensional grid. A total of M sampling points would result in n
√
M sampling points in each grid

dimension. The trapezoidal rule would, thus, be correct up to the order of O(M−2/n). A random
sampling, however, is not affected by dimensional properties of the sampling domain. The Monte
Carlo precision remains in the order of O(M−1/2). Hence, we see that the Monte Carlo method
becomes feasible for (n = 4)-dimensions and that it is superior for high-dimensional integration
domains Ω.
One can modify the straight forward Monte Carlo integration method (5.25). Suppose one uses
random points r̃k with a normalized probability distribution p(x) in Ω. Instead of evaluating
integral (5.25) with a homogeneous distribution of 1/|Ω| one would approximate∫

Ω
dx f(x) p(x) ∼ 1

M

M∑
k=1

f(r̃k) . (5.26)

Modification (5.26) is appropriate if a factor of the integrand happens to be a probability density
distribution, for which one can generate random numbers r̃k. This will be the case in the next
chapter where we will show how the Monte Carlo integration method (5.26) is incorporated in the
simulation of stochastic processes.

March 28, 2000 Preliminary version

