
8. Extension of Kohonen’s Model 118

8. EXTENSION OF KOHONEN’S MODEL

In the preceding chapters, motivated by the important role of topology-
conserving maps in the brain, we considered a stochastic learning algorithm
which, based only on a random sequence of sensory signals, generates such
maps on a lattice of formal neurons. The aim of these maps was to rep-
resent the neighborhood relationships between the input signals in a two-
dimensional, nonlinear projection as faithfully as possible.

8.1 Motor Maps

The brain cannot limit itself, however, to the representation of sensory in-
put signals alone, but must also solve the complementary task of sending
appropriate signals to the muscle system to react to the sensory input. The
brain regions that are responsible for these tasks, such as the motor cortex
and the superior colliculus, appear in many cases to be organized in a way
similar to the sensory areas, i.e., as maps that react to localized excitation
by triggering a movement. This movement varies in a regular way with the
focus of the excitation in the layer. Therefore, the layer can be considered as
a motor map in which movement commands are mapped to two-dimensional
locations of excitation (Lemon 1988).
By way of an abstraction that can also serve as a model for such motor
maps, we consider in this chapter topology-conserving maps in which we
additionally allow, as an extension of Kohonen’s original learning algorithm,
the storage of an output specific for each lattice point (Ritter and Schulten,
1986b, 1987, 1988). As we will see, the formation of a map then corresponds
to the learning of a control task. The type of the output value can be, for
example, a scalar, a vector, or a linear operator, i.e., a tensor.
Several neural mechanisms for the storage of such outputs can be imagined.
The information could be stored by a suitable selection of connections to sub-
sequent motor neurons. Linear mappings could be realized by “de-inhibition”
of local neuron groups. Furthermore, local “assemblies” of neurons also could

8. Extension of Kohonen’s Model 119

act as local associative memories for the storage of more complex informa-
tion. Such a neural network would form an active storage medium that reacts
to a local activation caused by an input signal with the response stored at
the site of excitation. Stored data are arranged in such a way that similar
data are stored in spatial proximity to each other. A thoroughly investi-
gated example of such organization, involving the case of a vectorial output
quantity, is the motor map in the so-called superior colliculus, a mounded,
multi-layered neuron sheet in the upper region of the brain stem (Sparks and
Nelson 1987). In this sheet there are neurons which, when excited, trigger
the execution of rapid eye movements (saccades). Usually, such excitation is
caused by neurons located in the more superficial layers that process sensory
signals. Through electrical stimulations by inserted electrodes, this excita-
tion can also be induced artificially. Such experiments demonstrate that the
resulting change of the vector of view direction varies in a regular fashion
with the location of excitation in the layer. In Chapter 9 we will discuss
more closely this example of a motor map and the control of saccades.
In much the same way as maps are learned or are adaptively modifiable, the
assignment of output values to lattice sites must be plastic. Consequently,
a learning algorithm is also required for the output values. In the following
chapter we will show that with an appropriate algorithm the learning of the
output values can benefit substantially from the neighborhood-, and hence,
continuity-preserving spatial arrangement of the values within a map.
In the following we again onsider a space V of input signals and a lattice A
of formal neurons. As in Chapter 4, φw denotes the mapping of V onto A
that is specified by the synaptic strengths. In addition, for maps intended
to be used for motor control tasks, an output value w(out)

r is assigned to each
neuron r. (Here, as before, w(out)

r can be a vectorial or tensorial value). Since
the synaptic strengths, so far denoted by w, determine the correspondence
between input signals and neurons, we will denote them in this chapter by
w(in) so that they will not be confused with the recently introduced output
values w(out).
Together, all w(out)

r form a covering of the lattice with values in a second
space U and extend the mapping φw from V onto the lattice to a mapping
Φ of V into the space U , given by

Φ : V 7→ U, v 7→ Φ(v) := w
(out)
φw(v)

. (8.1)

Fig. 8.1 offers an illustration of this situation. In accordance with the motor
maps formerly mentioned, we want to investigate mappings defined in this

8. Extension of Kohonen’s Model 120

Abb. 8.1: The extended model with the inclusion of output values. Each
formal neuron s of the neuron layer (lattice A) has, in addition to its pre-existing
weight vector win

s , a vector wout
s of output values assigned to it. A learning step

now requires, with each presentation of an input vector v, the specification of
a corresponding output value u. The adaptation of the output values wout

s is
completely analogous to the scheme used for the “input side:” all neurons in
the vicinity of the particular neuron selected by the input value shift their output
vectors towards the specified output value u.

way, especially with regards to motor control tasks. In this case v represents
the present state of the system which is to be controlled, and wout

r determines
the required control action. This control action can specify a value for a
displacement, a force, or a torque (Chapters 8, 9, and 13), or it can specify a
linear mapping that determines these values in terms of the intended target
state of the motion (Chapters 11 and 12).

8. Extension of Kohonen’s Model 121

8.2 Supervised and Unsupervised Learning

We begin with the simplest case, namely, that of a control task for which a
sequence of correct input-output pairs (v, u) are available. Here, v denotes
the system state and u the correct control action associated with that state
(Ritter and Schulten 1987). This situation corresponds to supervised learning
and requires the opportunity for observing the correct control, provided by a
“teacher” for a sufficiently extended period of time. The synaptic strengths
wr and the output values w(out)

r are initialized with values chosen without
any a priori information. They can be initialized, for example, with random
values. The purpose of the learning process is a gradual improvement of the
initial mapping Φ with the goal of an increasingly better imitation of the
teacher’s actions by Φ. This can be realized by the following algorithm:

1. Record the next control action (v, u).

2. Determine the lattice site s := φw(v) whose input weight vector w(in)
s

best matches the present system state v.

3. Perform a learning step

∆w(in)
r = w(in)

r + εhrs(v −w(in)
r)

for the input weight vectors w(in)
r .

4. Perform a learning step

∆w(out)
r = w(out)

r + ε′h′rs(u− w(out)
r)

for the set of output values w(out)
r and return to step 1.

Steps 1–3 describe Kohonen’s original algorithm for the formation of a topol-
ogy conserving map on A. They are depicted in the front part of Fig. 8.1
where the different sizes and shades of the neurons in the vicinity of s indicate
the shape and extent of the excitation zone as determined by the function
hrs. The new step, step 4, changes the output values w(out)

r assigned across A.
This change is indicated in the rear part of Fig. 8.1. It occurs in an analogous
manner to that of the learning step for the synaptic strengths w(in)

r , possibly
with different learning step widths ε′ and a different interaction function h′rs
as demanded by each situation. (This symmetric treatment of input values

8. Extension of Kohonen’s Model 122

v and output values u can be mathematically interpreted in such a way that
now the algorithm creates a topology-conserving mapping of a subset Γ of
the product space V ⊗ U onto A. Here the subset Γ is just the set of the
input-output values (v, u) provided by the teacher; i.e., it is the graph of the
input-output relation that correctly describes the control law.)
The proposed process creates, in the course of the learning phase, a look-up
table for the function Φ (see ((8.1)). The particular advantage of this process
lies in the high adaptability of the table structure. The correspondence be-
tween table entries and input values is not rigidly specified from the outset,
but instead develops in the course of the learning phase. This occurs in such
a way that the table entries become distributed (w(in)

r , w(out)
r) according to

the required density of the control actions in the space V ⊗ U . Regions in
V ⊗U , from which control actions are frequently needed, are assigned a cor-
respondingly higher number of table entries, resulting in a higher resolution
of the input-output relation in these areas. Rarely or never used table entries
are “redevoted.” This facilitates a very economic use of the available storage
space.
Due to the topology-conserving character of the assignment between value
pairs and storage space, neighboring memory locations in the lattice A are
usually assigned similar value pairs. In the case of a continuous relationship
between input and output values, adjacent memory locations must, therefore,
learn similar output values w(out)

r . Spreading the effect of learning steps for
the output values w(out)

r by virtue of the interaction function h′rs into the
vicinity of each selected storage location r represents a rudimentary form of
generalization which accelerates the course of learning. If the function hrs

is given a long range at the beginning of the learning phase, then a large
subset of all storage locations participates in each learning step, even if the
learning steps for most of them are only approximately “correct.” By this,
a complete table, representing a good approximation to the correct input-
output relation, can already develop after significantly fewer learning steps
than there are storage locations. By gradually reducing the range of the
function hrs in the course of the learning phase the participation of storage
locations at each learning step becomes increasingly more selective, so that
eventually even fine details of the input-output relation can be learned.
In many cases, however, there is no teacher available, and the correct con-
trol actions must be found by the learning algorithm itself (unsupervised
learning). The only source of information available in this case is a “reward
function,” which specifies at a given moment how well the control has mas-

8. Extension of Kohonen’s Model 123

tered the given task. To execute the above algorithm the system must now
create, at each learning step, the component u that in the previous case was
delivered by the teacher. In the absence of any further information this re-
quires a stochastic search in the space U of the available values, with the aim
to maximize the “reward” received at each step.

8.3 The “Pole-Balancing Problem”

To demonstrate the learning algorithm, defined in the previous section by
steps 1–4, we consider as a prototypical problem the task of balancing a ver-
tical pole in a gravitational field by appropriate movements of the base of the
pole. This is a favorite problem for the investigation of learning algorithms,
and it has already been studied in connection with previous neural network
approaches (Barto and Sutton 1983). As in the present case, these studies
were directed at learning the connection between movement states of the pole
and the required control forces in the form of a look-up table. In contrast
to the approach presented here, the goal of the former studies was not to
obtain an optimal organization of this table by an adaptive distribution of
its entries over the state space. Instead, the connection between the table
entries and states was initially given in a rigid way, and the focus of interest
was the investigation of learning rules which gradually set the table entries
using as the only criterion of success the absence of a signal indicating that
the pole has fallen over.

8. Extension of Kohonen’s Model 124

Abb. 8.2: Model of the pole in the simulation. The bottom end of the pole can
slide without friction along a horizontal line. By an appropriate force f the pole
is to be balanced in the position θ = 00. Units are shown such that the mass at
the top end of the pole, the pole length, and the acceleration due to gravity all
have values of unity. The mass at the bottom end is m. The shaft is assumed
to be massless.

The motion of the pole is imitated by a computer simulation. A massless rod
of unit length serves as the pole, with point masses of values m and unity
at its bottom and top end, respectively. The motion of the pole is restricted
to a vertical plane, and the bottom of the pole is confined to slide along the
x-axis. The pole and its two degrees of freedom are presented in Fig. 8.2.
For a gravitational field directed downward with unit strength, the equation
of motion of the pole is

(m+ sin2 θ)θ̈ +
1

2
θ̇2 sin(2θ)− (m+ 1) sin θ = −f cos θ. (8.2)

Here, θ is the pole angle measured clockwise against the vertical, f is the
horizontal force acting at the bottom end. The motion of the pole is simulated
by the Runge-Kutta method using a time step of 0.1 in the units of Eq. (8.2).

8. Extension of Kohonen’s Model 125

8.4 Supervised Pole-Balancing

The first simulation demonstrates supervised learning. The Adoptation of
a new movement often requires an adaptation period composed of partial,
goal-oriented movements which must come together before the total course
can be executed fluently and automatically. This indicates that in this phase
a higher brain region might play the role of a teacher for a subordinate
neural structure until the latter can execute the movement independently
and without requiring conscious attention.

Abb. 8.3: Initial state of the simulation. For each lattice point r the stored out-
put force w(out)

r is recorded along the vertical axis above the point (w (in)

r1 , w (in)

r2)
of the two-dimensional space V of input signals. (w (in)

r1 , w (in)

r2) represents a
pair of successive inclinations of the pole, at the occurrence of which the lat-
tice delivers w (out)

r as a control force. In the beginning all forces are chosen to
be zero, and to each lattice site r a point, randomly selected from the square
[−30◦, 30◦]× [−30◦, 30◦] ⊂ V , is assigned.

In the present simulation the neural network was chosen to be a lattice A
of 25× 25 formal neurons. Each formal neuron r is characterized by a two-
dimensional vector w(in)

r and an output value w(out)
r . The vectors w(in)

r de-
termine the correspondence between neurons and motion states of the pole,

8. Extension of Kohonen’s Model 126

Abb. 8.4: After 200 learning steps, most neurons have become asssociated with
input values that are concentrated in a narrow region along the diagonal w(in)

1 =
w(in)

2 . In the vicinity of (00, 00) the learned output values already correspond
quite well to the actions of the teacher.

and the output values w(out)
r are the forces to be applied. In this example

the teacher has to deliver, for each motion state (θ, θ̇), a force fL(θ, θ̇) that
ensures the intended pole balance. In the simulation this force was chosen as

fL(θ, θ̇) = 5 sin θ + θ̇. (8.3)

The pole was controlled by choosing a force fn at equidistant time instants
tn = n∆t, ∆t = 0.3 and applying this force at the bottom of the pole until
time tn+1. At each time instant tn the learning steps 1-4 were executed for

(v, u) = (v1, v2, u) :=
(
θ(tn), θ(tn−1), fL(θ(tn), θ̇(tn))

)
. (8.4)

The force fn for the next time step was determined according to

fn = α(tn)w
(out)
φw(v) + (1− α(tn))fL(θ(tn), θ̇(tn)). (8.5)

Here w(out)

φw(v) is the force proposed by A at the time tn, and α(t) is a function
that increases gradually from α = 0 to α = 1. Consequently, the control is

8. Extension of Kohonen’s Model 127

initially done exclusively by the teacher, but it is gradually taken over by A
until eventually at α = 1, the neural net has completely replaced the teacher.
At the end of the learning phase, the map has learned to imitate the behavior
of the teacher. One may object that by this procedure no new information
has been gained because the solution of the balancing problem was already
provided by the teacher. Nonetheless, this objection denies that an essential
result of the learning process lies in the coding of the information in a new
way, namely, as an optimized look-up table. The latter obviates recalculation
of the correct control actions previously required at each time step; now, only
a simple table look-up is required. In all cases where a recalculation is more
wasteful or slower than a simple table look-up, a gain in efficiency will result.

Abb. 8.5: The stage reached after 1000 learning steps at the end of the sim-
ulation. All neurons have attached themselves to the part of the graph which
is most important for the pole balancing, in accordance with the input-output
relation delivered by the teacher. Since w (in)

1 , w (in)

2 stands for sequential pole
orientations, points with a small difference w (in)

1 − w (in)

2 correspond to most of
the pole states. The region of the represented differences is broader in the vicin-
ity of the point (00, 00) since near this point higher velocities occur on average
than at the turning points. Also, the resolution is particularly high near (00, 00)
because forces are requested most frequently for these pole states.

8. Extension of Kohonen’s Model 128

Abb. 8.6: This graph depicts, in the w (in)

1 −w (in)

2 -plane, the mapping between
lattice locations and those angle pairs w (in)

1 ,w (in)

2 which are important for the
balancing process.

The other data used in our simulations were σ(n) = 6 · (0.5)n/nf , hrs = h′rs =
exp[−‖r−s‖2/σ(n)2] , ε(n) = ε′(n) = 0.5 · (0.04)n/nf , nf = 1000 and m = 1.
The learning phase consisted of a sequence of trials. At the beginning of
each trial the pole was released from rest at an initial, randomly chosen
angle θ ∈ [−30◦, 30◦]. The pole was then balanced by the forces fn either
until the pole fell over, (Criterion: |θ(tn)| > 60◦), or until 100 time steps had
passed. Subsequently, the simulation was continued with a new trial until a
total of nf = 1000 time steps were completed.
Figures 8.3–8.5 show the development of the mapping Φ in the course of the
simulation. Φ is displayed as a mesh surface in the w(in)

1 -w(in)

2 -w(out)-space.
At the beginning random pair values w(in)

1 -w(in)

2 from the subset [−300, 300]×
[−300, 300], together with a force w(out)

r = 0, were assigned to each neuron r
(Fig. 8.3).
After 100 time steps most of the neurons have become associated with angle
pairs in the vicinity of the diagonal w(in)

1 = w(in)

2 and have roughly learned
the corresponding forces (Fig. 8.4). Finally, after 1000 time steps, the re-
sult depicted in Fig. 8.5 is obtained. Now all neurons are associated with a

8. Extension of Kohonen’s Model 129

Abb. 8.7: Balancing performance after 200 (light curves) and after 1000 learning
steps (heavy curves). The curves in the top diagram show the time course of the
pole angle θ after 200 learning steps. The pole was released from angles of 200

and 300, after 200 and 1000 learning steps, respectively. The bottom diagram
displays the time course of the force that was applied by A.

narrow region near the diagonal w(in)

1 = w(in)

2 . This region represents, under
the chosen coding of each state by two sequential angles, those states of the
pole that are particularly important for the balancing problem (Fig. 8.6).
The representation by neurons is especially dense in the vicinity of (0◦, 0◦),
because for these values forces are most frequently requested during the bal-
ancing. Figure 8.7 displays the learned balancing behavior after 200 steps
(light curves) and after 1000 steps (heavy curves). The top diagram depicts
the time course of the pole angle θ(t), which is monitored after release of
the pole from rest and using the control furnished by A in the absence of

8. Extension of Kohonen’s Model 130

a teacher, i.e., for α = 1. After 200 learning steps an initial angle of 20◦

away from vertical is handled well; at the end of the simulation even a trial
starting with θ(0) = 30◦ succeeds. The bottom diagram shows the response
of A for both cases.

8.5 Unsupervised Pole-Balancing

In the following, second simulation, the balancing of the pole is learned with-
out a teacher by means of a “reward function” (unsupervised learning). In
contrast to the teacher the reward function no longer directly specifies a suit-
able force, but only indicates “how well” the resulting state complies with
the given task. An appropriate reward function for the balancing task is,
e.g.,

R(θ) = −θ2. (8.6)

This function “rewards” vertical (θ ≈ 0◦) orientations of the pole. As before,
the lattice site s is selected by the pole motion at each time step. Since the
teacher is no longer present, a force fn for a particular step is now determined
by the selected lattice site s only. The learning goal is to find a force which
yields a maximal increase of the reward function R towards the end of each
time step. In the absence of any further information this can be accomplished
in the most general way by a stochastic search process.1

Every time that s is chosen (step 2), instead of the most recently found
output value w(out)

s for fn, the modified value

fn := w(out)
s + as · η (8.7)

is used. Here η is a Gaussian random variable with zero mean and unit
variance, and as > 0 is a new parameter that determines the mean value
of the search step for lattice location s. The adaptation steps 3 and 4 are
executed with u = fn only when, at the end of a time step, the increase
∆R of the reward function that has been caused by fn exceeds the averaged

1 More efficient searching methods can be applied when certain types of additional
information are available. For example, one could use the differentiability of R and
could replace the stochastic search method by the gradient descent method, which
avoids searching steps in the “wrong” direction. Because we are less interested in
variations of the detailed design for each application and would rather focus on a
representation of the method’s general structure, we will stay with the generally
applicable stochastic search method.

8. Extension of Kohonen’s Model 131

increase bs gained so far at lattice site s. The consequence of this is that A
learns only from “actions” which lead to an improved performance, and thus
A continually improves itself.
The mean increase of the reward function bs, necessary in addition to as, has
to be updated after each selection of s by using the actual increase ∆R that
has been reached. This can be most simply accomplished by the instruction

bnews = bolds + γ(∆R− bolds). (8.8)

The effect of the latter procedure is a low-pass filtering and a corresponding
“smoothing” of the most recent updates of the reward function with a time
constant given by γ−1.
At the beginning the average search step width as should be sufficiently
large for each lattice location in order to rapidly find an approximately cor-
rect force. Each time an s is selected that has the opportunity to act, as

is diminished. Therefore, the number of search steps for each lattice site is
reduced as more experience is gained, and the stored output value can gradu-
ally converge. Because the neighboring lattice sites r 6= s are also involved in
every adaption step of s (steps 3 and 4), the corresponding ar are reduced in
the same way as the as. In analogy with steps 3 and 4, this can be achieved
by including the following additional step.

5. Adaptation rule for the search step widths:

anew
r = aold

r + ε′′h′′rs(a− aold
r).

8. Extension of Kohonen’s Model 132

Abb. 8.8: The association between pole motion states and control forces as it
has been learned after 3000 learning steps without a teacher by using the reward
function R (displayed as in Fig. 8.3-8.5). Again the states along the diagonal of
the w(in)

1 , w(in)

2 plane, i.e., with a small difference w(in)

1 − w(in)

2 , are represented
particularly well. For deviations from the vertical position the learned forces
increase more strongly than in the simulation presented in Fig. 8.5 and lead to
very rapid corrective adjustments of deviations from vertical.

Here a is equal for all steps and defines the threshold towards which the
search step widths should converge over long periods of time. If one intends
for w(out)

r to converge, one chooses a = 0. If one wishes a residual plasticity
to remain for the capability of later readaptation under slow changes, one
assigns a small corresponding positive value to a. The additional parameters
ε′′ and h′′rs (step 5) are varied analogously to ε and hrs, and ε′ and h′rs,
respectively.

8. Extension of Kohonen’s Model 133

Abb. 8.9: Pole-balance after 3000 learning steps using the reward function R.
The top diagram shows how the pole angle θ changes in time after the pole has
been released from a rest position θ = 40◦. The bottom diagram shows the
corresponding control force that was applied.

For the simulation we chose h′′rs = h′rs = hrs where hrs has the values of the
simulation in Section 8.4. σ(n) and ε(n) were chosen as in Section 8.4 but
with nf = 3000. Other quantities in the simulation were ε′ = 0.2, ε′′ = 0.005,
a = 0, γ = 0.05. At the beginning of the simulation all averaged search step
widths were set to ar = 1. The initial estimators br for the changes of the
reward function were set to zero.
Starting with the same initial state as for supervised learning (Fig. 8.3) and
with the parameters just given, the connection between pole motion states
and control forces w(out) evolved as depicted in Fig. 8.8 in the course of 3000
learning steps. Again the preponderance of values along the w(in)

1 −w
(in)

2 main
diagonal can be seen, particularly in the vicinity of (0◦, 0◦). The resulting
dependence of the control force on the pole positions evolves qualitatively
as before, but has a steeper slope at deviations from (0◦, 0◦), indicating a
very rapid correction of any deviations from vertical. This is demonstrated
in Fig. 8.9 where one can observe the time variation of the pole angle θ (top
diagram) and the learned forces f (bottom diagram) that occur after the

8. Extension of Kohonen’s Model 134

pole has been released from an initial angle of 40◦ from vertical.
Problems similar to the pole-balancing problem also arise in connection with
upright walking, rendering the pole-balancing solution interesting for biolog-
ical organisms as well as in robotics. Of presumably even higher interest, as
far as applications are concerned, is the control of arm motions, especially
under visual supervision. Chapters 10 and 11 are devoted to these issues. In
the next chapter, however, we will first consider an issue with a biological
background, namely the control of rapid eye movements that serve to center
a visual object on the retina and, thus, solve the task of “visual grasping.”
This latter task is taken up in Chapter 9 which then leads naturally into
issues in robotics.

