
6. Application to the “Traveling Salesman Problem” 92

6. APPLICATION TO THE “TRAVELING SALESMAN
PROBLEM”

The properties that have the most significant influence on the maps con-
structed by Kohonen’s algorithm are the dimensionality of the neural net-
work and the dimensionality and distribution of the input signals. The sim-
plest case arises for a one-dimensional net, i.e., a chain of neurons, and
one-dimensional input signals. As shown in Chapter 5, one encounters this
apparently quite unbiological case in the auditory cortex of mammals, where
approximately linearly arranged neurons are assigned to a frequency interval.
This situation is especially interesting also from a theoretical point of view,
because it admits a closed solution, yielding the dependence of the resultant
mapping on the probability density of the input signals. In this chapter, we
extend our discussion to the case of multidimensional input signals, but we
continue to assume a one-dimensional chain for the arrangement of the neu-
rons. An analytical solution for the stationary maps which are possible under
these circumstances can no longer be given. Instead, we will see that under
appropriate conditions the resulting maps can be interpreted as approximate
solutions of an interesting but analytically not tractable optimization prob-
lem, the “traveling salesman problem.”

6.1 Paths as One-Dimensional Maps

In the case of a chain of neurons there exists a fixed order among the neurons
given by their arrangement along the chain. Each neuron r carries a vector wr

marking a point in the space V of input signals. Hence, the corresponding
“map” of V is one-dimensional. Whenever V is of higher dimension than
the space of the lattice A, a substantial loss of information is inevitable,
and the topology of V can only be reproduced to a very limited degree
by a map V 7→ A. Nevertheless, such maps may contain important and
highly nontrivial information. We demonstrate this for the example of one-
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dimensional maps.
If one runs through the neurons of the chain A, the points wr run through
a corresponding sequence of stations in the space V , which can be thought
of as a path. This path is the image of the neuron chain under the mapping
r 7→ wr. From this point of view, Kohonen’s algorithm for the formation of
a one-dimensional map appears as a procedure for the stepwise optimization
of a path in the space V (Angeniol et al. 1988). Initially, the path visits N
randomly distributed stations. Each input signal v ∈ V chooses that station
ws of the path which is closest to v and deforms the path a bit toward v
by shifting all stations corresponding to neurons in the neighborhood of s
towards v as well. Thus, a path gradually develops, whose course favors
regions from which input signals v are frequently chosen. Hence, by spec-
ification of an appropriate probability density P (v), one can influence how
important the presence of the path is in the individual regions of V . Since
neurons neighboring on the chain become assigned to points wr adjacent in
the space V , the resulting path tends to be as short as possible. Hence, one-
dimensional topology-conserving maps (approximately) solve an interesting
optimization problem, that is, to find the shortest possible path, where P (v)
plays the role of a position-dependent “utility function” (cf. Angeniol et al.
1988).

6.2 The Model for a Discrete Stimulus Distribution

In this section we supplement the very qualitative remarks of the preceding
section by a more precise, mathematical formulation. This is simplified if
we assume a discrete probability distribution P (v) instead of a continuous
one. In this case, the input signal v can only take values from a discrete set
{q1,q2, . . . ,qL}. Denoting by pi the probability that v takes the value qi
(
∑
i pi = 1), we see that P (v) is of the form

P (v) =
L∑
i=1

piδ(v − qi), qi ∈ V, (6.1)

where δ(.) denotes the “Dirac delta function” or “unit point measure” and
represents a probability density concentrated entirely at the origin. In the
context of the path optimization problem described above, the qi, i =
1, 2, . . . , L, designate the location L of specified positions where the probabil-
ity function is entirely concentrated, and through which the path is supposed
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to pass. The pi enable one to vary the relative importance of the positions.
Taking the discrete probability density (6.1), we can drop the assumption of
a one-dimensional neuron chain for the following derivation and temporarily
admit an arbitrary topology of the neural network, without introducing ad-
ditional complications. We now ask for the expectation value E(∆wr|w′) for
the change ∆wr := wr − w′r of the synaptic strengths of neuron r under a
single learning step. The notation E(∆wr|w′) indicates that the expectation
value is conditional, i.e., it depends on the state w′ of the neural network
before the learning step. In analogy to Eq. (70), E(∆wr|w′) is given by

E(∆wr|w′) = ε
∫
hrφw′ (v)(v −w′r)P (v) dv

= ε
∑
s

hrs

∫
Fs(w′)

(v −w′r)P (v) dv. (6.2)

Here, Fs(w) is the set of all v ∈ V leading to the selection of “neuron” s,
i.e.,

Fs(w) =
{
v ∈ V

∣∣∣ ‖v −ws‖ ≤ ‖v −wr‖ ∀r ∈ A
}
. (6.3)

Since we will encounter the set Fs(w) (called “indicator function” in prob-
ability theory) very often throughout the rest of this book, let us give a
further explanation of (6.3): Fs(w) entails the sub-volume of the space V ,
whose center of gravity is given by ws, enclosing all points of V lying closer to
ws than to any other wr, r 6= s. With regard to the biological interpretation
of Kohonen’s model, Fs(w) thus plays the role of the set of all input patterns
exciting the “neuron” s most strongly and, hence, can be interpreted as the
“receptive field” of this neuron.
For the discrete probability distribution (6.1), expression (6.2) simplifies to

E(∆wr|w) = ε
∑
s

hrs

∑
qi∈Fs(w)

pi(qi −wr). (6.4)

The right-hand side (RHS) can be expressed as the gradient of a “potential
function”

E(∆wr|w) = −ε∇wrV (w)

where V (w) is given by 1

V (w) =
1

2

∑
rs

hrs

∑
qi∈Fs(w)

pi(qi −wr)
2. (6.5)

1 For a continuous probability density, a potential cannot be derived in this manner
because of the dependence of (6.2) on the regions of integration, Fr(w).
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According to (6.4), a single learning step on the average leads to a decrease

E(∆V |w) = −ε
∑
r

‖∇wrV ‖2 (6.6)

of V (w). However, an individual learning step can also lead to an increase
in V (w). Hence, as in Monte-Carlo annealing (Kirkpatrick et al. 1983, Kirk-
patrick 1984), for ε > 0 there is some possibility of escaping from local
minima. However, for this to happen, the RHS of (6.6) must be comparable
to the depth of the minimum. Otherwise, escaping the minimum requires the
joint action of several steps. But the change in the potential for k steps tends
approximately to k ·E(∆V |w), i.e., to a strongly negative value. Therefore,
the chance of leaving the minimum by the joint action of several steps is
small. This indicates that the learning step size ε is qualitatively analogous
to the temperature in Monte-Carlo annealing. In particular, in the limit
ε→ 0, a deterministic trajectory in the potential V (w) results.
For small ε, the stationary states correspond to the stationary points of
V (w). If N ≥ L, then V (w) assumes particulary small values if one sets
wr ≈ qi(r), where i(r) is an assignment of lattice sites r to positions qi with
the property that lattice sites r, s for which hrs has large values, are assigned
to positions qi(r), qi(s) that are as close as possible in V . The minimization
of V (w) can thus be viewed as the mathematical formalization of seeking a
mapping from the positions qi to the lattice A such that the neighborhood
relations in the image on A (being defined by the function hrs: the larger
hrs, the closer r, s) reproduce the corresponding neighborhood relations of the
qi ∈ V as faithfully as possible. The success of this minimization, and hence
the “quality” of the obtained mapping, depends to a considerable degree on
the form of the potential surface V (w) and on the possible presence of local
minima corresponding to “more poorly arranged” maps.
Now, V (w) is differentiable for all configurations w in which none of the qi
happens to be on the boundary ∂Fs of one of the regions Fs(w), and in this
case one has

∂2V

∂wrm∂wsn

= δrsδmnhrs

∑
qi∈Fs(w)

pi ≥ 0. (6.7)

At those values w for which one of the qi lies on the border between two
regions Fr and Fs, one has ‖qi −wr‖ = ‖qi −ws‖ and hence V is still con-
tinuous. However, the first derivative has a discontinuity at these positions,
and the potential surface above the state space has a “cusp.” Thus, in spite
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of (6.7), V as a rule possesses numerous local minima of finite width. This
situation is shown in Fig. 6.1, where the state space is represented schemat-
ically as a one-dimensional abscissa. For sufficiently small ε, the system can
become trapped in any one of the “valleys” and converges in the limit ε→ 0
to that state w̄ which corresponds to the local minimum of the “valley” that
the system has chosen.

Abb. 6.1: Behavior of the potential V (w) above the state space. This space
is actually N · d-dimensional, and its representation in the figure as a one-
dimensional abscissa is only schematic.

The number of minima depends on the range of hrs. For an infinite range,
i.e., hrs = h =const., V becomes

V (w) =
h

2

∑
i,r

pi(qi −wr)
2 (6.8)

with a single minimum at wr =
∑
i piqi. Decreasing the range, the cusps in

V emerge, and with decreasing range of hrs they become more prominent.
In this way, additional local minima enter the picture. Finally, in the limit
hrs = δrs, one has

V (w) =
1

2

∑
qi∈Fr(w)

pi(qi −wr)
2. (6.9)

For N ≥ L, every configuration wr = qi(r) for which i(r) is surjective is a
local minimum of V . For instance, for N = L this leads to N ! minima. For
N >> L, one has about LN such minima (aside from these, there are further
minima in which some of the wr are averages of several of the qi). Hence, for
short-range hrs, V possesses very many local minima, and the minimization
of V generally represents an extremely difficult problem.



6. Application to the “Traveling Salesman Problem” 97

Nevertheless, one can obtain a close to minimal path in this case by beginning
with a very long-range hrs, for which V has only a single minimum. If the hrs

are slowly adjusted toward their desired final values, additional local minima
successively emerge. For a sufficiently slow change, the system will fall into
those new minima which are created in the current valley. But these are
just the most promising candidates for an especially low final value. We can
thus appreciate the importance of a slow decrease of the range of hrs for the
construction of a good map.

6.3 Application to the
“Traveling Salesman Problem”

The occurrence of numerous local minima is a frequent characteristic of diffi-
cult optimization problems that belong to the class of so-called NP -complete
problems and is one of the causes for the difficulty of finding their solution
(although there are also NP -complete problems without local minima; see
for example Baum 1986). For a problem to be efficiently tractable, there
must exist a deterministic algorithm that generates a solution with a com-
putational effort that rises no faster asymptotically than polynomially with
the size of the problem. The set of all problems with this property forms
the class P of so-called deterministic Polynomial problems. The class NP
of Non-deterministic Polynomial problems arises if one weakens this require-
ment and just demands that the correctness of a solution is verifiable with
a computational effort growing at most as some polynomial with the size of
the problem. Evidently P ⊂ NP , but it is to be expected that NP contains
in addition problems that are considerably more “difficult” than those in P ,
since every problem in NP not contained in P must require a computational
effort for finding a solution which by definition grows faster asymptotically
than any power of the problem size (Garey and Johnson 1979). A subclass
of NP which is not contained in P is the class of so-called NP -complete
problems. NP -complete problems can be characterized as being at least as
hard as any other NP problem and not being solvable deterministically in
polynomial time. Today, many NP -complete problems are known, however,
it is not possible in any case to decide whether a deterministic solution proce-
dure may be discovered someday that would reduce the computational effort
to within polynomial bounds. (It has not been proven that NP 6= P , i.e.,
every NP -complete problem might be reducible to a “merely” P problem,
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although at present hardly anyone believes this).

Abb. 6.2: Simulation of the Markov-Process (70) for the TSP problem with
L = 30 cities chosen at random in the unit square. Top left to bottom right:
Initially chosen polygon tour, polygon tour obtained after 5,000, 7,000 and 10,000
learning steps, respectively. Simulation parameters: N = 100, ε = 0.8, σ(0) =
50, σ(10, 000) = 1.

The best-known example of an NP -complete problem, for which the compu-
tational effort rises exponentially with the problem size for every algorithm
known up to now, is the “Traveling Salesman Problem” (TSP). In this prob-
lem, one seeks the shortest possible tour passing through N given cities. By
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testing all 1
2
(N − 1)! possible tours, one can always find the shortest tour,

but the computational effort for this “direct” strategy, called “exhaustive
search,” rises exponentially with N and rapidly becomes unmanageable (for
N = 30 the required processing time, even using a Cray–XMP supercom-
puter, would exceed the age of the universe.) The exponential character of
this growth behavior persists for all improved algorithms discovered so far,
although one has been successful at postponing the increase to considerably
large values N . The root of this difficulty lies in the extremely irregular
structure of the function “path length” over the state space of the problem.
In particular, this function possesses numerous local minima, very many of
which lie only very little above the global minimum. In order to find at
least good approximations to the global minimum for such functions, several
methods have been developed (Lin and Kerninghan 1973; Kirkpatrick et al.
1983). They are mostly based on a stochastic sampling of the state space
in the direction of decreasing path lengths, together with some provision to
escape from unfavorable local minima.
The usefulness of models of the formation of neural projections for treating
the traveling salesman problem was first recognized by Durbin and Will-
shaw (1987). In the following, we demonstrate in a computer simulation
how an approximate solution can be obtained by means of Kohonen’s model
(see also Angeniol et al. 1988). To this end, we choose a closed chain of
“neurons” in the form of a ring. The vectors wr of the neurons are changed
iteratively according to equation (70), where in each step an element of the set
{q1,q2, . . . ,qL} of position vectors qi of the L cities is selected as the input
vector v. For each qi, the same selection probability pi = 1/L is chosen. The
Gaussian (68) was chosen for hrs, and the remaining simulation data were
N = 800, ε = 0.8, σ(t) = 50 ·0.02t/tmax and tmax = 10, 000 Markov steps. For
the simulation example, L = 30 cities, randomly located in a unit square,
were given. The initial values of theN vectors wr were assigned to the corners
of a regular 30-sided polygon. This results in the initial configuration shown
in the upper left part of Fig. 6.2. Each iteration causes a local deformation
of this path. Initially, as long as hrs is still long-range, each deformation
affects rather large path segments. In this way, first the rough outline of
the eventual path is formed (Fig. 6.2, upper right, 5000 iterations). As the
range of hrs gradually decreases, the deformations along the chain become
more localized and finer details of the path emerge (Fig. 6.2, lower left, 7000
iterations). Towards the end of the simulation hrs differs significantly from
zero only for immediate chain neighbors r, s. In this phase, the path takes
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on its final shape, passing through all of the given cities (Fig. 6.2, lower right,
10000 iterations). The path found after 10,000 steps has length 4.5888 and,
in this example, happened to be the optimal solution.2 However, this is not
guaranteed for every case. Depending on the initial conditions, a slightly
longer path may result, especially if the number of cities becomes larger.
We have seen in the previous chapters how even one-dimensional maps make
possible interesting applications. In the following chapters, we will extend
the discussion to two-dimensional maps. In Chapter 7, we will use them to
model the formation of a “somatotopic map” of the palm of the hand. An
extension of the algorithm to the task of learning of output values will then
open up applications to control problems and thus introduce the subject of
the Part III of this book.

2 Only a “naive” comparison of all possible paths would require a computational time
which exceeds the age of the universe. In fact, there are clever search techiques
which reduce the computational effort significantly. With those sophisticated search
techniques it has even been possible to find the shortest path through a nontrivial
distribution of 2430 points, the current “world record” (1990).




