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5. KOHONEN’S NETWORK FOR MODELING THE
AUDITORY CORTEX OF A BAT

In this chapter we employ Kohonen’s model to simulate the projection of
the space of the ultrasound frequencies onto the auditory cortex of a bat (
Martinetz, Ritter, and Schulten 1988). The auditory cortex is the area of
the cerebrum responsible for sound analysis ( Kandel and Schwartz, 1985).
We will compare the results of the simulation with available measurements
from the cortex of the bat Pteronotus parnelli rubiginosus, as well as with
an analytic calculation.
For each animal species, the size of an area of neural units responsible for
the analysis of a particular sense strongly depends on the importance of that
sense for the species. Within each of those areas the extent of the cortical
representation of each input stimulus depends on the required resolution.
For example, the fine analysis of the visual information of higher mammals
is accomplished in the fovea. The fovea is a very small area of the retina in
the vicinity of the optical axis with a very high density of rods and cones,
the light sensitive receptors in the eye. The especially high density gives rise
to a significantly higher resolution in this area than in the regions of the
retina responsible for the peripheral part of the visual field. Although the
fovea is only a small part of the total retina, the larger part of the visual
cortex is dedicated to the processing of signals from the fovea. Similarly
nonproportional representations have also been found in the somatosensory
system and in the motor cortex. For example, particularly large areas in the
somatosensory and the motor cortex are assigned to the hand when compared
to the area devoted to the representation of other body surfaces or limbs (
Woolsey 1958).
In contrast no nonproportional projections have been found so far in the
auditory cortex of higher mammals. The reason for this is perhaps that
the acoustic signals perceived by most mammals contain a wide spectrum
of frequencies; the signal energy is usually not concentrated in a narrow
range of frequencies. The meow of a cat, for example, is made up of many
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harmonics of the base tone, and no region of the frequency spectrum plays
any particular function in the cat’s survival. The auditory cortex of cats
was thoroughly examined, and the result was that frequencies, as expected,
are mapped onto the cortex in a linearly increasing arrangement without
any regard for particular frequencies. The high-frequency units lie in the
anterior and the low-frequency units lie in the posterior region of the cortex.
According to available experimental evidence, the auditory cortex of dogs
and monkeys is structured very similarly ( Merzenich et al. 1975).

5.1 The Auditory Cortex of a Bat

In bats, nonproportional projections have been detected in the auditory cor-
tex. Due to the use of sonar by these animals, the acoustic frequency spec-
trum contains certain intervals which are more important. Bats utilize a
whole range of frequencies for orientation purposes. They can measure the
distances to objects in their surroundings by the time delay of the echo of
their sonar signals, and they obtain information about the size of the detected
objects by the amplitude of the echo.
In addition, bats are able to determine their flight velocity relative to other
objects by the Doppler shift of the sonar signal that they transmit. This abil-
ity to determine the Doppler shift has been intensively studied in Pteronotus
parnelli rubiginosus, a bat species which is native to Panama ( Suga and Jen
1976). This species has developed this ability to the extent that it is able to
resolve relative velocities up to 3 cm/s, enabling it to detect even the beating
of the wings of insects, its major source of nutrition. The transmitted sonar
signal consists of a pulse that lasts about 30 ms at a frequency of 61 kHz. For
the analysis of the Doppler-shifted echoes, this bat employs a special part of
its auditory cortex ( Suga and Jen 1976).
The Doppler shift ∆f of the sonar frequency by an object moving in the
same line with the bat is determined by

∆f

fe
=

2vbat
c
− 2vobj

c
. (5.1)

Here fe is the bat’s sonar frequency, i.e., 61 kHz, vbat is the bat’s velocity,
vobj is the object’s flight velocity, and c is the velocity of sound. The factor
of two is due to the fact that both the transmitted signal and the echo are
Doppler shifted. If the bat knows its own velocity, it can determine vobj from
the Doppler shift ∆f .
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Excellent sonar capabilities are certainly indispensable for the bat’s survival.
To be able to detect a frequency shift of 0.02% which corresponds to the
stated relative velocity of 3 cm/s, assuming a sound velocity of 300 m/s,
a particularly high resolution of frequencies around the sonar frequency is
necessary. Therefore, it would not be surprising if the interval around 61 kHz
of the frequency spectrum were disproportionately represented in the part of
the auditory cortex responsible for the Doppler analysis. Investigations on
Pteronotus parnelli rubiginosus indeed support this expectation (Suga and
Jen 1976).
Figure 5.1 shows the results of observations by Suga and Jen (1976). In part
B of Fig. 5.1 one can clearly see that the one-dimensional frequency spec-
trum essentially extends continuously and monotonically from the posterior
to the anterior region of the auditory cortex. In addition, one recognizes a
region around the sonar frequency of 61 kHz with a very high resolution.
To emphasize this anomaly, the region shaded in part A of Fig 5.1 has been
displayed separately in part C. This region corresponds to the frequency in-
terval which is especially important for the bat and extends monotonically
from a minimum frequency of about 20 kHz up to a maximum frequency of
about 100 kHz. The position and best frequency for each measurement in the
shaded region of A is also shown in part C of Fig. 5.1. As “best frequency”
for a neuron, one picks the frequency that causes the highest excitation of
that neuron. One clearly sees that the majority of the measured values are
clustered around the sonar frequency, as is expected. Almost half of the
anterior-posterior region is used for the analysis of the Doppler-shifted sig-
nals. This provides the particularly high resolution of 0.02% which gives the
bat its fine navigational and insect hunting abilities.
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Abb. 5.1: (A) Dorsolateral view of the bat’s cerebrum. The auditory cortex
lies within the inserted rectangle. (B) Distribution of “best frequencies” on the
auditory cortex, the rectangle in (A). (C) Distribution of “best frequencies” along
the region shaded in (A) and (B). The distribution of measured values around
61 kHz has been enlarged (after Suga and Jen 1976).

5.2 A Model of the Bat’s Auditory Cortex

The development of the projection of the one-dimensional frequency space
onto the auditory cortex, with special weighting of the frequencies around
61 kHz, will now be simulated by Kohonen’s model of self-organizing maps.
For this purpose we will model the auditory cortex by an array of 5×25
neural units.
The space of input stimuli is the one-dimensional ultrasound spectrum of the
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bat’s hearing. In our model this spectrum will be simulated by a Gaussian
distribution of Doppler-shifted sonar echoes on top of a white background
noise. The background noise in the range from 20 to 100 kHz depicts signals
from external ultrasound sources. In addition, there is a peak near 61 kHz
which consists of the echoes from objects moving relative to the bat. We
describe this peak of Doppler-shifted sonar signals by a Gaussian distribution
centered at 61 kHz with a width of σr=0.5 kHz. This corresponds to a root
mean square speed difference of the sonar-detected objects of about 2 m/s.
Doppler-shifted sonar signals occur in our model three times as often as
signals from the white background noise. Figure 5.2 shows the weighted
probability distribution.

Abb. 5.2: The relative probability density of the input signals versus frequency.
Doppler-shifted echoes occur exactly three times as often as signals from the
white background noise.

Initially, a random frequency is assigned to each model neuron of our model
cortex. This corresponds to Step 0 of Kohonen’s model as described in the
last chapter. Due to the one-dimensionality of the space of input stimuli, the
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synaptic strengths wr of the model neurons r have only a single component.1

An input signal according to a probability distribution P (v) causes that
model neuron whose momentarily assigned frequency (the so-called “best
frequency” of that neuron) lies closest to the input frequency to determine the
center of the “activity peak” within which the neurons become significantly
excited (Step 2). Next, the “best frequencies” of all neurons of the cortex
are modified according to Step 3 of Kohonen’s algorithm. After a sufficient
number of steps this modification should result in an arrangement of “best
frequencies” on the model cortex that is continuous and is adapted to the
particular probability distribution of the input signals.

5.3 Simulation Results

In Fig. 5.1B it can be seen that the region of the auditory cortex of Pterono-
tus parnelli rubiginosus responsible for the resolution of the echo is greatly
elongated, it being much more extended along the anterior-posterior axis
than it is along the perpendicular direction. A similar length-width ratio for
the model cortex was chosen in the simulation we will describe. There, the
anterior-posterior length contains 25 model neurons and is five times longer
than the width of the array.
Figure 5.3 shows the model cortex at different stages of the learning process.
Each model neuron is represented by a box containing (the integer part of)
the assigned frequency. Figure 5.3a presents the initial state. Each neuron
was assigned randomly a frequency value in the range 20 to 100 kHz. As
we see in Fig. 5.3.b, after 500 learning steps a continuous mapping between
the space of input frequencies and the model cortex has already emerged.
The final state, achieved after 5000 learning steps, is depicted in Fig. 5.3.c.
One can see the special feature of Kohonen’s model that represents the input
stimuli on the net of neural units according to the probability with which
stimuli occur. The strong maximum of the probability density in our model
causes a wide-ranging occupation of the “cortex” with frequencies in the
narrow interval around the sonar frequency of 61 kHz.

1 This is only an idealization that is caused by the explicit use of frequency values. In
a more realistic model one could, for example, code the frequency by different output
amplitudes of a set of overlapping filters as they are actually realized in the inner ear.
The ordering process demonstrated in the simulation would, however, not be affected
by this.
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Abb. 5.3: (a) (left) The initial state with random frequencies assigned to the
neural units. The length-to-width ratio of the array of model neurons is five
(anterior-posterior) to one (dorsolateral). Each box represents a neuron and
contains the integer part of the current “best frequency” assigned to that neu-
ron. (b) (middle) The state of the “auditory cortex” after 500 learning steps.
The field has evolved into a state where neighboring neurons have similar “best
frequencies;” i.e., the space of input stimuli is represented continuously on the ar-
ray. (c) (right) The “auditory cortex” in the final state, after 5000 learning steps.
The region of “best frequencies” around the sonar frequency, which represents
the Doppler-shifted input signals, occupies almost half of the model cortex.

In this simulation the time dependence of the excitation zone σ and of the
adaptation step widths ε were chosen as follows: σ(t) = σi[1+exp(−5 (t/tmax)

2)]
and ε(t) = εi exp(−5 (t/tmax)

2) with σi = 5 and εi = 1, where t denotes the
number of performed learning steps. The final number of learning steps at
the end of the simulation was tmax = 5000.
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Abb. 5.4: The simulation results presented as in Fig. 5.1C. Along the abscissa
are the positions 1 through 25 of the model neurons along the “anterior-posterior”
axis. The ordinate shows the corresponding “best frequencies.” For every value
between 1 and 25 five frequency values are represented, one for each of the five
neural units along the “dorso-lateral” direction.

In accordance with the experimental results from the auditory cortex of
Pteronotus parnelli rubiginosus, the representation of the input frequencies
on our model cortex increases monotonically along the “anterior-posterior”
axis. In order to compare the results of our simulation with the mea-
surements, we have presented the distribution of “best frequencies” as in
Fig. 5.1C. Figure 5.4 depicts the simulation results of Fig. 5.3 in the same
way as Fig. 5.1C represents the data of Fig. 5.1A-B. Each model neuron
has been described by its position 1 to 25 on the “anterior-posterior” axis
as well as by its “best frequency.” This representation of the results of the
simulation produces a picture very similar to that of the experimental mea-
surements (Fig. 5.1). In both cases a plateau arises that occupies almost
half of the cortex and contains the neural units specialized in the analysis
of the Doppler-shifted echoes. The size of this plateau is determined by the
shape of the probability distribution of the input stimuli. In Section 5.4 we
will look more closely at the relation between the shape of the probability
distribution and the final cortical representation in Kohonen’s model.
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5.4 Mathematical Description of the “Cortical
Representation”

We want to investigate what mappings between a neural lattice and an in-
put signal space result asymptotically for Kohonen’s model. For “maxi-
mally ordered” states we will demonstrate a quantitative relation between
the “neural-occupation density” in the space of input stimuli which corre-
sponds to the local enlargement factor of the map, and the functional form
of the probability density P (v) of the input signals ( Ritter and Schulten
1986a). The result will enable us to derive an analytical expression for the
shape of the curve shown in Fig. 5.4, including the size of the plateau. Un-
fortunately, such analytical expressions will be limited to the special case of
one-dimensional networks and one-dimensional input spaces. The following
derivation is mainly directed at the mathematically inclined reader; it can
be skipped without loss of continuity.
To begin, we consider a lattice A of N formal neurons r1, r2,
. . . , rN . A map φw : V 7→ A of the space V onto A, which assigns to each
element v ∈ V an element φw(v) ∈ A, is defined by the synaptic strengths
w = (wr1 ,wr2 , . . . ,wrN ), wrj ∈ V . The image φw(v) ∈ A that belongs to
v ∈ V is specified by the condition

‖wφw(v) − v‖ = min
r∈A
‖wr − v‖, (5.2)

i.e., an element v ∈ V is mapped onto that neuron r ∈ A for which ‖wr−v‖
becomes minimal.
As described in Chapter 4, φw emerges in a learning process that consists
of iterated changes of the synaptic strengths w = (wr1 ,wr2 , . . . ,wrN ). A
learning step that causes a change from w′ to w can formally be described
by the transformation

w = T(w′,v, ε). (5.3)

Here v ∈ V represents the input vector invoked at a particular instance, and
ε is a measure of the plasticity of the synaptic strengths (see Eq. (4.15).
The learning process is driven by a sequence of randomly and independently
chosen vectors v whose distribution obeys a probability density P (v). The
transformation (5.3) then defines a Markov process in the space of synaptic
strengths w ∈ V ⊗V ⊗ . . .⊗V that describes the evolution of the map φw(v).
We will now show that the stationary state of the map which evolves asymp-
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totically by this process can be described by a partial differential equation
for the stationary distribution of the synaptic strengths.
Since the elements v occur with the probability P (v), the probabilityQ(w,w′)
for the transition of a state w′ to a state w, via adaptation step (5.3), is given
by

Q(w,w′) =
∫
δ(w −T(w′,v, ε))P (v) dv. (5.4)

δ(x) denotes the so-called delta-function which is zero for all x 6= 0 and for
which

∫
δ(x)dx = 1. More explicitly, Eq. (5.3) can be written

wr = w′r + ε hrs(v −w′r) for all r ∈ A. (5.5)

Here s = φw′(v) is the formal neuron to which v is assigned in the old map
φw′ .
In the following we take exclusive interest in those states φw that correspond
to “maximally ordered maps,” and we want to investigate their dependence
on the probability density P (v). We assume that the space V and the lat-
tice A have the same dimensionality d. A “maximally ordered map” can
then be characterized by the condition that lines in V which connect the wr

of r adjacent in the network are not allowed to cross. Figure 5.5 demon-
strates this fact with an example of a two-dimensional Kohonen lattice on
a two-dimensional space V of input stimuli with a homogeneous probability
distribution P (v). The square frame represents the space V . The synaptic
strengths wr ∈ V determine the locations on the square which are assigned
to the formal neurons r ∈ A. Each mesh point of the lattice A corresponds
to a formal neuron and, in our representation, is drawn at the location that
has been assigned to that neuron through wr. Two locations wr are con-
nected by a line if the two corresponding formal neurons r are neighbors in
the lattice A. Figure 5.5a shows a map that has reached a state of “maximal
order” as seen by the lack of line crossings between lattice points. In contrast
Fig. 5.5b presents a map for which even in the final stage some connections
still cross. Such a map is not “maximally ordered.”
In the following calculation we will make a transition from discrete values of r
to continuous ones. This is possible because in the following we restrict our-
selves to “maximally ordered” states where in the transition to a continuum
wr becomes a smooth function of the spatial coordinate r in the network.
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Abb. 5.5: An example for a “maxi-
mally ordered” state of the network.
Network and input signals are both
two-dimensional. All input signals
originate from the limiting square.
In the continuum limit the network
nodes are infinitely dense and spec-
ify a one-to-one mapping between the
network and the square.

Abb. 5.6: An example of an incom-
pletely ordered state of the network,
evolved as a consequence of the range
σ(t) of hrs to be too short initially
(see Eq. (68)). In this case a topo-
logical defect develops and the con-
nections between neighboring lattice
points cross. In the continuum limit
a one-to-one mapping cannot be ob-
tained.

We consider an ensemble of maps that, after t learning steps, are all in the
vicinity of the same asymptotic state and whose distribution is given by a
distribution function S(w, t). In the limit t→∞, S(w, t) converges towards
a stationary distribution S(w) with a mean value w̄. In Chapter 14 we will
show that the variance of S(w) under the given conditions will be of the
order of ε. Therefore, for an ε that is sufficiently slowly approaching zero,
all members of the ensemble will result in the same map characterized by its
value w̄.
We want to calculate w̄ in the limit ε → 0. In the stationary state, the
condition S(w) =

∫
Q(w,w′)S(w′) dw′ holds, and, therefore, it also holds

that
w̄ =

∫
wS(w) dw =

∫ ∫
wQ(w,w′)S(w′) dwdw′. (5.6)
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In the limit ε→ 0 it follows S(w)→ δ(w − w̄) and, therefore,

w̄ =
∫

wQ(w, w̄) dw

=
∫

T(w̄,v, ε)P (v) dv. (5.7)

Applying Eq. (5.5) we obtain

0 = ε
∫
hrs(v − w̄r)P (v) dv for all r ∈ A. (5.8)

We formulate the restriction of maximally ordered maps by two approximat-
ing assumptions:

1. We assume that for sufficiently large systems w̄r is a function that
varies slowly from lattice point to lattice point so that its replacement
by a function w̄(r) on a continuum of r-values is justified.

2. We assume that w̄(r) is one-to-one.

We demand also that hrs at r = s has a steep maximum and satisfies∫
hrs(r− s) dr = 0,∫

h(r− s)(ri − si)(rj − sj) dr = δijσ
2, i, j = 1, . . . , d (5.9)

where d is the dimension of V and rj, sj describe the d Cartesian components
of r, s. The constant σ is the range of hrs which coincides with σ in (68) in
case of a Gaussian hrs.
From the above we will derive a differential equation for w̄. Due to the contin-
uum approximation (i), the quantity
min
r∈A
‖wr − v‖ in Eq. (5.7) vanishes because now for each v there exists ex-

actly one r for which wr = v holds. Therefore, we can replace v in Eq. 5.8)
by w̄(s). Here s := φw̄(v) is the image of v under the map that belongs to
w̄. This provides the condition∫

hrs

(
w̄(s)− w̄(r)

)
P (w̄(s))J(s) ds = 0. (5.10)

Here

J(s) :=

∣∣∣∣∣dvds
∣∣∣∣∣ (5.11)
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is the absolute value of the Jacobian of the map φw̄. With q := s − r as a
new integration variable and P̄ (r) := P (w̄(r)) the expansion of Eq. (5.10)
in powers of q yields (with implicit summation over repeated indices; e.g.,
qi∂i is to be summed over all values of i)

0 =
∫
hq0(qi∂iw̄ +

1

2
qiqj∂i∂jw̄ + . . .) ·

·(P̄ + qk∂kP̄ + . . .) · (J + ql∂lJ + . . .) dq

=
∫
hq0qiqj dq ·

(
(∂iw̄)∂j(P̄ J) +

1

2
P̄ J · ∂i∂jw̄

)
(r) +O(σ4)

= σ2 ·
[
(∂iw̄)(∂i(P̄ J) +

1

2
P̄ J · ∂2

i w̄)
]
(r) +O(σ4), (5.12)

where we made use of (81). In order for the expansion (5.12) to hold it is
necessary and sufficient for small σ that condition

∑
i

∂iw̄

(
∂iP̄

P̄
+
∂iJ

J

)
= −1

2

∑
i

∂2
i w̄ (5.13)

or, with the Jacobi matrix Jij = ∂jw̄i(r) and ∆ =
∑
i
∂2
i , condition

J · ∇ ln(P̄ · J) = −1

2
∆w̄ (5.14)

is satisfied. For the one-dimensional case we obtain J = J = dw̄/dr and
∆w̄ = d2w̄/dr2 with w̄ and r as scalars. In this case the differential equation
(5.14) can be solved. For this purpose we rewrite (5.14) and obtain

dw̄

dr

 1

P

dP̄

dr
+

(
dw̄

dr

)−1
d2w̄

dr2

 = −1

2

d2w̄

dr2
(5.15)

from which we can conclude

d

dr
ln P̄ = −3

2

d

dr
ln

(
dw̄

dr

)
. (5.16)

This result allows us to determine the local enlargement factor of the map
in terms of the generating probability distribution P (v).
Since φw̄(w̄(r)) = r holds, the local enlargement factor M of φw̄ can be
defined byM = 1/J (compare Eq. (5.11)). For the one-dimensional caseM =
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(dw̄/dr)−1 and we obtain as a relation between input stimulus distribution
and cortical representation

M(v) = J−1 =
dr

dw̄
∝ P (v)2/3. (5.17)

The local enlargement factor M(v) depends on the probability density P (v)
according to a power law. It can be shown that the exponent 2/3 that we
found in the continuum approximation undergoes a correction for a discrete
one-dimensional system and is then given by 2

3
− [3(1 + n2)(1 + [n+ 1]2)]−1,

where n is the number of neighbors that are taken into account on each side
of the excitation center, (i.e., hrs = 1 for ‖r − s‖ ≤ n and zero elsewhere)
(Ritter 1989). The continuum corresponds to the limit of infinite density of
neighbors. Then n = ∞ for each finite σ and we obtain the previous result
of 2/3.

5.5 “Cortical Representation” in the Model of the Bat’s
Auditory Cortex

We now apply the mathematical derivation of Section 5.4 to the particu-
lar input stimulus distribution that we assumed for our model of the bat’s
auditory cortex and compare the result with a simulation.
The input stimulus distribution that we assume can be written in the range
v1 ≤ v ≤ v2 as

P (v) =
P0

v2 − v1

+ (1− P0)
1√

2πσr
exp

(
−(v − ve)2

2σ2
r

)
(5.18)

with the parameters σr=0.5 kHz, ve=61.0 kHz, v1=20 kHz,
v2=100 kHz and P0=1/4. The width of the distribution of the Doppler-
shifted echoes is given by σr, and P0 is the probability for the occurrence of
an input stimulus from the white background noise. v1 and v2 are the limits
of the ultrasound spectrum that we assume the bat can hear.
The integral I =

∫ v2
v1
P (v)dv is not exactly unity because of the finite inte-

gration limits. Since, due to the small σr of 0.5 kHz, nearly all the Doppler-
shifted echo signals lie within the interval [20, 100] and the deviation of I
from unity is negligible. With the choice P0 = 1/4, the Doppler-shifted sig-
nals occur three times as often as signals due to the background noise (see
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also Fig. 5.2). From Eqs. (5.17) and (5.18) we find

dr

dw̄
= C ·

(
P0

v2 − v1

+ (1− P0)
1√

2πσr
exp

(
−(v − ve)2

2σ2
r

))2/3

(5.19)

where C is a proportionality constant. In integral form one has

r(w̄)− r1 = C ·
w̄∫

w̄1

(
P0

v2 − v1

+
1− P0√

2πσr

× exp

(
−(v − ve)2

2σ2
r

))2/3

dv. (5.20)

We will solve this integral numerically and then compare the resulting w̄(r)
with the corresponding values from a simulation.
Since these considerations apply only to the case where the dimensionality
of the net and the dimensionality of the space of input stimuli is identical,
we stretch the “auditory cortex” and, instead of a 5×25 net as in Figs. 5.3
and 5.4, assume a one-dimensional chain with 50 elements for the present
simulation. Starting from a linear, second-order differential equation, we need
two boundary conditions, e.g., w̄1(r1) and w̄2(r2), from our simulation data
to be able to adjust the function r(w̄) of Eq. (5.20) uniquely. Since boundary
effects at the beginning and the end of the chain were not taken into account
in our analytic calculation, the end points can in some cases deviate slightly
from our calculated curve. To adjust the curve to the simulation data, we
take values for w1 and w2 that do not lie too close to the end points; in this
case we have chosen w̄ at the third and forty-eighth link of the chain, i.e.,
at r1 = 3 and r2 = 48. The solid curve in Fig. 5.6 depicts the function w̄(r)
calculated numerically from Eq.(5.20) and adjusted to the simulation data.
The dots show the values w̄r that were obtained by simulating the Markov
process (75). The representation corresponds to the one in Fig. 5.4. The time
dependence of the excitation zone σ and of the adaptation step width ε for
the simulation were chosen as follows: σ(t) = σi[1 + exp(−(5t/tmax)

2)] with
σi = 10, ε(t) = εi exp(−(5t/tmax)

2) with εi = 1. For the maximal number of
learning steps tmax = 20000 was chosen.
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Abb. 5.7: A bat’s sensitivity to accoustic and sonar signals (cf. Fig. 5.4). The
solid curve represents the function w̄(r) calculated from Eq. (92). The dots show
the values obtained from simulating the Markov process (75). For comparison
we show the result for M(v) ∝ P (v) with a dashed line. This result strongly
deviates from the simulation data.

Clearly, the function w̄(r) resulting from Eq. (5.20) is in close agreement
with the simulation results, and even the deviations at the end points are
small. One may have expected intuitively that for the magnification holds
M(v) ∝ P (v), i.e., a magnification proportional to the stimulus density. The
corresponding result is presented in Fig. 5.6 as well to demonstrate that this
expectation is, in fact, incorrect.
For the present input stimulus distribution, it is possible to estimate the size
of the region relevant for the analysis of the Doppler-shifted signal, i.e., the
extension of the 61 kHz plateau in Fig. 5.6. In Eq. 5.20) we integrate over
P (v)2/3 and, therefore, the function r(w̄) increases sharply for large values
of P (v). Hence, the plateau starts where the Gaussian distribution of the
Doppler-shifted echoes increases strongly relative to the background. This is
approximately the case for v = ve−2σr. Accordingly, the plateau ends where
the Gaussian peak recedes back into the homogeneous background, i.e., at
v = ve + 2σr. Therefore, the relation

∆rplateau = C ·
ve+2σr∫
ve−2σr

(
P0

v2 − v1

+ (1− P0)
1√

2πσr
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× exp

(
−(v − ve)2

2σ2
r

))2/3

dv (5.21)

for the size of the plateau holds. Within these integration limits the back-
ground portion in the integrand is negligible compared to the values of the
Gaussian. Furthermore, we can extend the integration of the integrand that
results without the background towards infinity without significant error.
The integral can then be evaluated, yielding the approximation

∆rplateau ≈ C · (1− P0)2/3

∞∫
−∞

1

(
√

2πσr)2/3
exp

(
−2

3

v2

2σ2
r

)
dv

≈ C ·
√

3

2

(√
2πσr(1− P0)2

)1/3
. (5.22)

In order to determine the part of the plateau relative to the overall “auditory
cortex,” we also need an estimate of the integral in Eq. (5.20), where we have
to integrate over the full band width of input frequencies. To obtain this we
split the integration range from v1=20 kHz to v2=100 kHz into three regions
as follows

∆rtotal ∝
ve−2σr∫
v1

(P (v))2/3 dv +

ve+2σr∫
ve−2σr

(P (v))2/3 dv

+

v2∫
ve−2σr

(P (v))2/3 dv. (5.23)

We have already estimated the second integral in the sum by Eq. (5.22).
Within the integration limits of the other two integrals the contribution of
the Gaussian distribution is so small that it can be neglected relative to the
background. In addition, σr � (v2 − v1), enabling us to write

∆rtotal ≈ ∆rplateau + C · (v2 − v1)
(

P0

v2 − v1

)2/3

≈ ∆rplateau + C · P0
2/3(v2 − v1)1/3. (5.24)

If we insert the parameters of our above model of the input stimulus distri-
bution of the bat into the two estimates (5.22) and (5.24), we obtain for the
size of the 61 kHz region, relative to the size of the total “cortex,” the value

∆rplateau
∆rtotal

≈ 39%.
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This implies that for our case of a 50-unit chain, the plateau should consist
of 19 to 20 neurons. This value agrees very well with the simulation results
presented in Fig. 5.6.
By now we have extensively described the basics of Kohonen’s model—the
self-organization of a topology-conserving map between an input stimulus
space and a network of neural units. We have compared the simulation re-
sults of Kohonen’s model to experimental data as well as to a mathematical
description valid for certain limiting cases. The simulation data have agreed
at least qualitatively with the experimental findings. More than a qualitative
agreement should not have been expected, considering the many simplifica-
tions of Kohonen’s model. In contrast to that, the mathematical result for the
representation of the input signals relative to their probability corresponds,
even quantitatively, very well to the results obtained from simulations.
In Chapter 6 we will become acquainted with a completely different appli-
cation of Kohonen’s model. Instead of a mappingonto a continuum, we will
generate a mapping that projects a linear chain onto a discrete set of points.
Such a mapping can be interpreted as a choice of a connection path between
the points. The feature of the algorithm to preserve topology as much as
possible manifests itself in a tendency to minimize the path-length. In this
way, very good approximate solutions for the well-known travelling salesman
problem can be achieved.




