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4. KOHONEN’S NETWORK MODEL

This chapter describes Kohonen’s network model. We will discuss how the
cells of a neuron layer coordinate their sensitivity to sensory signals in such
a way that their response properties to signal features vary in a regular
fashion with their position in the layer, an organization observed in many
parts of the brain. After some neurophysiological background information,
a mathematical formulation of the model will be presented. Simulations will
give a first impression of the main features of the model.

4.1 Neurophysiological Background

The model employs a neuron layerA, usually assumed to be a two-dimensional
sheet. This layer is innervated by d input fibers (axons), which carry the input
signal and excite or inhibit the neurons of the layer via synaptic connections,
as illustrated schematically in Fig. 4.1. In the following, we consider condi-
tions under which the excitation of the neurons is restricted to a spatially
localized region in the layer. The location of this region is then determined
by those neurons that respond most intensively to the given stimulus. The
neuron layer acts as a topographic feature map, if the location of the most
strongly excited neurons is correlated in a regular and continuous fashion
with a restricted number of signal features of interest. Neighboring excited
locations in the layer then correspond to stimuli with similar features. Of
course, a single layer can only make a few important features visible in this
way. In the simplest case, we may be dealing with the stimulus position
on a sensory surface, such as the retina or the body’s outer surface; simple
examples of more abstract features are pitch and intensity of sound signals.
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Abb. 4.1: Schematic representation of the neuron layer in Kohonen’s model.
The nerve fibers running horizontally provide the input signal (“stimulus”) and
excite the layer neurons via synaptic connections. Lateral interactions between
the neurons constrain the reaction to a spatially bounded “excitation zone.” The
layer acts as a “topographical feature map” if the position s of the excitation
zone varies in a continuous way with the presence of stimulus features of interest

We now describe the principles which enable the formation of such topo-
graphic feature maps in Kohonen’s model by means of a self-organizing pro-
cess. An incoming signal v is given by the average activities vl of the indi-
vidual incoming fibers l = 1, 2, . . . . We identify the neurons of the layer by
their two-dimensional position vectors r ∈ A, with A being a two-dimensional
grid. Every neuron r forms in its dendritic tree a weighted sum

∑
l wrlvl of

the incoming activities vl, where wrl expresses the “strength” of the synapse
between axon l and neuron r. Here, wrl is positive for an excitatory synapse
and negative for an inhibitory synapse. The resulting excitation of an iso-
lated neuron r is described by its average spike frequency f 0

r . Usually, a
relation

f 0
r (v) = σ

(∑
l

wrlvl − θ
)

(4.1)

is assumed for f 0
r . Here, σ(x) is a “sigmoid” function, increasing monotoni-

cally with x, with a qualitative behavior as shown in Fig. 3.10. In particular,
σ(x) tends asymptotically to the saturation values 0 or 1 for x→ ±∞. The
quantity θ acts as an excitation threshold, below which the neuron responds
weakly.
In addition to the coupling to the input fibers, the neurons are connected
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to each other via synapses. Thus, the layer has internal feedback. If one
designates by grr′ the coupling strength from neuron r′ to neuron r, any
excitation fr′ of neuron r′ provides a contribution grr′fr′ to the total input
signal of neuron r. The contributions of all neurons r′ in the layer are addi-
tively superimposed onto the external input signal

∑
l wrlvl. In the stationary

case, the neuron activities fr are thus the solution of the nonlinear system
of equations

fr = σ

(∑
l

wrlvl +
∑
r′
grr′fr′ − θ

)
. (4.2)

Frequently, the feedback accounted for by grr′ is due to excitatory synapses
(grr′ > 0) at small distances ‖r − r′‖ and inhibitory synapses (grr′ < 0) at
larger distances ‖r − r′‖. It can be shown that the effect of such “center-
surround” organisation of synaptic interactions on the solutions of (4.2) con-
sists in the formation of excitatory responses that are confined to a neigh-
borhood around the neuron receiving maximal external excitation. In the
following, we will not prove this in general, but we would like to demonstrate
it using a simplified version of (4.2).
To this end, we consider the limiting case when the “sigmoid function” σ(x)
approximates a step function θ(x) (as defined in Section 3.1). Further, we
restrict ourselves to a one-dimensional system without an external input
signal (i.e., vl = 0) and with thresholds θ = 0. We assume for grr′ the
function

grr′ =
{

1 if |r − r′| ≤ a,
−g else.

(4.3)

Here, we assume g > 2a + 1, i.e., neurons at distances exceeding a act
inhibitory, while neurons closer than a act excitatory; the strength of the
inhibition is given by the value of g. Defining the quantities

M =
∑
r

fr, (4.4)

ms =
s+a∑
r=s−a

fr, (4.5)

we see that (4.2) becomes

fr = θ
(
[1 + g]

r+a∑
r′=r−a

fr′ − g
∑
r′
fr′
)
, (4.6)
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or, by using the property θ(gx) = θ(x) which holds for g > 0,

fr = θ
(
[1 + g−1]mr −M

)
. (4.7)

Because of the θ-function, every neuron can be in only one of the two states
fr = 0 or fr = 1. Equation (4.7), together with (4.4) and (4.5) represents
a system of equations for the neuron activities fr. We now show that, as a
consequence of the “center-surround” organization of the lateral interactions,
(4.7) only has solutions in which the total excitation is concentrated within
a single, connected “cluster” of a + 1 consecutive neurons with fr = 1. All
of the neurons outside of this cluster are in the quiescent state (fr = 0). To
this end, we first prove the following lemma: Lemma: If the quantities fr

constitute a solution of (4.7), and if g > 2a + 1, then fr = 1 always implies
fs = 0 for all s > r + a and all s < r − a. Proof: From (4.7) it follows

because of fr = 1 that the inequality mr + g−1mr > M is satisfied. From the
definitions (4.4) and (4.5) one also has mr ≤M , and together

mr ≤ M < mr +
mr

g
≤ mr +

2a+ 1

g
< mr + 1.

Since M and all the mr are integers, one has M = mr and, thus, the lemma
is proven.
The lemma implies that two active neurons r, s can never be located more
than a positions apart (|r−s| ≤ a). From this, it follows that M ≤ a+1, i.e.,
at most a+ 1 neurons can be excited at the same time. If s is the leftmost of
these neurons, then it follows for each of the a neurons r ∈ [s, s+a] adjacent
to s on the right

[1 + g−1]mr −M = [1 + g−1]
r+a∑

r′=r−a
fr′ −M

= [1 + g−1]
s+a∑

r′=s−a
fr′ −M

= [1 + g−1]ms −M > 0. (4.8)

Here, the shift of the limits of summation in the next to last step is based
on the vanishing of all the fr′ for r′ < s and r′ > s+ a. For each of the a+ 1
neurons r = s, s+ 1, . . . , s+ a, (4.8) yields then fr = 1, and since M ≤ a+ 1
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all the remaining neurons satisfy fr = 0. Every solution of (4.7) therefore
consists of a cluster of a+ 1 adjacent excited neurons.
Similarly, in higher dimension, a sufficiently strong lateral inhibition also
leads to the production of a spatially localized excitatory response. In the
case of a continuous sigmoid function σ(.), the spatial behavior of the exci-
tation is no longer that of a step function, but rather takes a maximum at a
position r′ and from there decreases to zero in all directions. The location r′

of the excitatory center is dependent on the input signal vl (not taken into
account in the above derivation). We pay special attention to this position
r′, since by mapping every input signal to a position r′, the layer provides the
desired map of the space of input signals. One could obtain r′ by solving the
nonlinear system of equations (4.2). Instead of this tedious step, Kohonen
suggests an approximation for r′, replacing it with the position of maximum
excitation on the basis of the external signal vl alone, i.e., r′ is determined
from ∑

l

wr′lvl = max
r

∑
l

wrlvl. (4.9)

Under the two assumptions that the “total synaptic strength” per neuron√∑
l w

2
rl, is constant and the same for every neuron, and that all of the input

signals v have the same “intensity” ‖v‖ = 1, the condition

‖wr′ − v‖ = min
r
‖wr − v‖, (4.10)

which often is more convenient from a mathematical point of view, yields the

same result for r′. Here, ‖x‖ indicates the Euclidean vector norm
√∑

l x
2
l , and

vector wr ≡ (wr1, . . . , wrd)
T is a compact notation for the synaptic strengths

of neuron r.
Thus, we now see how the map is related to the synaptic strengths wrl. An
input signal v is mapped to the position r′ implicitly defined by (4.10). For
fixed synaptic strengths, (4.10) defines a nonlinear projection of the space of
input signals onto the two-dimensional layer. In the following, we will use
the notation

φw : v 7→ r′ = φw(v) (4.11)

to refer to this mapping. The index w shall remind us of the mapping’s
dependence on the synaptic strengths of all neurons.
This leads to the second important issue, the determination of synaptic
strengths w providing “useful” maps. In the nervous systems of higher ani-
mals, a detailed genetic specification of all synaptic strengths is not possible.
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This specification would require an exact knowledge of the way input signals
are coded, a condition which even for technical applications, for example due
to tolerances, is difficult to satisfy. Moreover, a system with fixed values wrl

could not respond to subsequent changes of the coding, e.g., due to drift or
aging processes; this obviously would contradict the high capacity for adap-
tation of biological systems. Apparently, such flexibility requires that the
neurons be able to find suitable synaptic strengths, starting from arbitrary
or only roughly correct initial settings.
In the present model, the only source of information for this process is as-
sumed to be a sequence of input stimuli entering the layer, occurring ran-
domly according to some statistical probability distribution. Each stimulus
causes at synapse wrl the coincidence of a presynaptic activity vl and the
resulting postsynaptic activity of neuron r. The postsynaptic activity of
neuron r is just the value of the excitatory response of the layer at the po-
sition r. Its magnitude includes all interaction effects within the layer and
should be computed from (4.2). Kohonen’s model now makes the simplify-
ing assumption that this response can be written as a function hrr′ of two
position variables r and r′, whose “shape” (with respect to variation of r)
is fixed, but whose position (denoted by the second variable r′) depends on
the stimulus. Specifically, the position r′ is taken to be the position of the
excitation maximum, i.e., r′ is defined by (4.9) or (4.10), and r is the location
of the neurons whose response is to be described by hrr′ . The model then
prescribes for the change of synaptic strengths wrl the expression

∆wrl = ε(hrr′vl − hrr′wrl). (4.12)

The first term corresponds to the “Hebbian learning rule” mentioned earlier,
according to which a synapse is strengthened in the case of correlated pre-
and postsynaptic activity. The second term is a decay term for the synaptic
strengths, which is proportional to the postsynaptic activity. The relative
scaling between the first term and the second (decay) term is normalized to
unity by appropriate scaling of v. Here, ε determines the size of a single
adaptation step (0 < ε < 1). If ε is chosen to be a function ε(t), decreasing
gradually with the number t of learning steps from large initial values to
small final values, then at the beginning the system is rapidly able to learn
coarsely the correct synaptic strengths. However, for large ε, the fluctuation
of the map caused by each learning step is also large. Hence, if the map is to
stabilize asymptotically in an equilibrium state, one must let ε decrease to
zero. On the other hand, a permanent “residual plasticity” can be realized



4. Kohonen’s Network Model 62

with low fluctuations of the map by means of a small, nonvanishing final
value for ε.
Based on (4.12), every synaptic change is limited to a neighborhood zone
about the excitation center. In this zone, the synaptic connections are
changed such that a subsequent re-occurrence of the same or a similar stim-
ulus will lead to an increased excitation. The shape of the function hrr′

controls the size of the neighborhood zone and, thus, of the number of neu-
rons affected by a single adaptation step.

4.2 Simplification and Mathematical
Definition

The precise form of the excitatory response hrr′ appears not to be critical
for the qualitative behavior of the system under the learning rule (4.12) and
could only be obtained by numerical solution of (4.2). Hence, in the present
model, the exact solution is only approximated qualitatively by means of a
given choice of hrr′ . To this end, for hrr′ ≥ 0 a unimodal function depending
only on the distance r − r′ with its maximum at r = r′ and approaching
zero for large distances is assumed. An appropriate choice is given by the
Gaussian

hrr′ = exp(−(r− r′)2/2σ2
E). (4.13)

The radius σE of this excitatory function determines the length scale on which
the input stimuli cause corrections to the map. As a rule, it is better if the
coarse structure of the map is allowed to form first, before the fine structure
is incorporated into the map. This is made possible by choosing σ to be a
function σ(t) starting with a rather large initial value σ(0) and decreasing
slowly with the number of learning steps toward a small final value. This
can be interpreted as gradually increasing the “selectivity” of the individual
neurons in the course of the learning process.
Each learning step requires the arrival of an input stimulus v. For the model,
these input stimuli are treated as independent random variables from a vector
space V , and their occurrence is determined by a probability density P (v).
A final simplification is that the neuron positions r are taken to be the points
of a discrete periodic lattice A.
Thus, Kohonen’s model can be described by the following algorithm (Koho-
nen 1982a, 1984a):
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1. Initialization: Start with appropriate initial values for the synaptic
strengths wrl. In the absence of any a priori information, the wrl can
be chosen at random.

2. Choice of Stimulus: Choose, according to the probability density P (v),
a random vector v representing a “sensory signal.”

3. Response: Determine the corresponding “excitation center” r′ from the
condition

‖v −wr′‖ ≤ ‖v −wr‖ for all r ∈ A. (4.14)

4. Adaptation Step: Carry out a “learning step” by changing the synaptic
strengths according to

wnew
r = wold

r + εhrr′(v −wold
r ) (4.15)

and continue with step 1.

The mapping
φw : V 7→ A, v ∈ V 7→ φw(v) ∈ A, (4.16)

where φw(v) is defined through the condition

‖wφw(v) − v‖ = min
r∈A
‖wr − v‖ (4.17)

which constitutes the neural map of the input signal space V onto the lattice
A which is formed as a consequence of iterating steps 1.–3.
To illustrate this algorithm, the relationships are schematically shown again
in Fig. 4.2. The ensemble of all possible input values forms the shaded man-
ifold V , from which a point v is chosen as “stimulus” for the network in step
1. This leads to a selection (step 2) of an excitation center s among the neu-
rons (lattice A). All neurons in the neighborhood of this center (highlighted)
participate in the subsequent adaptation (step 3). It consists in a “shift” of
the vectors wr towards v. The magnitude of this shift is fixed by the learning
step size ε and by the function hrs.
Mathematically, the algorithm represents a so-called Markov process. A Mar-
kov process is defined by a set of states and a set of transition probabilities
between states. These transition probabilities determine a stochastic process
that, given some initial state, produces a sequence of states. This sequence
is obtained by using the transition probabilities from the current state to
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Abb. 4.2: The adaptation step in Kohonen’s model. The input value v selects a
center s in whose neighborhood all neurons shift their weight vectors ws towards
the input v. The magnitude of the shift decreases as the distance of a unit from
the center s increases. In the figure, this magnitude is indicated by different sizes
and gray values. The shift of weights is only depicted, though, for unit s

choose a successor, which then becomes the current state for the next step
(for a thorough discussion of Markov processes see for example Gardiner 1985
or van Kampen 1981).
In the present model, each possible state is given by a set of values for all
the synaptic strengths w ≡ (wr1 ,wr2 , . . . ,wrN ) in the system (N denotes
the number of neurons). The function φw associates with each such state a
mapping that, as we have discussed, has the interpretation of a “neural map”
of some feature space. The update of a state w is obtained as a result of
applying (4.15), i.e., the decision for the update is caused by the input stim-
ulus v ∈ V . Each update represents a “learning step” and can be thought
of as a local “distortion” of the associated “neural map.” Beginning with
an initial state that corresponds to a completely disordered map, the goal of
the algorithm is to arrive at a state (more precisely, the system shall enter a
subset of its state space comprising states differing only by small “statistical
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fluctuations”, see Chapter 14) that corresponds to an ordered, “topology-
conserving map” of the stimulus space V , in which some relevant features
of input stimuli are two-dimensionally (in the case of a neural sheet) repre-
sented. In order to reach such state and make it stationary asymptotically,
the learning step length ε must slowly tend to zero.
The training process is qualitatively in good agreement with observed fea-
tures of the formation of certain neural projections in the brain. The resulting
maps predominantly represent those directions of the stimulus space V along
which the input stimuli change most strongly. These directions, which of-
ten correspond to stimulus features of particular interest, may vary locally
within V . Therefore, a good projection requires a nonlinear mapping. Usu-
ally, the map tries to maintain the neighborhood relationships between the
input stimuli under this mapping process. Therefore, Kohonen named the
resulting maps “topology-conserving feature maps.” Furthermore, the map
automatically takes into account the statistical weight P (v) of the input
stimuli. Regions of V from which many input stimuli occur become “mag-
nified” and are thus projected with better resolution than regions of less
frequently occurring signals. An appropriate choice for the rate of decrease
of ε and σ with the number of learning steps is important for good results
and rapid convergence. If the decrease is too rapid, the synaptic strengths
“freeze” before the map has reached an equilibrium state. If the decrease is
too slow, the process takes longer than necessary.
To illustrate the basic properties of this approach, we now consider a few
simulation examples of the process.

4.3 Simulation Examples

In the first example, a neural network creates a map or image of an unknown
region G with curved boundary. Only indirect sensory signals are available to
the network. These come from a source of sound moving around in G. From
time to time, the sound source emits a sound signal (of constant intensity),
and the position in G of each sound emission is random. The sound signal is
received by two microphones, each connected to an amplifier with logarithmic
characteristics (Fig. 4.3). The two amplifier output signals v1, v2 are the
“sensory signals,” and they are fed via two “axons” to the 1600 “neurons”
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Abb. 4.3: Region G containing the
sound source. The two microphone
positions are marked at the lower
boundary of G. The microphone sig-
nals are fed into two logarithmic am-
plifiers, whose output signals v1, v2

serve as input for the network.

Abb. 4.4: Initial relation between
neurons and points in G. Initially,
each neuron is assigned to a point
of G chosen randomly from the filled
quadrant. This assignment ignores
any neighborhood relations. This is
evident from the completely irregu-
lar “embedding” of the lattice in the
quadrant.

of a model network.1 The “neurons” are arranged in a planar 40×40 lattice.
Every single model neuron r is characterized by a two-component vector
wr = (wr1, wr2) ∈ G of “synaptic strengths.” Each neuron is to adjust its
vector wr gradually in such a way as to become sensitive for a small subset
of input signals v = (v1, v2)T . This subset corresponds to a small subarea of
G within which the moving source may be located. This subarea constitutes
the “receptive field” of the particular neuron in the “environment” G. The

1 In the computer simulation, sound source, microphone, and amplifier are represented
as follows: if the sound source is at the position (x, y), the output signals v1 and v2

of the two amplifiers are given by

v =
(
v1

v2

)
=
(
− log[(x− a)2 + y2]
− log[(x+ a)2 + y2]

)
, (4.18)

where 2a is the separation of the microphones.
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Abb. 4.5: After 100 learning steps,
an assignment has already formed
which roughly reproduces the neigh-
borhood relations of points of G in
the lattice. However, the distribution
of “responsibilities” of neurons for the
region G is still very inhomogeneous.

Abb. 4.6: After 40,000 learning
steps, a good correspondence be-
tween lattice neurons and points of
G has formed. This corresponds to
the choice of curvilinear coordinates,
mapping the region G onto the square
neuron lattice.

neurons are to coordinate the formation of their receptive fields in such a way
that — in the manner of a topographic map — the arrangement of neurons in
the lattice reflects the arrangement of their respective receptive fields in the
environment. This is achieved if each point of the region G corresponds to a
point in the neural lattice such that the neighborhood relation between points
is preserved under the correspondence, i.e., the network becomes associated
with a “continuous” image of G. This correspondence gives a simple example
of a sensory map or sensory image of an environment, here the region in
front of the two microphones. Similar “auditive maps” occur in the brain.
However, this simulation example is only intended to serve as an illustration
of the algorithm and makes no claim of corresponding to any brain map.
In Figs. 4.4–4.6, the evolution of the assignment of neurons to positions is
shown in detail. For each neuron r ∈ A, the location (x, y) of its recep-
tive field in G has been marked, as assigned by the map. Marked locations
are connected by a line if their corresponding neurons are adjacent on the
lattice. (Thus, in place of the image itself, the embedding of the lattice A
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in G is shown, from which the map can be obtained as its inverse.) Ini-
tially, the assignment is completely random, and there is no agreement be-
tween the arrangement of neurons and the corresponding locations (Fig. 4.4).
After only a few signals, the coarse structure of the assignment has been
found (Fig. 4.5), until finally after 40,000 sound signals a good assignment
is achieved (Fig. 4.6). In this case, the algorithm has automatically found
a nonlinear coordinate transformation mapping the region G with curved
boundary onto a square lattice A. The resulting coordinate transformation
takes the frequency distribution of the arriving signals into account, as illus-
trated in the simulation result shown in Fig. 4.7. Instead of a homogeneous
distribution of source locations, the signals from the indicated circular re-
gion in G were now emitted with a three times higher probability than in the
remaining part of G. Within both regions the probability density was con-
stant. In all other respects the simulation was identical to that presented in
Fig. 4.4–4.6. As a consequence of the inhomogeneous stimulus distribution,
substantially more neurons are assigned to positions in the circular region.
This corresponds to a higher resolution of the map for this part of G, which is
a desirable result, since a concentration of assignments within regions where
signals frequently occur leads to a more efficient use of the network.
However, the frequency with which a signal occurs is not always an indica-
tion of its importance. Varying importance of signals can also be taken into
account by regulating the plasticity of the network. For example, one can ad-
just the size of a learning step according to an a priori importance attributed
to the signals. This increases the “attentiveness” of the network for signals
deemed more important and has the same effect as correspondingly more
frequent occurrence. This is illustrated in Fig. 4.8, which shows the result
of a simulation with sound emission probability again uniform throughout
all of G. However, in contrast to Fig. 4.4–4.6, the network reacted to every
sound event from within the circle with an adaptation step that was three
times larger than for a sound event from the remaining part of G. The result
thus obtained is practically identical to that of Fig. 4.7.
In the example presented, the space of stimuli G is mapped onto a lattice A
of the same dimensionality. If the space of stimuli possesses a higher dimen-
sionality, the map tries to project the higher-dimensional space as faithfully
as possible by means of an appropriate “convolution.” To illustrate this be-
havior, we consider a one-dimensional neural “net,” i.e., a neuron chain. For
the input signal, we take a random sequence of two-dimensional vectors v,
whose values are homogeneously distributed in the unit square. For hrr′ , we



4. Kohonen’s Network Model 69

Abb. 4.7: Result of the same simula-
tion as in Fig. 4.6, except that within
the circular region marked by dots sig-
nals were emitted with a three times
higher probability than in the remain-
ing region of G. In this case, more
neurons code positions in the circular
region. This corresponds to a higher
resolution of the map created for this
region.

Abb. 4.8: The same effect as in
Fig. 4.7 can be achieved by a signal-
dependent adjustment of the plastic-
ity of the neurons. In this simulation,
the sound signals were again emit-
ted as in Fig. 4.4–4.6 with a homo-
geneous probability everywhere in G,
but the learning step size ε was in-
creased by a factor of three if the
sound source was located in the cir-
cular region.

choose the Gaussian (4.13) with σ(t) = 100 · (0.01)10−5t. The correspondence
between neurons and points of the square is again represented as an embed-
ding of the neuron chain into the square, as in the previous example. This
assignment is initially made at random as shown in Fig. 4.9a. After 200 iter-
ations, the curve has attained a U-shaped configuration (Fig. 4.9b). At this
time, the range σ of the function hrr′ is still large and, hence, structure has
formed only at this length scale. As σ decreases further, structures gradually
form at shorter length scales as well (Fig. 4.9c, 50,000 iterations). Eventually,
after 100,000 iteration steps, the hierarchically convoluted graph of Fig. 4.9d
has emerged. The network thus tries to fill the two-dimensional region while
reproducing the neighborhood relations as well as possible. The degree of
success is evident from the similarity of the curve created in this way to the
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Abb. 4.9: Mapping between a “neural” chain and a squared stimulus space.
From top left to bottom right: a) randomly chosen initial assignment; b) coarse
assignment after 200 Markov steps; c) after 50,000 Markov steps; d) assignment
obtained after 100,000 Markov steps resembling a “Peano curve.”

finite approximation of a so-called “Peano curve.” This is an infinitely, re-
cursively convoluted fractal curve representing the solution of the problem
of mapping a one-dimensional interval continuously onto a two-dimensional
surface.
However, as a rule one is interested in mapping of higher-dimensional regions
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onto a two-dimensional image. Indeed, Kohonen used the procedure suc-
cessfully to map spectra of different speech sounds (phonemes) to separate
map positions. Here, the tonal similarity relations between the individual
phonemes are translated into locational relations in the image. This consti-
tutes a very important preprocessing step for the problem of artificial speech
recognition. The subsequent steps require the analysis of transitions between
individual phonemes, i.e., of time sequences. The possibility of employing
the procedure also for such purposes shall be indicated in the following con-
cluding example. At the same time, this example will clarify how in the
course of the formation of a map hierarchic relations can also be represented.
The source of the signal is a Markov process (here used as a simple model
of a temporal signal and to be distinguished from the learning algorithm
itself) with 10 states. The aim is to create a map of the possible transitions
between states of the process. Transitions to the same successor state are to
be adjacent in the map. A state i, i = 0, . . . , 9, is assumed to have one of the
five states i−3, i−2, i−1, i+ 1 or i+ 2 (modulo 10) as a possible successor.
A transition from state i to state j is coded by a 20-component vector v
with components vk = δk,i + δk,j+10. A transition occurs at each time step,
and all transition probabilities have the same value 0.2. A lattice consisting
of 20×20 neurons is used, and the Gaussian (4.13) is chosen for hrr′ . The
remaining parameter values of the simulation are σ(t) = 5 · 0.2t/tmax , ε(t) =
0.9 · (0.05/0.9)t/tmax and tmax = 5, 000 learning steps. Additionally, for the
computation of the distances ‖v−w(r)‖, a “metric” was used which weights
the differences in the last 10 components of v twice as strongly as those of the
first 10 components. In Fig. 4.10, the 20×20-lattice of neurons is represented.
For each lattice site, two numbers i, j ∈ {0, . . . , 9} indicate the initial and
final state of the transition assigned to the respective neuron. The initial
distribution was again chosen randomly. Figure 4.10 shows the map obtained
after 5,000 learning steps. For each of the 50 allowed transitions, an “island”
of neurons responding to this transition has formed, and the islands are in
turn arranged in such a way that islands corresponding to transitions to the
same successor state form a larger cluster. This corresponds to a hierarchical
arrangement and is a consequence of the described choice of weight, the
successor state obtaining a higher weight than the predecessor state in the
choice of the excitation center. This choice dominates the formation of the
“large-scale” structure of the map, i.e., the structure on the level of “clusters
of islands.” This illustrates that, by an appropriate choice of metric (the
choice of weight corresponds to a choice of metric), it is possible to arrange
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for certain features (here successors) to be grouped together hierarchically in
the map.

Abb. 4.10: Mapping of the transitions i → j of a Markov process with states
i, j = 0, ..., 9 onto a lattice consisting of 20× 20 neurons. For each lattice loca-
tion, the transition to which the corresponding neuron best responds is indicated
as jk. Neurons with the same transition are adjacent to one another within is-
lands. Islands with the same successor in turn form “clusters.” This corresponds
to a hierarchical distribution of the neuron specificities over the lattice.

By the inclusion of contextual information, such a hierarchical grouping can
emerge from the data itself. For example one can create “semantic maps”
which arrange words in hierarchies of meaning. This ordering is gradually
found by the system itself in the course of a learning phase, where simple
English sentences can serve as “training data” (Ritter and Kohonen 1989).
After this initial overview, we consider in the following chapters a series
of information processing tasks, for which the choice is motivated by their
significance for biological systems. At the same time, we investigate how
self-organizing maps can be useful in solving such problems. While viewing
biological examples as a guide, we will occasionally consider technical ap-
plications when appropriate. This applies particularly to Chapter 6, which
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gives a solution to the “traveling salesman problem” and Chapters 10–13,
which are concerned with applications to robotics.




