
3. Neural Network Models 20

3. NEURAL NETWORK MODELS

3.1 Early Approaches

The first neural network models go back to the 1940s. Around this time, two
mathematicians, McCulloch and Pitts (1943) suggested the description of a
neuron as a logical threshold element with two possible states. Such a thresh-
old element has L input channels (afferent axons) and one output channel
(efferent axon). An input channel is either active (input 1) or silent (input 0).
The activity states of all input channels thus encode the input information as
a binary sequence of L bits. The state of the threshold element is then given
by linear summation of all afferent input signals xi and comparison of the
sum with a threshold value s. If the sum exceeds the threshold value, then
the neuron is excited; otherwise, it is in the quiescent state. The excited and
quiet state should correspond to the firing or not firing of an action potential
of biological neurons and are represented in the model by the binary values 1
and 0 for the activity of the output channel. Excitatory and inhibitory input
signals are modulated by “synaptic strengths” wi = ±1. The output signal
y of a neuron is thus given by

y = θ

(∑
i

wixi − s
)
. (3.1)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. McCulloch and Pitts
demonstrated that any arbitrary logical function can be constructed by an
appropriate combination of such elements. Their proof is based on the obser-
vation that, in particular, AND-gates and inverters can be realized as special
cases of (3.1); therefore, any other logical function can be constructed from
these. The model of McCulloch and Pitts for the first time suggested how
neurons might be able to carry out logical operations. Their idea of the neu-
ron as a logical threshold element was a fundamental contribution to the field

3. Neural Network Models 21

and has found entrance into numerous later models, albeit often in modified
form.

However, the theory of McCulloch and Pitts failed in two important respects.
Firstly, it did not explain how the necessary interconnections between neu-
rons could be formed, in particular, how this might occur through learning.
Secondly, such networks depended on error-free functioning of all their com-
ponents and did not display the (often quite impressive) error tolerance of
biological neural networks.

The psychologist Hebb (1949) suggested an answer to the first question in
his now famous book Organization of Behaviour (Hebb 1949). According to
his suggestion, the connection between two neurons is plastic and changes
in proportion to the activity correlation between the presynaptic and the
postsynaptic cell.

This Hebb hypothesis has survived up until today in various mathematical
formulations as the essential feature of many network models with learning
ability, although its experimental verification remains in dispute. One of its
simplest mathematical formulations is

∆wi = ε · y(x) · xi (3.2)

for the change in the synaptic strengths wi (i = 1, 2, . . . , n) of a neuron re-
ceiving an input x = (x1, x2, . . . , xn)T when xi is the input at the ith synapse.
y(x) denotes the excitation of the neuron and ε > 0 is a parameter measur-
ing the size of a single learning step. The quantities y(x) and wi can also be
considered as continuous.

With the advent of the computer, it became possible to simulate in more
detail the learning capacity of networks made of neurons subject to rules of
the above kind and to demonstrate practical applications of such systems.

3.2 The Perceptron

The perceptron proposed by Rosenblatt (1958) constituted an important step
in this direction. It consists of a fixed number N of elements, each of which
is supplied with an “input pattern” through L channels. Each of the input
patterns is described by an L-component feature vector x = (x1, x2, . . . , xL)T

3. Neural Network Models 22

and belongs to one of N “ pattern classes.” The classification of the input
patterns and the required number and the interpretation of the components
xi depends on the application; the xi might, for example, describe gray levels
of image pixels or quantities of a more complex feature extracted from the
input pattern by some preprocessing stage. The perceptron shall learn the
correct classification of the pattern vectors using known classification exam-
ples during a “training phase.” For the classification of an input pattern x,
each element r computes a binary output value yr according to

yr = θ(
∑
i=1

Lwrixi). (3.3)

The coefficients wri, i = 1, 2, . . . , L determine the behavior of the element r.
The absence of an “excitation threshold” in (3.3) does not imply a loss of
generality. The action of such a threshold can be taken into account without
changing the general form of (3.3) by agreeing on a constant input signal
x1 = 1. The threshold is then given by the value −wr1.

During a training phase, each element adjusts its coefficient wri in such a
way that it only reacts to the input patterns of “its” class Cr with an output
value yr = 1. For this to be possible, the existence of a solution must first
be guaranteed, i.e., there must exist weights w∗ri for which (3.3) correctly
solves the classification problem. The satisfaction of this condition depends
both on how the problem is posed and on the coding chosen for the pattern
vector x. This can be illustrated as follows: Within a particular choice of
coding, i.e., an assignment of “features” x1, x2, . . . , xL to each pattern, each
pattern corresponds to a point x in a “feature space”(possibly of very high
dimension). The individual classes Cr can be considered as subsets of points
in this space. Each element must assign its output values yr to points in such
a way that the spatial region belonging to the output value yr = 1 includes
the points of the class Cr and excludes the points of all other classes Cs,
s 6= r. However, the flexibility of the separation afforded by the threshold
elements of the form (3.3) is limited: geometrically, every choice of weights
wri corresponds to a separation of the feature space by an L− 1-dimensional
“hyperplane” into two regions, one with yr = 1 and the other with yr = 0. If
the classes in the space of pattern vectors x are arranged in a manner which
is too “convoluted,” then the desired separation by hyperplanes cannot be
achieved, and the perceptron algorithm is doomed to fail from the outset.
Figure 3.1 offers a simple example. We assume L = 2, i.e., each pattern is

3. Neural Network Models 23

characterized by a two-dimensional “feature vector,” and only two classes are
considered. In this case, the available “hyperplanes” are lines (L−1 = 1), by
means of which a complete separation of the classes C1 and C2 is evidently
impossible.

Abb. 3.1: Example of two pattern
classes C1 and C2 in a two-dimen-
sional feature space of the variables
x1 and x2 which are not linearly sep-
arable.

Abb. 3.2: The addition of a fur-
ther feature x3 leads to a higher-di-
mensional feature space, in which the
two classes may be linearly separa-
ble. Projection onto the x1−x2-plane
leads back to the nonseparable situa-
tion of Fig. 3.1

A way out of such a situation can often be found by appropriate extension
of the feature vectors by additional feature variables. These can increase the
distinguishability of the classes to the extent that a separation by hyperplanes
becomes possible. If, for example, in addition to C1 and C2 a further feature
variable x3 can be found that differs sufficiently from C1 and C2, the situation
shown in Fig. ?? may occur in the resulting L = 3-dimensional feature space.
A separation of C1 and C2 by a plane is now possible. This geometric property
of two classes is called linear separability.

Linear separability of each class from the union of all the other classes thus

3. Neural Network Models 24

guarantees that the perceptron of Eq.(3.3) can correctly classify all pattern
instances, provided its weights wri are chosen appropriately. The task of
finding such a set of weights remains. An attractive approach makes use of a
number of classification examples, i.e., vectors x together with a specification
of their respective classes. These constitute the input to the perceptron in
a “training phase.” Every time an element r provides an incorrect output
value yr 6= yr(corr) in response to some input x ∈ Cs, its coefficients wri,
i = 1, 2, . . . , L, are changed by an amount

∆wri = ε ·
(
y(corr)
r − yr

)
· xi (3.4)

This no longer exactly corresponds to Hebb’s rule, but rather the postsynap-
tic activity yr in (3.2) is replaced by the difference dr = y(corr)

r − yr between
the correct output value and the perceptron’s current output value yr. The
factor ε in front of the expression determines the “learning step size” and
must be positive. Eq. (3.4) then acts as an error correction rule: In case
of a correct answer from the element r, dr = 0, and all of the weights wri
remain unchanged. In case of an incorrect output value, dr = ±1 and Eq.
(3.4) implies a change in the sum

∑
iwrixi by ±ε∑i xi2. If the output value

was too small, this causes an increase in the sum (dr = 1) if the input pat-
tern x is repeated, and a reduction (dr = −1) if the output was too large.
This procedure is known as the perceptron algorithm, for which the following
convergence theorem holds: Perceptron Convergence Theorem: (Rosenblatt

1961; Block 1962; Minsky and Papert 1969) Let the classification problem
be solvable with appropriate weights w∗ri by means of the perceptron ansatz
(3.3), and suppose that the feature vectors x are all bounded, i.e., there ex-
ists a constant M , such that ‖x‖ < M is always satisfied. Then, with the
choice

εr = 1/‖x‖ (3.5)

the perceptron algorithm (3.5) will always find a solution after finitely many
adaptation steps for the weights wri (only the “true” modification steps, i.e.,
steps with dr 6= 0, are counted).

In the following, we give a proof of this theorem for the mathematically
interested reader. However, for an understanding of what follows, there is no
harm in skipping the mathematical derivation.

Since all elements operate independently of one another, in the proof of the
preceding theorem it suffices to consider a single element, and in the following

3. Neural Network Models 25

we can thus suppress the index r. We denote by w∗ = (w∗1, w
∗
2, . . . , w

∗
L)T

a weight vector for which the perceptron solves the classification problem
correctly (the existence of a vector with this property is required by the
theorem). Hence, there exists a constant δ > 0, such that 1

w∗ · x > δ, if y(corr)(x) = 1

w∗ · x < −δ, if y(corr)(x) = 0. (3.6)

Here, y(corr)(x) designates that output value which corresponds to a correct
classification of the input x by the element under consideration. Let w(t)
denote the weight vector of the perceptron obtained after t modification steps
from some (arbitrary) starting value. For w(t), the next modification step,
i.e., d = y(corr) − y = ±1, yields

w(t+ 1) = w(t) + ε · d · x, (3.7)

and thus

w2(t+ 1) = w2(t) + 2εd · (w(t) · x) + ε2d2x2

≤ w2(t) + ε2d2x2 = w2(t) + 1. (3.8)

In (3.8), we have made use of the relations d · (w ·x) = (y(corr)−y)(w ·x) ≤ 0
and d2ε2 = 1/‖x‖2. From Eq.(3.8), we obtain an upper bound for the
increase in the length ‖w(t)‖ with the number of modification steps that
have occurred

‖w(t)‖ ≤
√
‖w(0)‖2 + t. (3.9)

On the other hand, at each modification step, the scalar product w · w∗
satisfies

w(t+ 1) ·w∗ = w(t) ·w∗ + ε · d · (x ·w∗)
≥ w(t) ·w∗ + ε · δ. (3.10)

The last step makes use of Eq.(3.6). Therefore, w(t) · w∗ grows at least
linearly with the number of modification steps

w(t) ·w∗ ≥ w(0) ·w∗ + t · δ/M. (3.11)
1 For classes with infinitely many elements, there could always be vectors demanding

arbitrarily small δ. In this case, we consider Eq. (6) as a more precise statement
of the requirement that a solution exist. Equation (6) implies that this solution is
insensitive to sufficiently small perturbations of the weights w∗.

3. Neural Network Models 26

With the help of (3.10), (3.11) and the Cauchy-Schwarz inequality, we thus
have

w(0) ·w ∗+ t · δ/M ≤ w(t) ·w ∗≤ ‖w(t)‖ · ‖w∗‖
≤ ‖w∗‖

√
‖w(0)‖2 + t (3.12)

Since the left side of this inequality is linear and thus grows faster with t than
the right side, t cannot become arbitrarily large, i.e., only a finite number of
modification steps can occur. This concludes the convergence proof for the
perceptron. For a thorough discussion and other approaches to a proof, see
for example (Minsky and Papert 1969).

A more flexible variant of the perceptron results if the individual elements do
not work completely independently of one another, but rather compete with
one another for the correct classification. Equation (3.3) is then replaced by

yr =

{
1 : wr · x > ws · x ∀ s 6= r
0 : else.

(3.13)

A learning step occurs every time the index r of the element with yr = 1
deviates from the correct classification s of the input vector. In this case, the
weight vectors of the two elements r and s are changed according to (3.4).
The resulting learning rule is (note y(corr)

r = 0 and y(corr)
s = 1)

∆ws = εx,

∆wr = −εx. (3.14)

Here, the procedure also finds a solution after a finite number of modification
steps, as long as a solution exists. The greater flexibility of this approach
stems from the fact that now each element r can close off for its class not
just a half-space, but a conical region bounded by those hyperplanes where
wr · x = ws · x.

Aside from the convergence theorems, numerous other interesting and impor-
tant statements can be derived with mathematical rigor for the perceptron (
Minsky and Papert 1969). This is possible because the individual elements
“interact” either not at all or at most in a very simple way. In spite of this
relative simplicity, the insights gained from the perceptron illustrate many
typical problems posed by parallel and adaptive systems. In particular, the
perceptron permits a relatively far-reaching analysis of its performance and

3. Neural Network Models 27

also of its limitations. The convergence theorem guarantees that whenever
a perceptron solution exists, the learning algorithm will find it. Similarly
far-reaching results are usually not known for learning rules in more com-
plex, multilayered networks. On the other hand, it soon became evident that
for a whole series of practical classification problems, the requirement of the
existence of a perceptron solution, i.e., of appropriate weights wri, is not
satisfied, and that the perceptron thus cannot solve such problems. More-
over, other problems do admit a solution in principle but demand that the
weights be maintained with a precision growing exponentially with the size
of the problem, a requirement which in practice cannot be satisfied (Minsky
and Papert 1969). Such limitations of the perceptron have been overcome
recently by means of multilayer network models. We will return to this in
Section 3.9.

3.3 Associative Memory

Hebb’s learning rule in the form of Eq. 3.2) led to another class of models,
those of associative memory. One of the remarkable properties of the human
brain is its ability to draw inferences or associations between all types of
mental images. For a long time the location of this mental capacity and the
respective mode of information storage posed a great puzzle. Although Hebb
proposed the synapse as a relevant storage element, it was not compatible
with neurophysiological experiments to ascribe to individual synapses a role
requiring a degree of reliability similar to that of storage locations in a con-
ventional computer. On the contrary, information storage in neural networks
turned out to be remarkably robust with respect to loss or malfunction of
some limited portion of the neurons. One possible explanation was provided
by storage concepts in which each newly arriving piece of information is
stored in a way that is “distributed” over many storage elements. Thus, loss
or malfunction of a portion of the memory causes merely a general degrading
of the quality of the stored information but not the total loss of individual
entries.

A proposal for a network model with such properties was made by Willshaw,
Bunemann, and Longuet-Higgins (1969), whose network uses threshold value
elements of the type (3.1). The information to be stored is presented in the
form of training pairs (x,y). x plays the role of the input pattern, y that

3. Neural Network Models 28

of the output pattern, and both are represented as binary vectors for which
the components take values 0 or 1. x plays the role of the “key” for the
associated pattern y. Proper operation of the network model of Willshaw et
al. requires that x be a vector with a large number of components, whereas
y may be of low dimension. The dimension N of y determines the number of
threshold value elements required. Each threshold value element computes,
as in the perceptron, a single component yr of the output pattern. It is given
by

yr = θ

(∑
i=1

Lwrixi − sr
)
. (3.15)

Here, sr is the threshold of element r and θ(.) is again the step function
defined in connection with (3.1). The right side of (3.15) can be evaluated
by N McCulloch-Pitts neurons, which receive the input pattern x through
N common input channels. Information storage occurs in the matrix of the
L×N “synaptic strengths” wri. These are to be chosen in such a way that
(3.15) assigns the correct output pattern y to each input pattern x.

Willshaw et al. considered the case where p training pairs
(x(1),y(1)), (x(2),y(2)), . . . , (x(p),y(p)) are to be stored, whose input patterns
of 1s and 0s each contain the same number k of 1s, e.g., x = 010100100 for
k = 3. Suppose that the positions of these 1s are not correlated with each
other and that their number k is small compared to the total number L of
components of a pattern. The input patterns thus consist almost completely
of 0s. On the other hand, the number of 1s in the output patterns y(ν) need
not be restricted in any way.

The storage of a training pair (x,y) = (x(ν),y(ν)) consists of setting all
weights wri satisfying both xi = 1 and yr = 1 to the value one (all the
weights are zero before storage of the first pattern). The remaining weights
remain unchanged. This is illustrated in Fig. 3.3a–c for the example of the
storage of three training pairs. The horizontal input lines carry the input
pattern, the vertical output lines the output pattern. A value wri = 1 is
designated by a mark at the intersection of input line i and output line r.
Those weights that have been changed for the storage of the most recently
offered pattern pair are identified by open circles.

After all of the p training pairs have been stored, the resulting memory matrix
becomes

wri = max
ν=1,...,p

(
y(ν)
r x

(ν)
i

)
. (3.16)

3. Neural Network Models 29

The threshold is set to the value sr = k − 1/2.

This choice of a memory matrix and threshold guarantees that all output
lines that were active during the storage of a training pair

(
x(ν),y(ν)

)
are

reactivated if the input pattern x(ν) is presented alone. Formally, this results
from the relation∑

i

wrix
(ν)
i =

∑
i

wri · y(ν)
r x

(ν)
i =

∑
i

y(ν)
r x

(ν)
i =

∑
i

x
(ν)
i = k > sr, (3.17)

which holds provided y(ν)
r = 1.

Figure 3.3d offers an illustrative example. Here, the memory array formed
after the steps shown in Fig. 3.3a–c is presented with the input pattern of
the training pair stored in step (b). In this case, k = 2, and all thresholds
take the value sr = 3/2. Each output line r active in storage step (b) has
left exactly k weights wri = 1 (r fixed) in the memory matrix; these are
highlighted in Fig. 3.3d by open circles. These weights “belong” precisely to
those k input lines which together were active in step (b), and, if the same
input lines are again activated, they produce the sum

∑
iwrixi = k > sr and

thus the excitation of all those output lines r that were active during storage
step (b).

Note that Fig. 3.3d also shows that the output pattern can contain, in addi-
tion to the correct 1s, a few erroneous 1s. Such an “erroneous 1” is present on
the second output line of Fig. 3.3d and is designated by an (∗). As illustrated
by the example, such errors occur whenever many training pairs activate the
same output line r and the opposite output value yr = 0 is to be assigned
to an input pattern which agrees partly with many of these pairs. However,
it can be shown that for pattern vectors with a sufficiently small proportion
of 1s (this assumption is strongly violated in the example of Fig. 3.3), these
errors occur with very low probability.

For a statistical estimate of the error probability of 0s, we introduce the
additional assumption that every output pattern contains a fixed fraction f ′

of 1s. However, we make this assumption for convenience of the mathematical
discussion only; it is not important for the function of the memory. We denote
the fixed fraction of 1s in each input pattern by f = k/L.

We consider a pattern ν and a component r of the output, to which the value
y(ν)
r = 0 is assigned for pattern ν. What is the probability for equation (3.15)

to provide the wrong output value yr = 1 if altogether p patterns are stored?

3. Neural Network Models 30

Abb. 3.3: Pattern storage in an associative memory matrix. The input infor-
mation is provided by the horizontal lines as a 0-1-pattern x of “activities.” The
output information y is the 0-1-pattern on the vertical lines. Each intersection
of an output line r and an input line i is assigned a “weight” wri (marked by
a symbol), which is set to the value one if both lines are active simultaneously.
The associations between the input and output patterns are stored in the matrix
determined in this manner. Fig. 3.3a–c show the implications of this rule for
three consecutive training pairs. The output y corresponding to the input pat-
tern x can be approximately reconstructed for each output line by summation
and thresholding, yr = θ(

∑
r wrixi − sr) (Fig. 3.3d). In Fig. 3.3d, the out-

put pattern reconstructed in this way deviates from the correct pattern in the
component designated by an (∗).

An incorrect value yr = 1 always occurs if∑
i

wrix
(ν)
i > sr. (3.18)

Because of the choice sr = k − 1/2 for the threshold, the left side of (3.18)
would have to assume its maximal value k. This can only occur if all of the k
1s of the input pattern x(ν), i.e., xi(ν), coincide with elements wri = 1. Since
y(ν)
r = 0, these elements can only come from training pairs µ 6= ν. Those k

values of the index i for which wri = 1 or xi = 1 are therefore uncorrelated
with one another. The probability for all k input 1s to coincide with elements
wri = 1, and thus the probability for the occurrence of an error in the output
value yr, is therefore

P ≈ qk. (3.19)

3. Neural Network Models 31

Here, q is the fraction of all weights which have been set to the value 1 during
the storage procedure. Since a weight wri keeps its initial value 0 if and only
if it “avoids” the coincidence of xi = 1 (probability f) and yr = 1 (probability
f ′) for all p training pairs (probability each time 1− ff ′), q is thus given by

q = 1− (1− ff ′)p ≈ 1− exp(−pff ′). (3.20)

Equations (3.19) and (3.20) thus yield the estimate for the probability of a
“false 1” (f = k/L)

P ≈ (1− exp(−pf ′k/L))
k
. (3.21)

The average fraction γ of “false 1s” in the output pattern then becomes

γ = P (1− f ′)/f ′. (3.22)

For fixed f ′, γ depends only on k, the ratio p/L of the number of stored pat-
terns, and on the input dimension L. A convenient parameter for discussing
the behavior of P is α = f ′p/L. Figure 3.4 shows the behavior of the error
probability P with the number k of 1s per input pattern for several values of
α. Below α ≈ 0.1, the error probability falls off rapidly with decreasing α.
There is always an optimal value kopt = ln 2/α of k that minimizes the error
probability for fixed α. The minimum is given by Pmin = 2−kopt ≈ 0.6181/α.

Abb. 3.4: Dependence of error probability (logarithmic scale) P on the number
k of 1s of the input pattern in the model of Willshaw et al. for parameter values
α = 0.1 (upper graph), α = 0.05 (middle graph) and α = 0.025 (lower graph).
For every α, there is an optimal value of k minimizing the error probability. For
α << 1, errors rapidly become very rare

3. Neural Network Models 32

The choice sr = k − 1/2 for the thresholds “just barely” enables the activa-
tion of an output line. If any 1s at all are lacking from the input pattern,
the value zero results in all output lines. Similarly, even a single missing
“synapse” (wri = 0 instead of wri = 1) prevents the output value yr = 1.
Thus, the system has practically no error tolerance with respect to failure
of a few “synapses” or a few missing input bits. However, the choice of a
lower threshold sr gives rise to such an error tolerance. This raises the error
probability P to

P =
k∑

ν>sr

qν(1− q)k−ν
(
k

ν

)
(3.23)

(for sr = k − 1/2 this reduces to the simpler expression (3.21)), but this
worsening can be compensated by choosing a correspondingly smaller value
for the ratio p/L , i.e., by a storage of a smaller number of patterns. This
corresponds to utilization of a smaller fraction of the “storage capacity.” The
advantage compared to the choice of threshold sr = k−1/2, however, is that
the error rate P is now robust with respect to a limited fraction of missing
synapses or with respect to the absence of some percentage of the input 1s.
The tolerable fraction of such errors can be estimated as follows: since sr < k
correct input 1s of an input pattern already suffice for activation of all the
correct output 1s, even if a relative fraction κ ≈ 1 − sr/k of all input 1s
were absent, an incorrect output pattern would not result. Here, it is of no
consequence whether these errors occur in the input pattern itself or whether
they arise due to the lack of a corresponding fraction of the “synapses”
wri = 1. In this way, the model offers a way to realize a distributed pattern
storage. A similar kind of storage is believed to be realized in the brain.

An especially interesting feature is that one can obtain the matrix wri using
Hebb’s Rule (3.2) by adding the condition that the value of a weight must
be strictly increasing and be bounded from above by the maximal value one.
Beginning with the initial values wri = 0, during a training phase one “forces”
the input and output lines to take on successively the binary values of all
training pairs (x(1), y(1)), (x(2),y(2)), ..., (x(L),y(L)) which are to be stored.
For each pair (3.2) is applied with ε = 1. Thus, one sets wri = 1 in the first

training pair satisfying both x
(ν)
i = 1 and y(ν)

r = 1 simultaneously. All wri
for which this never happens remain zero, which finally results in (3.14).

The nonlinear threshold operation by means of the function θ(.) defined in
(3.5) does not allow a mathematical analysis. However, a matrix memory

3. Neural Network Models 33

can also be realized by means of a linear ansatz. In this case, the threshold
operation does not occur, and the binary values may be replaced by continu-
ous variables. The resulting linear associative memory has been investigated
by Kohonen (1972, 1984a) and forms the subject of the following section.

3.4 Linear Associative Memory

An important difference between nonlinear and linear systems is the validity
of the superposition principle in the latter. The linear superposition of several
input patterns yields the same superposition of the corresponding output
pattern. Whether or not this is a desired property depends on the intended
application. However, in general this circumstance does imply a limitation
of linear models compared to nonlinear models: only in the latter case can
a linear combination of input patterns be associated with an independent
output pattern.

In the following, we consider the linear ansatz

yr =
∑
i=1

Lwrixi. (3.24)

Like Eq.(3.5), Eq. (3.24) can be interpreted as the transformation of an input
signal x by a number of “neurons,” now assumed linear, into an output signal
y.

We are again interested in the use of a system described by Eq.(3.24) as a
memory for a number of given “training pairs” (x(ν),y(ν)), ν = 1, 2, . . . , p. In

contrast to the previous section, the components x
(ν)
i and y

(ν)
i can now take

arbitrary continuous values. For example, x(ν) might be an array of pixel
intensities of a gray-level image, and y(ν) might contain some information
which is to be “associated” with this image. In particular, y(ν) may even
coincide with x(ν). In this case, one has a so-called autoassociative memory .
At first glance the association of a pattern with itself seems to promise little
new information. However, a useful effect results if the association succeeds
even in the case of an erroneous or incomplete input pattern. Autoassociation
leads in this case to elimination of errors and/or to completion of incomplete
input data.

3. Neural Network Models 34

The requirement that the p training pairs (x(ν), y(ν)) be stored constitutes a
condition on the N×L-matrix W of weights wri. The simplest approach con-
sists in minimizing the squared error E[W], averaged over all input patterns
of the matrix, which is dependent on the matrix W:

E[W] =
∑
ν=1

p
∑
r=1

N
(
y(ν)
r −

∑
i=1

Lwrix
(ν)
i

)
2 = Minimum. (3.25)

Several solution strategies are possible for minimizing E[W]. The three most
important are: (i) exact algebraic minimization by means of the so-called
pseudoinverse, (ii) application of an iterative gradient-descent procedure for
stepwise minimization of E[W], and (iii) use of the correlation matrix of
training pairs as an approximate solution for the weight array W.

The approaches (i) and (ii) lead essentially to the same solution and max-
imize the achievable “storage capacity.” However, as a solution technique,
(i) has the disadvantage of requiring a completely new computation of all
wri for each newly arriving pattern. Hence, this approach is unrealistic, at
least as far as applications to neural models are concerned. On the other
hand, method (ii) can be formulated as an iterative “learning rule” which,
for sufficiently frequent sequential “presentation” of the training pairs to be
stored, gradually produces the optimal weights wri. However, the change of a
weight wri in a learning step also depends on all the other weights wrj, j 6= i.
In this sense, alternative (iii) is still simpler. Moreover, the required correla-
tion matrix is easy to compute, and its formulation as an iterative “learning
rule” takes the form of Hebb’s rule. However, in general (iii) does not yield
the minimum of E[W] and hence its utilization of storage capacity is worse
than that of the optimal techniques (i) and (ii). This disadvantage is only
avoided in the case of pairwise orthogonal pattern vectors, i.e., x(ν) ·x(µ) = 0
for µ 6= ν. In this case, all three techniques are equally good, and (i) and
(ii) reduce to (iii).

Following this survey, we now discuss approaches (i), (ii) and (iii) in more
detail.

3.5 The Pseudoinverse as a Memory Array

The average error E[W] is a quadratic polynomial in the weight variables
wri. Minimality of E[W] demands the vanishing of all first derivatives with

3. Neural Network Models 35

respect to weight variables wri, i.e., the existence of the L× p equations

∂E

∂wri
= 2 ·

∑
ν=1

p

∑
j

wrjx
(ν)
j − y(ν)

r

 · x(ν)
i = 0, (3.26)

or, in matrix notation,

WXXT = YXT. (3.27)

Here, W is the N × L-matrix of weights wri, X is a L × p-matrix, whose
elements Xiν are given by the components of the input vector x

(ν)
i , and Y is

a N × p-matrix with elements Yrν = y(ν)
r .

Equation (3.26) is a linear equation for the weight array W. Comparison
with the original “storage condition” (3.24), which in matrix notation takes
the form

WX = Y, (3.28)

shows that (3.27) results from (3.28) after “right-multiplication” of both
sides by the matrix XT . If the square matrix XXT is invertible, one can
solve (3.27) for W, and one obtains

W = YXT (XXT)−1. (3.29)

However, the invertibility of XXT requires the presence of N linearly inde-
pendent input pattern vectors x(ν), which is usually not satisfied. For exam-
ple, the number p of input vectors might be smaller than N ; or, although
p > N , the dimension of the space spanned by the input vectors might be
lower than N .

The noninvertibility of the matrix XXT indicates that (3.28) possesses a
whole family of solution matrices W forming an affine space. However, the
uniqueness of the minimal solution can be restored by imposing an additional
requirement. An appropriate condition is the minimization of the squared
sum

∑
riwri2 of all weights wri. This requirement can be incorporated easily

into the original ansatz by minimizing the new functional E[W] + α
∑
riwri2

instead of E[W]. This, besides measuring error, also measures the magnitude
of an average weight. Here, α is a positive constant, and we take the limit of
α approaching zero at the end in order to recover the original minimization
problem.

3. Neural Network Models 36

This leads to the new minimization condition

W(XXT + α1) = YXT . (3.30)

For every α > 0, the matrix XXT + α1 has a well-defined inverse (because
uT (XXT+α1)u ≥ α‖u‖2, all its eigenvalues are positive). Hence, combining
this with the limit α→ 0, we obtain the closed expression

W = lim
α→0

YXT (XXT + α1)−1 ≡ YX̃ (3.31)

for a minimal solution of E[W]. The matrix

X̃ = lim
α→0

XT (XXT + α1)−1 (3.32)

is known as the pseudoinverse or Moore-Penrose inverse of X.

Whereas the inverse X−1 of a matrix X arises in solving the matrix equation
WX−Y = 0 for given X and Y in terms of the variables W, (and exists if and
only if there is a unique solution W, which is then given by W = YX−1), the
pseudoinverse X̃ arises in the present, more general problem of minimizing
the squared sum E[W], Eq. (3.25), of the matrix elements of the difference
matrix WX −Y. In contrast to the stronger condition WX −Y = 0, this
problem always has at least one solution, which can be expressed in terms
of the pseudoinverse X̃ in the form W = YX̃. If more than one solution
exists, the pseudoinverse chooses the one with the smallest possible sum of
the squares of the matrix elements. Unlike the ordinary inverse, which is
defined only for quadratic, nonsingular matrices X, the pseudoinverse exists
for any matrix (hence in particular for rectangular matrices), and it coincides
with the inverse X−1 whenever the inverse is defined.

3.6 Gradient Descent for the Computation of the
Memory Matrix

Frequently, it is desired to “memorize” new patterns and/or to change already
stored patterns adaptively — while the memory is being used — without
having to carry out a completely new computation of the weight array W
every time. This seems to be an important property for a neural model as
well.

3. Neural Network Models 37

Such requirements can be taken into account by an iterative procedure for
minimization of E[W]. Each iteration step consists of changing all the
weights wri in the direction of the negative gradient of E[W], or, in ma-
trix notation,

∆W = ε
p∑

ν=1

(
y(ν) −Wx(ν)

) (
x(ν)

)T
, 0 < ε << 1. (3.33)

Since E[W] is a quadratic function of the matrix elements wri, this proce-
dure leads to a monotonic decrease and eventually to the global minimum
of E. In the case of a family of minimal solutions, the asymptotic solution
depends on the initial value of W, and, in contrast to the solution using
the pseudoinverse, it is generally not characterized by having the smallest
possible sum of the wri2.

Equation (3.33) can be regarded as the result of the superposition of p
“learning steps,” where each learning step corresponds to a term in the
ν-summation and can be interpreted as a change of the weights during a
“presentation” of the training pair (x(ν),y(ν)). If every training pair occurs
with the same probability and the “learning step size” ε is sufficiently small,
then on the average (3.33) corresponds to the simpler prescription

∆W = ε′(y(ν) −Wx(ν))(x(ν))T , ε′ = ε/p. (3.34)

Comparison of 3.34 and (3.4) shows that (3.34) is nothing more than a variant
of the perceptron rule discussed above. The present derivation augments the
previous discussion of the perceptron rule by showing us that this rule can be
interpreted as a gradient descent procedure for the average squared response
error.

3.7 The Correlation Matrix Memory

The perceptron rule (3.34) requires that a matrix multiplication Wx(ν) is
carried out for each learning step. Hence, the change of any single weight wri
involves the values of all the remaining weights wrj, j = 1, . . . , L. In order to
carry out the procedure in practice, for example in very large scale integrated
(VLSI) circuits, it would be desirable to have a simpler rule that would work

3. Neural Network Models 38

without this dependence. In fact, in many cases one can do without the term
Wx(ν) in (3.34). This leads to a rule of the form

∆W = ε
(
y(ν)(x(ν))T −W

)
, ε > 0. (3.35)

Here, as opposed to (3.34), an additional decay term −W has been intro-
duced for the sole purpose of automatically normalizing W; it can be left
out if the normalization is otherwise guaranteed.

In the limit of small step size ε the matrix W converges by means of (3.35) to
the correlation matrix 〈yxT 〉, where 〈.〉 denotes averaging over the presented
pattern pairs. A matrix memory based on this choice of W is therefore
known as a linear correlation matrix memory . If the training pairs all occur
with equal frequency, one has

W =
1

p

p∑
ν=1

y(ν)
(
x(ν)

)T
. (3.36)

For pairwise orthogonal pattern vectors x(ν), one easily sees that (3.36) leads
to a memory matrix with the desired property Wx(ν) = ‖x(ν)‖2 ·y(ν). In this
case, the correlation matrix memory evidently works in an error-free manner,
(the factor in front, ‖x(ν)‖2, can be regarded as an “intensity normalization”
and disappears if normalized input vectors xν are used). In particular, a
maximum of p = N such pattern vectors can be stored in this manner.

Deviations from pairwise orthogonality lead to “ cross-talk” between different
patterns and, thus, to a decreased storage capacity: for an input pattern x(ν),
the resulting output signal is

y = ||x(ν)||2
y(ν) +

∑
µ 6=ν

y(µ) x(µ) · x(ν)

||x(ν)||2

 . (3.37)

Equation (3.37) shows that, superimposed on the correct output pattern y(ν),
there are contributions from all the remaining patterns µ, µ 6= ν for which
the scalar product x(ν) · x(µ) with the input pattern x(ν) does not vanish.
A proper functioning of the linear correlation matrix memory thus requires
that these scalar products be small and, hence, that the patterns be at least
approximately orthogonal.

As a consequence, the operation of a linear correlation matrix memory can be
significantly improved by a previous orthogonalization of the input patterns

3. Neural Network Models 39

x(ν). A simple and often appropriate procedure (e.g., for many kinds of image
data) is a high-pass filtering of the input signal. The slowly varying parts of
signals are then suppressed, and only the “high-frequency” (in space or time)
part of the signal is kept. Subtracting from each component, its average value
can be regarded as the simplest version of such high-pass filtering.

The models discussed so far have no feedback. Feedback is present if some
of the input is provided by the output lines. This situation, which compli-
cates a theoretical analysis considerably, is almost always found in real nerve
systems. The smallest degree of complication occurs in the case of the lin-
ear matrix memory, considered here. A qualitative summary of its behavior
when feedback is present can easily be given. If the dimensions of the input
and output vectors agree, (L = N), the process of repeatedly feeding the
output back into the input is equivalent to replacing the memory matrix W
by the matrix taken to some higher power. After t loops, the initial vector
x(0) becomes

x(t) = Wtx(0). (3.38)

For a diagonalizable memory matrix W, x(t) converges (up to a normaliza-
tion factor) for large t to its projection on the eigenspace corresponding to
the eigenvalue of W with the largest absolute value. The components of x(0)
along the eigenvectors with small eigenvalues of W fall off most rapidly. If,
for example, W has been determined using (3.36), and if p stored patterns
are approximately orthogonal to each other, then the eigenvalues of W may
form two “clusters”, one cluster consisting of p eigenvalues of nearly the same
magnitude near 1/p, the other consisting of N−p eigenvalues near zero. The
eigenvectors corresponding to the latter eigenvalues are approximately or-
thogonal to the stored patterns. Hence, an input vector is generally “driven”
in the direction of the “most similar pattern” among the p stored patterns.
Competition between the stored patterns eventually occurs after many itera-
tions, and x(t) converges to the eigenvector whose eigenvalue has the largest
absolute value. Since W is nearly degenerate in the space spanned by the
stored patterns, this eigenvector need not necessarily agree with any of the
stored patterns.

Since the eigenvalue of greatest magnitude will usually differ from unity, the
norm of x(t) gradually tends either to zero or infinity. Hence, for a realistic
model, the introduction of nonlinearities is unavoidable, at least for stabi-
lization. One of the earliest suggestions of this kind goes back to Anderson

3. Neural Network Models 40

et al. (1977) and is known as the “Brain State in a Box” (“BSB” model),
since an appropriate nonlinearity constrains x(t) within a multidimensional
box.

The mathematical analysis of systems with feedback of this type turns out to
be much more difficult than in the linear case. In particular, it seemed quite
hopeless for a long time to go much beyond computer simulations for nonlin-
ear threshold value models with McCulloch-Pitts neurons. This changed in
1982 due to an important idea of Hopfield (1982), which forms the subject
of the following section. For other important contributions related to these
questions see, for example, the papers by Grossberg (1976ab,1978), Kohonen
(1984a), as well as Cohen and Grossberg (1983).

3.8 The Hopfield Model

If a portion of the output lines is fed back to the inputs, the corresponding
portion of the output patterns y can contribute to the input pattern x. An
especially interesting case arises for y = x, i.e., every input pattern is asso-
ciated with itself as output (autoassociation). If one presents an incomplete
input pattern to a recurrent system in which such training pairs are stored,
then at first a correspondingly incomplete output pattern results. However,
if output is fed back, the intact portion may be sufficient for reconstruction of
part of the missing input data. The system may react to the improved input
pattern with an improved output, which in turn reconstructs even more of
the input pattern, etc. until finally the system winds up in a state in which
the input pattern is completely restored.

Such feedback mechanism can enable recall of the complete pattern on the
basis of an incomplete input fragment. Such a capability of pattern restora-
tion is an important requirement for high-performance data processing and a
prominent feature of biological nervous systems, which are highly optimized
in the processing of incomplete information from their natural environment.

Due to feedback, every neuron affects the inputs to all the other neurons.
The behavior of such a system is generally quite difficult to analyze. How-
ever, by exploiting an analogy to interacting many-particle systems from
statistical physics, Hopfield (1982) was able to characterize the behavior of
an interesting class of such systems in an elegant model.

3. Neural Network Models 41

Hopfield’s original model employs McCulloch-Pitts neurons. In the following,
we give a version with “±1-neurons”. Because of the feedback, now the
input pattern of each neuron i is constructed from the states yj of all the
other neurons. The state of neuron i at the latest time step is determined
according to

y
(new)
i = sgn

∑
j,j 6=i

wijy
(old)
j

 . (3.39)

Here, sgn(x) deno tes the “ sign function”, i.e., is equal to +1 for x ≥ 0 and -1
otherwise. The “update-steps” (3.39) are carried out “ asynchronously,” i.e.,
the state of a neuron is updated at discrete times chosen to be uncorrelated
among the neurons.

The solvability of the models follows from the requirement of symmetric
matrix elements, i.e., wij = wji for all index pairs (i, j). In this case, (3.39)
describes the stochastic dynamic of a physical spin system with an “ energy
function”

H(y) = −1

2

∑
i,j

wijyiyj, (3.40)

where wii = 0.

Whenever (3.39) leads to a change ∆yi 6= 0 of yi, it can be written in the
form

∆yi = 2 · sgn

∑
j,j 6=i

wijyj

 (3.41)

By symmetry of the wij, the corresponding change ∆H of H is then

∆H = −∆yi ·
∑
j

wijyj

= −2 ·

∥∥∥∥∥∥
∑
j

wijyj

∥∥∥∥∥∥ ≤ 0, (3.42)

i.e., H decreases until either the quantities
∑
j wijyj all vanish (an exceptional

situation arising only for “pathological” choices of wij), or the adaptation rule
(3.39) does not yield any further change in state. In this (common) case, the
system reaches a stationary “ fixed point.”

This allows a rather clear interpretation of the time evolution of the neural
activities described by (3.39). H(y) defines a “ potential surface” on the

3. Neural Network Models 42

state space of all possible binary vectors y. Starting from an initial state
y(0), the system moves downhill along the gradient of H(y) until it comes
to rest at a local minimum (a “perpetual” descent is impossible, since only
finitely many states are available to the system). If the input pattern defines
the initial state y(0), the minimum attained by the network is the output
associated with the input. Every minimum in the potential surface is the
lowest point of a “basin” or “sink” surrounding it. All the input patterns
within this basin are attracted to the basin minimum by the system dynamics
and, thus, yield the same output pattern. Hence, one also refers to basins of
attraction surrounding the local minima.

By an appropriate choice of wij, one can “mold” the potential surface and,
in particular, place local minima at desired target patterns ξν. The system
dynamics will then be able to restore a fragmentary input pattern to that
target pattern ξν, whose basin of attraction encloses the input pattern. The
completion of fragmentary information in the Hopfield model thus is obtained
through gradient descent on a potential surface.

The choice of the wij is based on the specified target patterns to be stored.
For uncorrelated binary patterns consisting of equally many positive and
negative elements an appropriate choice is

wij =
1

N

p∑
ν=1

ξνi · ξνj . (3.43)

Here, N is the number of neurons, p is the number of patterns and ξνi the
ith component of the νth pattern vector ξν , ν = 1, 2, . . . , p.

Abb. 3.5: (left) This pattern is stored together with 19 others in a Hopfield
model consisting of 400 neurons. (right) All of the other 19 patterns are “random
patterns” of the type shown; 50% of randomly chosen pixels are black.

3. Neural Network Models 43

In the following, we present an example of a simulation for a network con-
sisting of 400 neurons. In this case, 20 patterns are stored according to the
prescription (3.43). The first two of these patterns are shown in Figure 3.5.
Each -1 is represented by a white pixel, each +1 by a black pixel. Only the
first pattern represents a recognizable motif (Fig. 3.5a); all of the remaining
19 patterns are “random patterns,” each consisting of 50 percent randomly
chosen white and black pixels; a representative example is shown in Figure
3.5b.

Abb. 3.6: Completion of a fragmentary input pattern. Only the upper 25% of
pattern 1 is presented to the network (left). After one timestep, the complete
pattern can already be recognized (middle); two steps later, the pattern has been
correctly completed (right).

Abb. 3.7: Reconstruction of a noisy input pattern. This time, the input is the
complete pattern 1, but, with a probability of P=0.3, every pixel of the image
has been changed (left). After only one timestep, nearly all of the errors are
eliminated (middle), and after an additional step the correct pattern 1 is restored
(right).

3. Neural Network Models 44

Abb. 3.8: Like the preceding sequence of images, but for P=0.4. In this case,
the network is no longer able to restore the original pattern, and it converges to
one of the 19 other random patterns.

In Figure 3.6, we see the reaction of the network, if just the upper quarter
of pattern 1 is presented as input. In the course of a few timesteps (each
timestep includes update steps for all neurons) the pattern is correctly com-
pleted.

Figure 3.7 shows a similar simulation. This time, pattern 1 is corrupted by
changing each pixel of the image with a probability P=0.3. This corresponds
to the presence of intense “ signal noise.” Although the original motif is
hardly recognizable, within a few time steps all of the “errors” have been
corrected.

Figure 3.8 shows a repetition of this simulation, but this time with P=0.4.
In this case, the network is no longer able to restore the original motif, and
the output pattern converges to one of the other stored random patterns.

The weight choice (3.43) is sufficient for pattern recall, provided that the
number p of stored patterns is not too large. If the number of patterns is
increased beyond a critical threshold, the character of the potential surface
changes, and the system no longer functions as a memory for the specified
input patterns. This can be qualitatively understood as follows. If all of the
neurons are in a pattern state, for example y = ξ1, then

∑
j

wijyj =
1

N

∑
j

(
ξ1
i · (ξ1

j)
2 +

p∑
ν=2

ξνi ξ
ν
j ξ

1
j

)

= ξ1
i +

1

N

∑
j,ν>1

ξνi ξ
ν
j ξ

1
j . (3.44)

3. Neural Network Models 45

After separation of the terms with ν = 1, the remaining summation on the
right side consists of N · (p − 1) uncorrelated terms of value ±1 and with
average value zero. Hence, the sum is itself again a random variable with

average value zero, but with variance
√
N(p− 1), and we can write (3.44)

approximately as ∑
j

wijξ
1
j = ξ1

i + η ·
√
p− 1

N
, (3.45)

where η is a normally distributed random variable with variance one. The
second term in (3.45) shows that the stored patterns act like “ Gaussian
noise” superimposed on the currently active pattern. Nevertheless, provided
p << N , the first term in (3.45) dominates, and the system is immune to
the noise, since in this case (3.39) does not lead to a change in any neuron
states. However, if p gets to be of order N , the influence of the noise becomes
comparable to the effect of the currently active pattern itself. In that case,
we can no longer expect to find stability for any stored pattern. A more
precise computation shows that the critical transition occurs at p ≈ 0.146N .
In the analogous physical spin system, one encounters at this value a phase
transition to a so-called spin glass state (Amit et al. 1985).

The choice (3.43) for the storage of given patterns is not the only possible
one. By means of more general procedures, for example iterative methods,
or by a more sophisticated coding of the patterns, on can store a larger
number of patterns. However, for an estimate of the storage capacity of a
network, the mere number of patterns that can be stored is not the only
important variable. In addition, one has to consider the information content
per pattern as well as the information contained in the synaptic strengths wij.
For a thorough discussion of these interesting questions, the reader is referred
to the literature (see Palm 1980, 1981; Amit et al. 1985, 1987; Gardner and
Derrida 1988; Buhmann et al. 1989).

The Hopfield model of associative memory is less than optimal in many
respects. For example, it is ill suited for the storage of correlated patterns.
Another problem arises in connection with invariance: the model judges
the similarity of patterns exclusively according to the number of pixels that
coincide. Hence, it is unable to recognize the equivalence of patterns that
differ only by a simple transformation, such as, by a translation.

Nonetheless, the model is of great conceptual significance, since it constitutes
a fully connected neural network for which many questions can be given an

3. Neural Network Models 46

analytical answer. In particular, the Hopfield model initiated the use of many
highly developed mathematical methods of statistical physics and thus made
important new tools available for the field of neural computation. Therefore,
it formed the basis for numerous new developments and motivated important
new questions, and it was thus a forceful stimulus for the major upsurge in
“ neural computing” at the beginning of the eighties.

3.9 The Back-Propagation Algorithm

In the Hopfield model, every neuron is connected to every other neuron.
Hence, with respect to its connections, the model has no “internal structure”
and is “homogeneous.” However, neural networks are usually structured.
A structure encountered frequently results from connecting several layers of
neurons in series. The first layer is usually reserved for input patterns. Every
neuron of this layer sends out connections to every neuron of the next layer.
This continues until the last layer has been reached, whose activity pattern
constitutes the output.

Each individual layer can perform a partial transformation of the activity pat-
tern of the preceding layer. For the perceptron — corresponding essentially
to a single layer — we saw that a serious limitation of the possible trans-
formations between input and output occurs. Hence, an important question
concerns how to overcome the limitations of the perceptron by connecting
several layers in series and thus concatenating their transformations.

In contrast to the perceptron and to nets of the Hopfield type, a layered
feed-forward network contains hidden units that are not directly connected to
input or output lines. Therefore, the activity state of these neurons cannot be
affected directly by the “outside world,” but can only be influenced indirectly
through the internal circuitry of the network. The perceptron convergence
theorem described in Section 3.2 guarantees that the weights of a network
with a single layer of units can be trained with a finite number of adaptation
steps. However, this theorem cannot be generalized to feed-forward networks
with hidden units. Because the hidden units are only indirectly affected
by input signals, the following problem arises: if the given task has been
performed badly, it is not clear which of the weights are responsible for the
bad result and how they have to be changed. This problem is known as the
credit assignment problem and was one of the reasons which led to the demise

3. Neural Network Models 47

of the perceptron and its multilayer successors in the 1960s. The back-propa-
gation algorithm (Werbos 1974; Rumelhart, Hinton and Williams 1986) is
an interesting approach to solve this problem. We describe this procedure
for a network which consists of three layers: an input layer, a “hidden layer,”
and an output layer, as shown schematically in Fig. 3.9.

Abb. 3.9: Three-layer neural net. Each layer sends connections to the layer just
above it. The input pattern is applied to the neurons of the bottom layer, while
the neuron activities of the top layer constitute the output pattern.

We designate neurons of the output layer, the hidden layer, and the input
layer by denoting indices i, j and k, respectively. In contrast to the earlier
models, here each neuron has a continuous output activity between zero and
one. The activity sj of a neuron j of the hidden layer is given by

sj = σ

(∑
k

wjksk

)
. (3.46)

Here, sk are the activities of the neurons k in the input layer, i.e., we identify
sk with the components xk of the input vector. σ(x) is a sigmoid func-
tion, i.e., σ(x) is nonnegative, everywhere monotonically increasing, and
approaches the asymptotic saturation values zero or one, respectively for
x→ ±∞. σ(x) describes the response of a neuron to a total synaptic input
x. A frequent choice for σ(x) is the “ Fermi function”

σ(x) =
1

1 + exp(−x)
(3.47)

presented in Fig. 3.10.

3. Neural Network Models 48

Abb. 3.10: Graph of the Fermi function σ(x) = (1+exp(x))−1, a typical choice
for the response function σ of a neuron

The activities of the neurons of the output layer are

si = σ

∑
j

wijsj

 , (3.48)

and provide the output values yi ≡ si. According to (3.46) and (3.48),
for each input pattern x an output pattern y is assigned. This assignment
depends on the values of the synaptic strengths wij from the hidden layer
to the output layer and on the synaptic strengths wjk from the input layer
to the hidden layer. 2Equations (3.46) and (3.49) do not contain explicit
“excitation thresholds”. These can be taken into account in the form of
synaptic strengths wi0 and wj0 by taking for each layer s0 = −1.

We now seek wij and wjk such that the network maps some given number of
input patterns xν onto given output patterns yν , ν = 1, 2, . . . , p. A measure
of how well the network performs this task is the sum of the squared errors
over all training pairs (xν ,yν)

E =
1

2

p∑
ν=1

∑
i

(yνi − si(xν))
2 . (3.49)

For a set of given, fixed training pairs, E is a function of all the synaptic
strengths wij and wjk. Here, the wij and wjk are optimally chosen if the error
E is minimized. The determination of appropriate synaptic strengths is hence
equivalent to the problem of minimizing the function E. The gradient de-
scent procedure offers the simplest way of doing this. The back-propagation

2 †

3. Neural Network Models 49

algorithm is a parallelized computational scheme for carrying out an approx-
imate gradient descent for E.

To do this, all of the wij and wjk are modified iteratively according to wnewab =
woldab + ∆wab where

∆wab = −α · ∂E
∂wab

. (3.50)

For sufficiently small α > 0, one will then move along the direction of steepest
descent of E. The change of E during such an iteration step is approximately

∆E =
∑
ab

∂E

∂wab
∆wab = −α

∑
ab

(
∂E

∂wab

)2

≤ 0. (3.51)

The derivatives ∂E/∂wab are obtained using the chain rule. For the connec-
tions wij between the hidden layer and the output layer we have

∂E

∂wij
= −

∑
ν

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · sj; (3.52)

and for the connections wjk from the input layer to the hidden layer we have

∂E

∂wjk
= −

∑
ν

∑
i

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · wij ·

∂sj
∂wjk

= −
∑
ν

∑
i

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · wij

×σ′(
∑
k′
wjk′sk′) · sk. (3.53)

Both expressions consist of sums over contributions from specified input
training pairs (xν ,yν). If α is sufficiently small, it makes little difference
if just one ν-term of (3.52) or (3.53) is taken into account at each iteration
(3.50), provided that every term is on the average included equally often.
This leads to the update rules

∆wij = α · ενi · sjsi(1− si),
∆wjk = α ·

∑
i

ενi · sksi(1− si) · wij · sj(1− sj) (3.54)

for the wij and wjk connecting hidden and output layer, and connecting input
and hidden layer, respectively. Here, we have defined ενi = yνi − si(x

ν) for

3. Neural Network Models 50

the ith “output error” in the νth input pattern, and we have employed the
expression σ′(x) = σ(x)(1−σ(x)) which is valid for the Fermi function (3.47).

Expressions (3.54) can easily be generalized to the case of more than one
hidden layer. In the following, let a and b designate arbitrary neurons of two
consecutive layers, and let b lie in the layer preceding a. The change ∆wab
of the weight wab under an iteration with the specified input training pair
ν is a summation over contributions Dγi . Each contribution belongs to one
neuron i of the output layer and to a sequence γi of connections leading from
neuron a to neuron i. The summation is to be performed both over all the
different sequences of this kind, visiting each layer between a and the output
layer only once and over all possible choices of the output neuron i, i.e.,

∆wab =
∑
i

∑
γi

Dγi . (3.55)

Each contribution Dγi consists of a product of factors along the “connecting
path” γi. The individual factors are obtained according to the following rules:

1. For each “visited” neuron n along the path γi, one obtains a factor
sn(1− sn), where sn is the activity of neuron n.

2. For each connection between two consecutive neurons n, n′ along the
path γi, one obtains a factor wnn′ .

3. Additionally, one has a factor α · ενi · sb. Here, ενi is the output error of
the neuron i at the end of the connecting path.

Equations (3.54) allows the following interpretation: for each iteration, a
training pair (xν ,yν) is selected and the activities of the neurons in the input
layer are set to values xν . On the basis of the resulting neuron activities in
the remaining layers and the error ενi occurring at the output layer, the
network carries out a “learning step” such that the output error for pattern
ν is decreased.

The hope is to gradually reduce the error E to zero or at least to negligi-
bly small values for all specified input patterns, provided sufficiently many
learning steps are made. However, the problem of local minima can arise. As
a rule, E is an extremely complicated function of all the synaptic strengths
wab and, hence, it can have numerous local minima. Depending on the initial

3. Neural Network Models 51

values specified for the wab, the gradient-descent method always leads to the
nearest minimum, independently of how far it lies above the absolute min-
imum. Thus, the learning procedure can get “stuck” prematurely although
the network has not yet solved the problem. Whether or not a good minimum
is attained depends in a generally unpredictable way on the initial values for
the synaptic strengths and on the (generally unknown) form of the “ error
surface” E. A further difficulty is caused by parameter regions, for which the
height of the error surface hardly varies with wab. There, the gradient is very
small and, thus, the adaptation steps (3.55) yield negligible changes. This
difficulty is the price for a completely “general” learning algorithm, which is
supposed to solve a given problem without any a priori information.

In spite of these problems, the back-propagation algorithm represents a sig-
nificant step forward. In particular it allows the solution of problems that
cannot be solved with a single-layer perceptron. One problem of this kind
that is frequently considered is the logical “ exclusive-or-gate,” which assigns
the output value 1 to an input if and only if one input is equal to 0 and the
other is equal to 1.

In the back-propagation algorithm, the solution of such problems becomes
possible because, in contrast to the perceptron, the system has access to
additional, “ hidden” neurons. The activity of these neurons provides an
internal representation of the input patterns. By evolving appropriate con-
nections wjk, the system can develop internal representations that make the
problem solvable for the following layer. We demonstrate this by means of
a simulation example, the so-called “ encoder problem” (Rumelhart et al.
1986).

We consider a network consisting of three layers. The input and output
layers each contain N neurons, numbered from one to N . The middle layer
contains M < N neurons. The learning task of the network is to respond to
the activation of a single neuron n in the input layer with the activation of
a single neuron n in the output layer, i.e., activation of that neuron whose
index coincides with the index of the activated input neuron.

If the hidden layer also had N neurons, the solution would be simple and ev-
ident: each input neuron would be connected directly via one of the hidden
neurons to “its” output neuron. However, since the layer in between pos-
sesses less than N neurons, it constitutes a “bottleneck” for the transfer of
information, and the network must find some way of getting the information

3. Neural Network Models 52

through this bottleneck. One possibility consists in discovering an appropri-
ate data coding — hence the name “ encoder problem” — which can make
do with M elements for the representation of the information.

Figure 3.11 shows the result of a computer simulation for a network with N =
8 and M = 3 after 10,000 learning steps with a step size of α = 0.25. The
initial values of all connections were chosen to be pseudo-random numbers
in the interval [−2, 2]. Each of the eight specified input patterns xν was
given by xνk = 0.1 + 0.8δkν , i.e., the νth neuron received the input 0.9, all
others 0.1. The inputs 0.9 and 0.1 for “active” and “inactive” were used to
avoid convergence difficulties, since the Fermi function σ(x) produces binary
outputs zero and one only for x = ±∞ (this would require infinitely large
weights wab).

Figure 3.11 shows for each of the eight possible input patterns the resulting
neuron activities. The bottom row of each picture shows the input layer, the
middle row consists of the three “hidden” neurons, and the upper row shows
the output layer. Each square symbol stands for one neuron, whose activity
is indicated by the size of the square.

One sees that the network has solved the problem successfully. A look at the
activity patterns of the middle layer reveals the solution strategy developed
by the network. The neurons of this layer have organized their connections
in such a way as to assign to each of the eight input patterns a 3-bit binary
code, thus enabling the transfer of the required information through the
“bottleneck.”

This example shows how a network can “discover” interesting internal data
representations, in this case the binary code. This is relevant to a key ques-
tion of neural computing: What internal data representations are required
in order to solve a given problem by means of a massively parallel network?
With the back-propagation algorithm one has a method to construct net-
works performing some desired task. One then can analyze the structure
of the networks thus obtained in order to gain new insights how parallel
networks can solve various computational tasks. This approach, occasion-
ally termed “neurophysiology in the computer,” may also help to interprete
neurophysiological findings about “real” neural networks and to guide new
experiments. For instance, interesting parallels have been noted between the
response of “neurons” in the computer and neurons in biological networks (
Sejnowski and Rosenberg 1987; Zipser and Andersen 1988).

3. Neural Network Models 53

Abb. 3.11: Internal data coding found by the back-propagation algorithm for
the “encoder problem.” In each picture, one of the eight lower input neurons is
activated. The task of the network is the activation of the corresponding output
neuron in the upper layer. The input neurons cannot reach the output neurons
directly, but only by imposing an “intermediate coding pattern” on the three
neurons of the middle layer. From their activities it is evident that the network
figurehas “discovered” in essence a binary coding of the eight input patterns.

3.10 Self-Organizing Maps

In all of the previous models, a key role was played by the connections be-
tween neurons. In the Hopfield model, every neuron was connected to every

3. Neural Network Models 54

other one, and the only (but, from a biological point of view rather restric-
tive) constraint was the symmetry wij = wji. The feed-forward nets of the
previous chapter were already organized into a number of layers connected in
a fixed order. However, thus far the location of each neuron within a layer has
played no role for the outgoing or incoming connections. This was a direct
consequence of connecting every neuron of one layer to every neuron of the
subsequent layer. With self-organizing maps, one deals with models in which
the ordering of the neurons, i.e., within a layer structure, plays an important
role. One is concerned with the question of how the neurons should orga-
nize their connectivity in order to optimize the spatial distribution of their
responses within the layer. Here, the purpose of the optimization is to con-
vert the similarity of signals into proximity of excited neurons. Neurons with
similar tasks can thus communicate over especially short connection paths.
This is a very important property for a massively parallel system. A fur-
ther consequence of such optimization is the formation of topographic maps
of the input signals, in which the most important similarity relationships
among the input signals are converted into spatial relationships among the
responding neurons. This conversion can be viewed as a process of abstrac-
tion, suppressing trivial details and mapping the most important properties
or features along the dimensions of the map; this is once again relevant to
the important problem of the construction of internal data representations.
An important special case of such maps is the occurrence of topographically
organized projections from a receptor layer to a layer of sensory neurons. This
corresponds to the occurrence of simple maps, representing on the neuron
layer a (distorted) image of the receptor layer. A theory of the formation
of such projections on the basis of synaptic plasticity was suggested by von
der Malsburg and Willshaw (Willshaw and von der Malsburg 1976; von der
Malsburg and Willshaw 1977). These authors consider a neural layer A,
from which output nerve fibers are supposed to grow into a second layer B
such that the neighborhood relationships in A are preserved under this “
projection.” To this end they postulate in layer A the presence of at least
two different “ marker substances” i = 1, 2, . . . , with concentration gradients
such that their local concentrations ci(r) uniquely determine the position r
everywhere in A. The nerve fibers leaving r are assumed to transport these
marker substances in a mixing ratio characteristic of their origin r and to
give them off at all points in B with which they make synaptic contact. In
this way, position-dependent concentrations c′i(r

′) of the marker substances
are formed in B as well. The evolution of the strength of each synapse in

3. Neural Network Models 55

B is then determined by two competing contributions. One contribution is
a decay term driving the strength of a synapse slowly to zero. The other
is a growth term. The better the agreement between the mixing ratios of
the marker substances present at the position of the synapse in B and the
mixing ratio of the markers given off by the synapse itself, the larger is this
growth term. This favors establishment of neighboring synaptic contacts
in B for nerve fibers that originate from neighboring positions in A and, as
demonstrated by von der Malsburg and Willshaw, leads to the formation of a
topographically ordered projection between A and B. By means of computer
simulations, von der Malsburg and Willshaw were able to demonstrate a good
agreement between the properties of this model and experimentally known
findings. In a series of papers, this model was elaborated further in various
directions, and new variations were proposed that were capable of explaining
additional details, such as the formation of cortical microcolumns (Takeuchi
and Amari 1979).
These models often endeavored to be more or less faithful to biological details.
A more abstract, and at the same time more general, approach was subse-
quently suggested by Kohonen (1982a) for the formation of self-organizing
sensory maps. We will discuss his model for the formation of such maps in
more detail in the subsequent chapters of this book. The Kohonen maps
offer a very good point of departure for presenting how a multitude of data
processing problems can be solved by means of a small number of powerful
basic principles. At the same time, the simplifications and computational
savings due to abstraction from biological details not only allow computer
simulations of interesting applications, but also are suited for a far-reaching
mathematical analysis.

