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15. LOCAL LINEAR MAPPINGS

In the treatment of robot control tasks, we have seen that often the use of
matrices, i.e., linear mappings, as output values provides a useful extension
of output learning maps. In the simulation of visuomotor coordination, the
network learned the transformation between the visual image of the target
point and the joint angles for the required arm position. Each neuron repre-
sented this nonlinear transformation for a neighborhood of a grid point. To
this end, it had a matrix available that gave the linear part of the expan-
sion of the transformation about the relevant grid point. In this way, the
required transformation was approximated by an adaptive superposition of
many linear mappings, each one valid only locally. Compared to the use of
fixed output values, this yields a considerably higher accuracy with the same
number of neurons.
Another interesting possibility was demonstrated for ballistic movements in
Chapter 13. There, an output quantity (torque amplitude), varying as a func-
tion of further parameters (components of the target velocity), was assigned
by means of an array to each input signal (arm position) which describes
a linear relationship between torque amplitudes and velocity components.
Such linear relationship represented by a matrix eliminates the necessity of
representing the further parameters (e.g., velocities) in the map as well, and,
hence, the dimension of the space to be projected onto the lattice can be
significantly reduced.
A precondition for such a strategy is a splitting of the input variables
v1, v2, . . . , vd into two (not necessarily disjoint) sets {v′1, v′2, . . . , v′a} and {v′′1 , v′′2 , . . . , v′′b }
such that

{v1, . . . , vd} = {v′1, . . . , v′a} ∪ {v′′1 , . . . , v′′b },

and such that that output quantities f locally depend only linearly on one of
the sets, i.e.,

f = A(v′)v′′. (15.1)
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Here, we have put v′ := (v′1, . . . , v
′
a), v′′ := (v′′1 , . . . , v

′′
b ). All those parameters

not represented in the map themselves are included in v′′.
Such a splitting is possible in many cases. For example, in Chapter 11 the
vector v′ consisted of the coordinates u of the target point in the two camera
fields of view. The vector f was the change of the joint angle under a small
shift v′′ of the location of the end effector in the camera fields of view.
In Chapter 13, v′ stood for the joint angles of the arm, f was the torque
amplitude in the joints, and v′′ was the resulting velocity to which the end
effector was accelerated under the action of f .

15.1 The Learning Algorithm
for Local Linear Mappings

In this section we formulate the general version of the learning algorithm
already derived for the special discussed in Chapters 11, 12, and 13.
We assume as before that the only available information is a sequence of
n-tuples (v′,v′′, f) satisfying (15.1). These are created during the learn-
ing phase by the reaction of the system to, e.g., pseudo-randomly selected
targets. In visuomotor coordination (Chapter 11), for example, v′ was the
position in the field of view of the target point and v′′ and f were the changes
of the position in the field of view of the end effector and the joint angles
during fine positioning. In the ballistic movements of Chapter 13, the v′ were
the arm joint angles, and v′′ was the velocity of the end effector due to an
acceleration with torque amplitudes f .
The task of the network is to learn the matrix A(v′) of Eq. (15.1) for each
v′. As was shown in Chapter 11, this can occur by means of a linear error
correction rule. Together with the principle of neighborhood cooperation in
Kohonen’s original model, this leads to the following learning algorithm:

1. Register the next input signal (v′,v′′, f).

2. Determine the lattice site s := φw(v′), assigned to v′ in the map.

3. Compute an improved estimate A∗ for the linear mapping Aold
s of the

chosen lattice site s

A∗ = Aold
s + δ ·

(
f −Aold

s v′′
)
(v′′)T (15.2)
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4. Carry out a learning step

Anew
r = Aold

r + εhrs

(
A∗ −Aold

r

)
(15.3)

for the assignment of linear mappings Ar.

5. Carry out a learning step

wnew
r = wold

r + ε′h′rs
(
v′ −wold

r

)
(15.4)

for the synaptic strengths wr, and continue with Step 1

We encountered this algorithm in its application to the control of a robot
arm by means of computer simulations. In the following, we analyze the
algorithm mathematically in more detail. We are mainly interested in the
question of convergence of the linear mappings Ar to their correct values.
For this, we first discuss the convergence behavior of the matrices Ar in the
absence of the lateral interaction, i.e., for hrs = δrs. Building on this, we
then investigate the important influence of lateral interaction.

15.2 Convergence Behavior without Lateral
Interaction

Without lateral interaction, each lattice site learns its linear mapping isolated
from all the others. We can then consider the evolution of the matrix of a
single lattice site in our treatment of convergence. We further assume that
the correspondence between lattice sites and values v′ given by the vectors
wr has already formed and no longer changes significantly in the course of
the learning phase. To each vector v′ is assigned a fixed lattice site s and
thus a matrix As. We emphasize this in the following by writing A(v′, t)
instead of As, where t gives the number of learning steps after which lattice
site s was chosen in step 2 of the algorithm. With hrs = δrs and equations
(15.2) and (15.3), one then has

A(v′, t+ 1) = A(v′, t) + δ ·
(
A(v′)−A(v′, t)

)
v′′(v′′)T (15.5)

Here, we have absorbed the product ε · δ into the single constant δ. Denoting
by D(v′, t) := A(v′, t) −A(v′) the deviation from the exact matrix A(v′),
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we obtain for the change of the Euclidean matrix norm ‖D‖ = (Tr DTD)1/2

during one step (15.5

∆‖D‖2 = 2Tr DT∆D + Tr ∆DT∆D

= −δ(2− δ‖v′′‖2)‖Dv′′‖2 (15.6)

If 0 < δ < 2/‖v′′‖2, the norms ‖D(v′, t)‖ thus constitute a monotoni-
cally decreasing sequence. For a nonsingular correlation matrix 〈v′′(v′′)T 〉,
this guarantees the convergence
limt→∞A(v′, t) = A(v′). 1

The preceding treatment of convergence assumes that the correlation matrix
〈v′′(v′′)T 〉 is independent of A(v′, t). However, this is often not satisfied
because the values of v′′ are generated by the system itself, i.e., the system
tries to learn from its own reactions. At each learning step, the system
receives a target v′′targ for v′′. For ballistic movements, this is the target
velocity of the end effector, in visuomotor coordination, it is the residual
difference between achieved and prescribed end effector position in the two
camera fields of view after coarse positioning. In order to reach the target,
the system determines its output quantity f by (15.1), but instead of the
correct matrix A(v′) it uses the matrix A(v′, t) which deviates more or less
from A(v′). Thus,

f = A(v′, t)v′′targ. (15.7)

By (15.1), this leads to

v′′ = A(v′)−1A(v′, t)v′′targ. (15.8)

Hence, a nonsingular correlation matrix 〈v′′targ(v′′targ)T 〉 of the target is not
enough to guarantee convergence, because if A(v′, t) evolves “unfavorably”
during learning, 〈v′′(v′′)T 〉 can still become singular, and the learning process
can get stuck. This was the reason why in Chapter 11 and 13 we obtained
convergence only for a fraction of the lattice sites without neigborhood coop-
eration between the neurons (see Figs. 11.7 and 13.5). We now analyse this
behavior mathematically in more detail.
We neglect the slight variation of v′ within the “parcels” of the particu-
lar lattice site s chosen and thus write v in place of v′′ and A(t) or A in

1 For singular 〈v′′(v′′)T 〉 D can converge to a nonvanishing value from the null-space
〈v′′(v′′)T 〉, but even in this case the mean squared error Tr D〈v′′(v′′)T 〉DT goes to
zero.
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place of A(t,v′) or A(v′), respectively. In order to investigate convergence,
we consider the matrix B(t) = A−1A(t) − 1. We obtain for the change
∆B := B(t+ 1)−B(t) of B under a learning step the expression

∆B = − δ ·B
(
1 + B

)
uuT

(
1 + B

)T
. (15.9)

Similar to (15.6), the change of ‖B‖2 under a learning step (15.5) becomes

∆‖B‖2 = −δ
(
2− δ‖v‖2

)
‖B(1 + B)u‖2. (15.10)

Hence, a monotonically decreasing sequence again arises for ‖B(t)‖, provided
0 < δ < 2/‖v‖2 holds. Maximization of the decrease per learning step occurs
by means of the choice δ = 1/‖v‖2. If δ is to be chosen independently of
v, then the condition 0 < δ < 2/α(1 + ‖B(0)‖)2 with α = sup ‖u‖2 is
sufficient for ∆‖B‖2 < 0. Every possible stationary value for ‖B(t)‖ requires
B2 = −B. Since for ‖B(0)‖ < 1 solutions B 6= 0 with B2 = −B can no
longer be reached, we obtain the convergence statement For ‖B(0)‖ < 1 and

0 < δ < 2/‖v‖2 holds limt→∞B(t) = 0, i.e., limt→∞A(t) = A.

However, the condition B2 = −B has, in contrast to the previous situation
described by (15.6), in addition to B = 0 a whole manifold M of undesired
stationary solutions. As we will show, a subset of M possesses an attractive
neighborhood. Hence, there are initial values with the property ‖B(0)‖ > 1
that evolve toward M under the learning rule and thus do not lead to the
desired limit A. For such initial values, the learning procedure converges to
the wrong value.
This behavior can be illustrated well if one restricts to the one-dimensional
case. In this case, u and B are scalar quantities, and (15.9) simplifies to

Ḃ = −δ ·B · (B + 1)2u2. (15.11)

For sufficiently small learning step lengths δ, one can neglect statistical fluc-
tuations due to the random variables u and replace u2 by its average. Without
loss of generality, we assume
〈u2〉 = 1. This yields

Ḃ = −δ ·B · (B + 1)2. (15.12)

We can interpret B as the position coordinate of a mass point in a viscous
medium, e.g., a small, not too heavy sphere in a jar of honey. The equation
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of motion for viscous motion is

m

γ
B̈ + Ḃ = − d

dB
V (B). (15.13)

Abb. 15.1: The shape of the potential V (B). The absolute minimum lies at
B = 0, which corresponds to the correctly learned matrix. The “force” acting at
the position B = −1 on B also vanishes. Hence, for an unfavorable initial value,
B gets “stuck” on this plateau.

Here V (B) is a potential in which the sphere moves. In the case of a small
mass m and large viscosity γ, i.e., m/γ � 1, the acceleration term with B̈
can be neglected, and the velocity Ḃ is proportional to the force −V ′(B).
Equation (15.13) goes over to (15.12) in this limit for

V (B) =
1

4
B4 +

2

3
B3 +

1

2
B2. (15.14)

Figure 15.1 presents the shape of V (B). The global minimum lies at B = 0,
the value to be learned. The finite attractive neighborhood of this minimum
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extends from B > −1 to B = ∞. Any initial value of B within this in-
terval converges to the desired value during the learning process described
by (15.12). The condition ‖B(0)‖ < 1 assumed in the above convergence
statement thus implies that we are located within the basin of attraction of
the minimum at B = 0. In the one-dimensional case, the submanifold M
of “false” stationary solutions consists of just the isolated point B = −1.
Figure 15.2 shows that the attractive region of M is given by the interval
] − ∞,−1]. Since the motion in the potential surface V (B) is “infinitely”
viscous, any initial value within the interval ]−∞,−1] is pushed towards the
point M and gets stuck there. However, an arbitrarily small disturbance in
the positive direction suffices for leaving M in favor of the desired minimum
B = 0. In higher dimensions, one has in addition undesired stationary solu-
tions which are no longer unstable, and in this case M even has points where
a small perturbation no longer leaves M . We show this in the remainder of
this section.

Abb. 15.2: An illustration of the convergence behavior of B. The sphere with
initial value less than −1 (left) will get stuck on the plateau at B = −1 (middle).
Any sphere to the right of the plateau will roll as desired into the global minimum
at B = 0 (right).

We now resume the discussion of the general case. M consists of all matrices
B 6= 0 satisfying the condition ‖B(B + 1)‖ = 0. Hence, we can take the
quantity d(B) = ‖B(B+1)‖2 = Tr B(B+1)(B+1)TBT as a measure of the
distance from B to M . If δ is small enough to justify neglect of the terms of
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quadratic order, the learning step (15.5) leads to the change

∆d(B) = −2δTr B(1 + B)

×
[
BuuT (1 + B)T + uuT (1 + B)T (1 + B)

]
× (1 + B)TBT . (15.15)

This expression is not particularly accessible to further manipulation. Hence,
we restrict ourselves as above to the case in which (15.15) can be averaged
over the target vector u. This is consistent with the assumption of small
learning step lengths δ. We further assume for u an isotropic distribution in-
dependently in each component, so that (perhaps after appropriate rescaling)
〈uuT 〉 = 1 holds. This leads to

〈∆d(B)〉 = −2δ · Tr B(1 + B)
(
1 + 2B + BT + BBT + BTB

)
× (1 + B)TBT

= −2δ · Tr B(1 + B)
(
1 +

3

2
B +

3

2
BT + BBT + BTB

)
× (1 + B)TBT

= −2δ · Tr B(1 + B)H(B)(1 + B)TBT , (15.16)

where the matrix H(B) is defined by

H(B) = 1 +
3

2
B +

3

2
BT + BBT + BTB. (15.17)

For all regions of M for which H is strictly positive, one has 〈∆d(B)〉 < 0.
Thus, any point B located sufficiently close to such a region is drawn farther
toward M on the average. A condition for this to occur results from the
following

Theorem 1. Let B0 :=
∑
i=1,n piq

T
i , where pi,qi are 2n vectors, whose scalar

products satisfy the conditions

pi · pj = 0, qi · qj = 0, (i 6= j);

together with ‖pi‖ · ‖qi‖ ≥ 3/2, i = 1, . . . , n. For every B sufficiently close

to B0, one then has 〈∆d(B)〉 < 0.



15. Local Linear Mappings 270

Proof: For i = 1, . . . , n, define

αi : = ‖qi‖;

βi : =
3

2‖qi‖
≤ ‖pi‖;

wi : = αipi + βiqi;

This yields

H(B0) = 1 +
∑
i=1..n

wiw
T
i +

∑
i=1..n

(‖pi‖2 − β2
i )qiq

T
i . (15.18)

Therefore, H(B0) is strictly positive. Since H depends continuously on its
argument, this holds throughout a whole neighborhood of B0 and implies
〈d(B)〉 < 0 there.

Abb. 15.3: Difference between the one-dimensional and the multidimensional
case. Left: In the one-dimensional case, the desired solution B = 0 cannot be
reached if the undesired fixed point M separates the initial value B0 from the
origin. Right: In the multidimensional case, on the other hand, it is possible to
avoid the manifold M of undesired fixed points. It may even be possible to reach
the desired solution B = 0 if the initial value B0 lies in the (shaded) neigborhood
of M within which d(B), the distance to M , is everywhere decreasing.

This deserves two remarks. First, there are matrices B0 for which the above
theorem holds, but which are located so far from the manifold M , i.e., for
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which ‖B0(1+B0)‖ is so large, that the matrices are attracted to the desired
solution B = 0 before reaching M . For these initial values, the above theorem
does not necessarily imply convergence to M , since the learning steps (15.5)
might induce the system to leave the neighborhood of the initial value within
which this property exists, even if they decrease ‖B(1 + B)‖ on the average.
This is shown in Fig. 15.3 on the right. A sufficient condition for B0 ∈M is
for example pi · qj = −δij.
Secondly, M possesses points for which 〈∆d(B)〉 < 0 can not even be guaran-
teed within an entire neighborhood. Near these points, it is no longer possible
to guarantee convergence to M . An example of such a point is B = −1. As
we have seen, in the one-dimensional case M consists only of this one point.
Thus, we have shown that under the learning rule (15.5) A(t) converges to
the desired value A, provided the initial value A(0) is not “too badly” chosen.
The basin of attraction for the desired A contains the region ‖A−1A(0)−1‖ <
1. Moreover, there is a whole manifold of undesired fixed points which can
be reached for bad initial values. This unfortunate property led in Chapters
11 and 13 to poor results in the computer simulations whenever there was no
neighborhood cooperation between the neurons. With sufficient neighbor-
hood cooperation between the neurons, on the other hand, convergence to
the desired state occured. In the following, we show how this improvement
through neighborhood cooperation arises.

15.3 Improvement of Convergence through
Neighborhood Cooperation

We now investigate the effects of neighborhood cooperation due to the lateral
interaction hrs. A significant consequence of neighborhood cooperation is
that none of the adaptation steps is restricted to the particular lattice site
s, but rather all of the adjacent lattice sites participate in the adaptation
step as well. The degree of participation decreases according to hrs with
increasing distance from s. In the following, we will show that this offers at
least two advantages. First, the effective rate of convergence is improved,
and secondly the robustness of the system with respect to unfavorable initial
values of the linear mappings Ar is increased. Even for initial values for
which, in the absence of lateral interaction, not all the mappings Ar would
converge as desired, convergence of all Ar to the correct matrices is ensured
in the presence of lateral interaction.
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To make the following investigation feasible, we make a few additional sim-
plifying assumptions. First, we suppose that the adaptation of the synaptic
strengths wr is already finished and has attained an asymptotic distribution
such that each lattice site is selected in step 2 of the algorithm with the same
probability. As shown in Chapter 5, it is just this (approximate) creation of
such a state which forms an essential property of the algorithm. Secondly,
we restrict ourselves to the case in which the correct mapping A(v′) is inde-
pendent of v′ and thus the same for every lattice site. This assumption will
not significantly influence the results in all cases where the change in A(v′)
is small over the range of the function hrs. We further suppose that the step
lengths δ are small enough to allow one to neglect terms of quadratic and
higher order. Under these assumptions, we can summarize steps 1–4 for the
matrices Br = A(wr)

−1Ar(t)− 1 as follows:

1. Choose s = φw(v′).

2. Set
B∗ = Bs(t) + ∆L

(
Bs(t)

)
, (15.19)

where ∆L

(
Bs(t)

)
= −δBs(t)(1 + Bs(t))uuT (1 + Bs(t))

T is the change

of Bs(t) under the learning rule (15.5).

3. Improve the matrices Br(t) according to

Br(t+ 1) = Br(t) + εhrs

(
B∗ −Br(t)

)
, (15.20)

and begin again at step 1.

With (15.19) and (15.20), we obtain for the average time rate of change Ḃr

of the matrix Br in the presence of additional neighborhood cooperation

Ḃr =
∑
s

hrs(Bs −Br)− δ ·
∑
s

hrsBs(Bs + 1)(Bs + 1)T . (15.21)

Here, we have again replaced uuT by its mean, and we have assumed as
before 〈uuT 〉 = 1. A multiplicative factor ε/N has been normalized to unity
by an appropriate scaling of the time constant.
We decompose the summation over all lattice points s into sums over nearest
neighbors of r, next nearest neighbors, etc. This yields the expression

Ḃr = h
∑
〈s〉

(Bs −Br) + h2
∑
〈〈s〉〉

(Bs −Br) + . . .



15. Local Linear Mappings 273

− δ ·Br(Br + 1)(Br + 1)T

− δ · h
∑
〈s〉

Bs(Bs + 1)(Bs + 1)T + . . . , (15.22)

where 〈s〉 is to be understood as a summation over nearest neighbors and
〈〈s〉〉 as a sum over next nearest neighbors. The factor h is the fall-off of the
Gaussian hrs from the center of the excitation s to the nearest lattice points,
i.e., h = exp(−1/2σ2). The fall-off up to the next nearest neighbors then has
the value h2 etc.
Three cases can be discussed on the basis of Eq. (15.22). First, the limit
h ≈ 1 and δ � h. This corresponds to a very-long-range neighborhood
interaction and (relative to this) a negligible length δ of the improvement
step, as present at the beginning of the learning phase. For this extreme
case, we can again give a potential for the viscous motion Ḃr, namely

V =
h

4

∑
r

∑
〈s〉

(Bs −Br)
2 +

h2

4

∑
r

∑
〈〈s〉〉

(Bs −Br)
2 + ... , (15.23)

which corresponds to the simple situation of coupled springs with spring
constants depending on the lattice spacing. In this potential, the matrices
Br try to take the same value at every lattice site. This is important in the
initial phase of learning, because “deviants” in the initial values are “tamed”
by all other neighbors, and each Br settles down to an average over all initial
values. This average need not lie at the desired Br = 0; this can be seen
from the fact that the above potential is translationally invariant, and thus
every value for Br which is equal at all lattice sites minimizes V. Hence, we
need an additional term favoring Br = 0.
We obtain the opposite case at the end of the learning phase, when h � δ.
The neighborhood interaction then falls off very rapidly and in the extreme
case is negligible compared to the learning step length δ. Evidently, the time
rate of change Ḃr in this approximation is given by the expression

Ḃr = −δ ·Br(Br + 1)(Br + 1)T , (15.24)

which we have already discussed thoroughly. By itself, this expression pro-
duced unsatisfactory convergence of the system as a whole, to the degree
that initial values could lie in the wrong region of attraction. However, now
neighborhood cooperation can pull the values of all Br into the potential
well at Br = 0 before entering the final phase of the learning process, which
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allows it to be completed successfully. The manner in which this occurs is
shown by consideration of the intermediate learning phase.
The intermediate learning phase is characterized as a state lying between
the two previous extreme cases, i.e., a state for which h ≈ δ and h, δ � 1
hold simultaneously. If we neglect the terms of quadratic and higher order
in these factors in (15.22), one obtains

Ḃr = h
∑
〈s〉

(Bs −Br)− δ ·Br(Br + 1)(Br + 1)T . (15.25)

15.3.1 One-Dimensional Case

If we again discuss this approximation for the one-dimensional case, a very
interesting situation occurs. Here, it is again possible to state a potential for
Ḃ = −dV/dB, namely

V =
h

4

∑
r

∑
〈s〉

(Bs −Br)
2 + δ

∑
r

(1

4
B4

r +
2

3
B3

r +
1

2
B2

r

)
. (15.26)

Our “spheres in honey” again move in the potential whose shape is shown in
Fig. 15.1, but now the “spheres” of each lattice site are coupled via springs
to the nearest neighbors. In contrast to the potential (15.23), one now has
the necessary additional term favoring the desired value Br = 0. Figure 15.4
presents this new situation.
“Spheres” that are stuck on the undesired plateau at Br = −1 can now be
“pulled” or “pushed” off the plateaus by a neighbor located inside the well
at Br = 0.
In principle, the system as a whole can still of course remain stuck outside
the desired state. For example, this is the case when all initial values without
exception lie in the interval [−∞,−1]. All matrices then converge simultane-
ously to the value Br = −1, and the coupling via springs may even accelerate
this convergence. However, this situation becomes more and more unlikely
as the number N of lattice points increases: The probability of such an oc-
currence decreases exponentially like αN , where α < 1 gives the probability
that the initial value of Br lies to the left of the plateau Br = −1.
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Abb. 15.4: An illustration of the convergence behavior of B in the presence of
additional coupling by means of springs. The spheres that are “stuck” on the
plateau (left and right) are pulled or pushed into the potential well at B = 0 by
the springs from the adjacent sphere (middle) and are thus able to assume the
desired position in the global minimum.

15.3.2 Multi-Dimensional Case

For the further investigation of convergence properties in the multidimen-
sional case, we consider the quantity

S(t) :=
∑
r

‖Br(t)‖. (15.27)

For each iteration 1–3, one has

∆‖Br(t)‖2 = 2Tr ∆Br(t)Br(t)
T

= 2hrsTr
[(

B∗ −Br(t)
)
Br(t)

T
]

≤ 2hrs

(
‖B∗‖ − ‖Br(t)‖

)
‖Br(t)‖

= 2hrs

(
∆L‖Bs(t)‖+ ‖Bs(t)‖ − ‖Br(t)‖

)
‖Br(t)‖,(15.28)

where we have written ‖B∗‖ − ‖Bs(t)‖ =: ∆L‖Bs(t)‖. Inequality (15.28)
yields

∆‖Br(t)‖ ≤ hrs

(
∆L‖Bs(t)‖+ ‖Bs(t)‖ − ‖Br(t)‖

)
, (15.29)

where we recall that ∆L‖Bs(t)‖ also depends on the target vector u, which
as before is assumed to be a random variable with 〈uuT 〉 = 1. For the change
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of the quantity S(t) with an iteration step, averaged over u and lattice sites s
by taking into account the symmetry of hrs and equation (15.29), one obtains

〈∆S(t)〉s,u ≤ 1

N

∑
r,s

hrs

(
‖Bs(t)‖ − ‖Br(t)‖+ ∆L‖Bs(t)‖

)
=

h

N

∑
s

〈∆L‖Bs(t)‖〉u ≤ 0, (15.30)

where N is the number of lattice sites, and h =
∑

r hrs. If we ignore boundary
effects, h is independent of s. Without lateral interaction, i.e., hrs = δrs, we
would have obtained (15.30) with h = 1. Hence, because of lateral interac-
tion, the convergence rate is raised by a factor of h. Since h is a measure
for the size of the neighborhood region participating in a learning step, this
region should be chosen as large as possible consistent with the requirement
of small variations of Ar and Br.
This result concerning the convergence rate is still quite general, since we
have not yet used special properties of the learning rule for ∆LB. This
will done in the remainder of this section, where we will show that lateral
interaction leads to an effective enlargement of the attraction region about
the desired fixed point of the learning rule (15.5), thus raising the robustness
of the algorithm against poorly chosen initial values.
To this end, we first show two lemmas.
Lemma 1: Let hrs be nonnegative, symmetric with respect to commutation
of r and s and nonvanishing at least for all nearest neighbor pairs r and s
of the lattice. Let Q(t) :=

∑
r ‖Br(t)‖2. Then the mean change 〈∆Q〉 per

learning step vanishes only if all norms ‖Br(t)‖ are equal.
Proof: From (15.28) and ∆L‖Bs(t)‖ ≤ 0, we obtain

∆Q ≤ 2
∑
r

hrs

(
‖Bs(t)‖ − ‖Br(t)‖

)
‖Br(t)‖. (15.31)

Averaging over s and taking into account the symmetry of hrs yields

〈∆Q〉s ≤ −
1

N

∑
r,s

hrs

(
‖Bs(t)‖ − ‖Br(t)‖

)2
. (15.32)

Together with hrs > 0 for all nearest-neighbor pairs r, s, this proves the
claim.
With respect to convergence to the desired fixed point B = 0, all matrices
Br(t) share the same fate: either all of them converge to B = 0, or else
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all of them tend to the manifold M of undesired fixed points. However, as
soon as the mean of the ‖Br(t)‖ of the lattice gets below the value unity, at
least some of the ‖Br(t)‖ must converge to B = 0 by (15.30) and Theorem
1. But this induces the convergence of all the others to B = 0, no matter
how bad their initial values may have been. Without lateral interaction,
i.e., hrs = δrs, one does not have this result. In this case (15.32) does not
imply a restriction on the norms ‖Br(t)‖, and Lemma 1 no longer applies.
Hence, lateral interaction enables those lattice sites with good initial values
to extend the zone of convergence about the desired fixed point for all the
other lattice sites. As a consequence, even if a considerable portion of the
lattice sites has poor initial values, the common convergence of all matrices
Br(t) to the desired fixed point cannot be prevented.
It is even possible to improve the bound for the mean norm ‖Br(t)‖ below
which convergence is guaranteed. For this, we prove
Lemma 2: For sufficiently small step sizes δ, the expectation value 〈d(B(t))〉u
of the function d(B) = ‖B(B+1)‖2 obeying Eq. (15.12) satisfies the inequal-
ity

〈d(B(t))〉u ≥ d(B(0)) · exp(−2δλt). (15.33)

Here, λ is a constant upper bound for the matrix H of (15.17) over the
complete time evolution, which is equivalent to

λ ≥ sup
B(t)

‖H(B(t))‖. (15.34)

(Such an upper bound can always be determined, since ‖H‖ is bounded by
some polynomial in ‖B‖, which itself is bounded). Proof: From (15.16) and
Tr AB ≤ ‖A‖ · ‖B‖ one has

〈∆d(B)〉u
d(B)

≥ −2δ‖H(B)‖ ≥ −2δλ. (15.35)

For sufficiently small δ, we can replace (15.35) by

〈∆ ln d(B)〉u ≥ −2δλ. (15.36)

This yields

〈d(B(t))〉u ≥ exp
(
〈ln(d(B(t))〉u

)
≥ d(B(0)) · exp(−2δλt), (15.37)
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which proves the claim.
One thus has

〈∆L‖Bs(t)‖〉u =
1

2
〈∆L‖Bs(t)‖2〉u/‖Bs(t)‖

= − δ

2
〈‖Bs(t)(Bs(t) + 1)u‖2〉u/‖Bs(t)‖

= − δ

2
d(Bs(t))/‖Bs(t)‖. (15.38)

Equations (15.31), (15.38) and Lemma 2 yield

〈∆S(t)〉s,u ≤ − hδ

2N

∑
s

d(Bs(t))

‖Bs(t)‖

≤ − hδe−2δλt

2N

∑
r

d(Br(0))

‖Br(t)‖
. (15.39)

This shows that ‖Br(t)‖ decreases on the average. Hence the replacement of
the denominator ‖Br(t)‖ with ‖Br(0)‖ should not destroy the inequality. It
then follows that

〈∆S(t)〉s,u ≤ −
hδe−2δλt

2N

∑
r

d(Br(0))

‖Br(0)‖
. (15.40)

Integration of this equation gives the final result

lim
t→∞
〈S(t)〉s,u ≤ S(0)− h

2λ
D0, (15.41)

with

D0 = − 1

2N

∑
r

d(Br(0))

‖Br(0)‖

= − 1

Nδ

∑
r

〈∆L‖Br(0)‖〉u. (15.42)

The quantity described by −D0 can be interpreted as the average initial
change of ‖B‖ of a lattice site due to the learning rule (15.5), but with
respect to δ = 1.
Equation (15.42) shows that on the average each ‖Br(0)‖ is shifted by at
least hD0/2Nλ towards the desired fixed point B = 0. The bound of unity



15. Local Linear Mappings 279

given above for the critical value of the mean norm ‖Br(t)‖ leading to global
convergence rises by this shift, which is proportional to the strength of the
lateral interaction.
This concludes our theoretical discussion of the properties of the learning
algorithm.




