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14. MATHEMATICAL ANALYSIS OF KOHONEN’S
MODEL

The preceding chapters have shown the versatility of self-organizing maps
for sensory processing and control by means of a series of examples. The
properties of self-organizing maps that became evident in these examples
will be characterized in this chapter from a more general mathematical point
of view, and their relationship to other signal processing algorithms will be
pointed out.

14.1 Overview

First, there is an important connection between self-organizing maps and
algorithms for adaptive data compression. The latter algorithms are dealing
with the coding of given data in a more compact form, so that later the
original data can be recovered with as little error as possible. Obviously, in
the interest of obtaining the highest possible “compression factor,” a certain
reconstruction error must be permitted. The method of vector quantization
is a class of compression procedures leading to minimization of a prescribed
measure of the reconstruction error. We will show that self-organizing maps
can be regarded as a generalization of this approach. The neighborhood
function modifies the error quantity to be minimized as compared to that
minimized in conventional procedures.
Maps have a second important connection to the various procedures of prin-
cipal component analysis of data. In these procedures, one seeks to describe
as faithfully as possible the distribution of data points embedded in a high-
dimensional space, using only a space of lower dimension. In principal com-
ponent analysis, this occurs by linear projection onto a space spanned by
those eigenvectors of the data distribution that belong to the largest eigen-
values of the two-point correlation matrix. Topology preserving maps offer a
generalization of this linear procedure by providing a projection onto nonlin-



14. Mathematical Analysis of Kohonen’s Model 223

ear, so-called principal manifolds. Projections onto principal manifolds can
yield a low-dimensional image of the original data with smaller projection
errors, i.e., more faithful representations of the original data compared to
linear procedures that use the same projection dimension.
The problems of data compression and of obtaining “good” projections onto
lower-dimensional spaces are related and play an important role for numerous
information processing tasks. A large part of the applicability of topology
preserving maps is due to their relevance to both kinds of problems. Hence,
it may not be too surprising that topology preserving maps are found in
various areas of the brain.
The map formation process is adaptive and is driven by a random sequence
of input signals. Mathematically, the process corresponds to an adaptively
changing map that gradually evolves toward a stationary state. This leads to
the question of the convergence properties of the process. We will investigate
this question in Sections 14.6–14.9 more closely and, among other things, we
will derive convergence conditions as well as expressions for the magnitude
of fluctuations that occur due to the random distribution of input signals.
For this purpose we derive a Fokker-Planck equation describing the adapta-
tion process and allowing a more precise discussion of the dependence of the
stationary map on the input signal distribution. We can then show that,
under certain conditions, the map takes on a structure which is spatially pe-
riodic with respect to a subset of the components of the input signal. This
result is especially interesting in view of experimentally established spatial
periodicities in the response behavior of many neurons belonging to cortical
and noncortical areas of the brain. A well-known example of such periodic-
ity is provided by the ocular dominance stripes observed in the visual cortex,
along which neurons segregate into groups with preference for one eye or the
other. A similar structure on a smaller scale than occular dominance stripes
in the striate cortex are orientation columns, a segregation of neurons with
receptive fields favouring different orientations in the visual field of an animal
(Blasdel and Salama 1986).

14.2 Vector Quantization and Data Compression

An important prerequisite for any kind of information processing is the es-
tablishment of an appropriate encoding for the data under consideration. In
the case of the brain, this encoding has to a large extent been determined
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by nature, and indeed one of the principal research questions is to decipher
the coding schemes that underly brain function. In the case of artificial in-
formation processing systems, the decision for an appropriate encoding of
the data is left to the designer, and a determination of which features are
to play an important role and must be coded well may be very task specific.
However, there are also important aspects of more general relevance. One
such aspect is the average code length required for transmission of a specified
amount of information. For example, one current scheme for text encoding
uses 8-bit words, the so-called ASCII-characters, for individual letters. The-
oretically, 28 = 256 distinct characters can be encoded in this way. However,
in many cases 128 characters suffice, which can be coded with only 7 bits per
character. Taking into account the different frequency with which different
characters occur, one can find still more efficient codes. If the characters in
the sequence are statistically independent of one another, and if pi denotes
the probability for the occurrence of the ith character, then the lower limit
for the most efficient code is

S = −
∑
i

pi ld(pi) (14.1)

bits per character (“ld” denotes the logarithm to the base two). The quantity
S is known as the so-called Shannon information (see for example Khinchin
1957) transmitted on the average by a single character. However, for most
character sequences, the assumption of statistically independent characters
does not hold. By exploiting correlations between several characters, one can
find even more efficient codes. For example, in the case of language, one can
encode whole words in place of individual letters, thus achieving a further
compactification. Written Chinese provides an example of this strategy.
This sort of code optimization is of particular importance when large quan-
tities of data are to be stored or transmitted. This happens particularly in
image processing. The bitwise transmission of a raster image with a resolu-
tion of 1,000×1,000 pixels and 256 gray levels per pixel requires the transfer of
about 1 Mbyte of data. However, in most images, adjacent pixels are strongly
correlated, and significantly more efficient coding schemes than simple bit-
wise transmission can be found. Interestingly enough, the brain also seems
to make use of such possibilities. The optic nerve contains only about 106

nerve fibres, whereas the retina is covered by about 108 light sensitive recep-
tors (Kandel und Schwartz 1985). Hence, the optic nerve constitutes a kind
of “bottleneck” for the transmission of visual information from the retina to
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the brain. However, before transmission occurs, the signal is subjected to an
extensive preprocessing stage in the retina, involving nearly 100 different cell
types and enabling a subsequent transmission of all necessary information
through the optic nerve.
Hence, data compression is an equally important task for both artificial and
natural information processing systems. A general approach developed for
the solution of this task is the method of vector quantization (see, e.g.,
Makhoul et al. 1985). This method supposes that the data are given in
the form of a set of data vectors v(t), t = 1, 2, 3, . . . (possibly of rather high
dimension). The index t numbers the individual vectors. The components
of a vector v(t) may take binary, integer, or analogue values, corresponding
for example to bits of a binary sequence, gray level values of image pixels, or
amplitudes of a speech signal. “Compression” of the data occurs by approx-
imating every data vector v(t) by a reference vector ws of equal dimension.
This presupposes that a fixed, finite set W of reference vectors ws has been
established, determined such that a “good” approximate vector ws ∈ W
can be found for every data vector that may arise. The set W of reference
vectors plays the role of a code book assigning to each data vector v that
reference vector ws ∈ W for which the norm of the difference δ = ‖v −ws‖
assumes its minimum over all code book vectors. As the new code for the
data vector v, it then suffices to specify the index s of the reference vector
ws that yielded the most accurate approximation. In the case of a code book
with N reference vectors, this requires specification of at most ld N bits.
Therefore, the smaller the code book can be chosen, the better the resulting
data compression factor. 1 However, this gain has its price: the original
data can no longer be exactly recovered from the codes s. For reconstruction
of the original data vector v from its code s, only the reference vector ws

is available. This gives rise to a “reconstruction error” that is equal to the
approximation error δ = ‖v −ws‖.
Crucial for the whole procedure is the construction of a good code book W . It
should contain sufficiently many appropriately distributed reference vectors
to enable a good approximation to any data vector v by a reference vector
ws. For a mathematical formulation of this requirement, one often considers

1 The astute reader will notice that the probability distribution of the discrete codes
s may be nonuniform. Exploiting this circumstance in the assignment of code words
(shorter code words for more frequent codes), one can improve the code efficiency still
further.
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the expectation value of the squared reconstruction error, i.e., the quantity

E[W ] =
∫
‖v −ws(v)‖2P (v) dv, (14.2)

where P (v) is the probability density describing the distribution of data
vectors v. E[W ] depends on the ensemble W of all code book vectors ws. A
frequently appropriate requirement demands the minimization of E subject
to the constraint of a fixed, prescribed number of code book vectors ws

(without such a constraint, E could be reduced to arbitrarily small positive
values simply by increasing the number of code vectors. However, this would
also entail an arbitrary reduction of the compression effect, since the effort
required to specify a single value of s increases with the numberN of reference
vectors).
The minimization of E with respect to reference vectors ws is a complicated,
nonlinear optimization problem, for which in most cases no closed solutions
are known. Hence, one must resort to iterative approximation methods. In
Chapter 15 we will see that these approximation methods are closely related
to Kohonen’s map-formation algorithm. The maps provided by Kohonen’s
procedure can be regarded in this context as code books of a vector quan-
tization procedure in which the topology preserving property of the maps
leads to a modification of the original error quantity (14.2).

14.3 Self-Organizing Maps and Vector Quantization

The construction of a good code book requires the minimization of the aver-
age reconstruction error E[w] with respect to the reference vectors wr. The
simplest procedure for this is gradient descent. Starting with initial values
wr(0), all reference vectors are changed according to

wr(t+ 1) = wr(t)−
ε

2
· ∂E
∂wr

(14.3)

= wr(t) + ε ·
∫

s(v)=r

(v −wr(t))P (v) dv, (14.4)

where we employed (14.2).
The integration condition s(v) = r restricts the region of integration to
those v-values for which wr is the most suitable reference vector (s(v) de-
fined through ‖ws(v) − v‖ = minr′ ‖wr′ − v‖). For a sufficiently small step
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size parameter ε, repeated application of (14.4) leads to a decrease of E[W ]
until a local minimum is reached. Equation (14.4) was first suggested by
Linde, Buzo, and Gray (1980) and is known as the “LBG”-procedure. Al-
though this procedure does not guarantee that a global minimum is achieved,
in many important cases the local minimum reached provides a sufficiently
good solution. If required, better local minima can be found by repeating
the procedure with different initial values or with the help of “annealing
techniques” (see, for example, Kirkpatrick et al. 1983).
However, carrying out the procedure in this form requires a knowledge of
the probability distribution P (v) of the data vectors. Usually, P (v) is not
known explicitly. This difficulty can be avoided by replacing (14.4) with the
simpler prescription

ws(v)(t+ 1) = ws(v)(t) + ε ·
(
v −ws(v)(t)

)
, (14.5)

where for each step (14.5) a new data vector v selected at random from
the (unknown) distribution is used. For sufficiently small step size ε, the
accumulation of many individual steps (14.5) will lead to an approximate
realization of the integration in (14.4) (the “step counting parameters” t of
(14.4) and (14.5) of course no longer agree).
Comparison of equation (14.5) with the adaptation rule (4.15) in Kohonen’s
model of self-organizing maps shows that (14.5) represents a special case of
Kohonen’s algorithm which results in the limit of vanishing neighborhood
cooperation (i.e., hrs = δrs). Kohonen’s algorithm can thus be understood
as a generalization of a vector quantization procedure for data compression.
The “synaptic strengths” wr correspond to the reference vectors, the map
provides the code book, and the choice of the excitation center s for an input
signal v defines the mapping v 7→ s(v), i.e., corresponds to the coding step
of the vector quantization procedure. The “receptive fields” Fs introduced
earlier (Eq.(99)) comprise just those input signals for which the coding step
leads to the same excitation center s.
The shift of a reference vector ws in the LBG-procedure (14.4) always occurs
in the direction of the center of gravity

∫
Fr

vPdv of the density distribution
of the input data, but restricted to the field Fs. This leads to a distribution
of reference vectors, in which each reference vector coincides with the center
of gravity of the data in “its” field Fs.
The introduction of the neighborhood functions hrs leads to a modification
of the distribution of reference vectors compared to standard vector quanti-
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zation. The average shift of a reference vector then becomes

〈∆wr〉 =
∑
s

hrs

∫
Fs

(v −ws)P (v) dv, (14.6)

i.e., the shift of wr now occurs in the direction of the mean center of gravity
of all fields Fs, the contribution of each field being weighted by the neighbor-
hood function hrs. In a stationary state, every reference vector wr therefore
coincides with a weighted average density, where the weighting is taken over
a neighborhood and includes contributions with relative weight hrs from all
neighboring fields s for which hrs 6= 0.
This no longer leads to minimization of the reconstruction error (14.2), but
to a minimization of a modified expression. For the case of a one-dimensional
“chain” of reference vectors, each with n neighbors on both sides (i.e., hrs = 1
for ‖r − s‖ ≤ n, and hrs = 0 otherwise), one finds

E[W ] =
∫
‖v −ws(v)‖rP (v) dv, (14.7)

where the exponent r now differs from the value r = 2 in (14.2) taking instead
the smaller value

r =
1

2
+

3

2(2n+ 1)2
(14.8)

(Ritter 1989). This can be interpreted as implying that the inclusion of
a neighborhood region in each adaptation step leads to a vector quantizer
which, relative to a vector quantizer minimizing the quadratic error quantity
(14.2), suppresses small quantization errors.

14.4 Relationship to Principal Component
Analysis

Gaining deeper insights into an observed phenomenon often depends crucially
on the discovery of a more effective description, involving a smaller number
of variables than needed before. This has motivated the search for algorithms
that could, at least to some extent, automate the generation of more effective
data descriptions.
A rather general and frequent case is the availability of a number of measure-
ments v(1),v(2), . . . of the parameters v = (v1, v2, . . . , vL)T of an experiment.



14. Mathematical Analysis of Kohonen’s Model 229

As a rule, the individual parameters vi will not vary completely indepen-
dently of one another, but rather will be correlated to a greater or lesser
extent, the type of correlation being often unknown. This entails the follow-
ing question: to what extent can one attribute the observed variation of the
measurements to a dependence of the vi on a smaller number of “hidden”
variables r1, r2, . . . , rD, D < L? If such dependency exists, one can find L
functions f1, . . . , fL of the hidden variables for which

vi = fi(r1, r2, . . . , rD), i = 1, . . . , L, (14.9)

holds. The variables ri enable then a more economical description of the
observed phenomenon compared to the directly available measurements vi.
In particular, they are more likely to correspond to the true “degrees of
freedom” that are involved and the number for which, in many cases, is
smaller than the number of observed parameters vi.
Here, one should keep in mind that the new parameters — if such a simplifi-
cation is possible — are not uniquely determined. Any invertible one-to-one
mapping of the ri onto an equal number of new variables r′i provides, a priori,
an equally “good” set of parameters for a description of the variation of the
original variables vi. Mathematically, each of these different, but equivalent
parametrizations can be regarded as a “coordinate system” on an abstract
manifold (indeed, this manifold characterizes the system independently of
any special choice of coordinates).
However, the non-uniqueness of the parameters ri makes their general deter-
mination difficult. The procedure most frequently applied, principal compo-
nent analysis, makes the simplifying assumption of a linear relationship be-
tween the variables ri and vi. This assumption can be viewed geometrically as
the introduction of a D-dimensional “hyperplane” lying in the L-dimensional
data space, the location and orientation of which are chosen such that every
data point can be approximated well by a point of the hyperplane (Fig. 14.1).
This corresponds to a representation of each data point in the form

v = w0 +
D∑
i=1

wiri(v) + dw(v), (14.10)

where w0, . . . ,wD ∈ RL are D + 1 vectors specifying the hyperplane and
r1(v), . . . , rD(v) are the new parameters belonging to data point v. Since,
as a rule, not all data points will be located within the hyperplane, for most
data points a nonvanishing distance dw(v) perpendicular to the hyperplane
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results (the index w is a reminder of the fact that this distance depends
on the choice of hyperplane). The choice of hyperplane is optimal if the
vectors wi are determined such that the weighted mean square residual error
〈dw(v)2〉, where the weighting factor is the probability density P (v) of the
data, takes its smallest possible value, i.e.,

∫
‖v −w0 −

D∑
i=1

wiri(v)‖2P (v) dLv = Minimum! (14.11)

One can show that the solution of this minimization problem yields

w0 =
∫

vP (v) dLv, (14.12)

i.e., w0 coincides with the center of gravity of the data distribution, whereas
the remaining vectors wi, i = 1, 2 . . . , D, must form a basis of the eigenspace
spanned by those D eigenvectors of the correlation matrix that have the
largest eigenvalues

C =
∫

(v −w0)⊗ (v −w0)TP (v) dLv (14.13)

(see for example Lawley and Maxwell 1963) when ⊗ denotes the tensor prod-
uct of two vectors, i.e., (u⊗ v)jk = ujvk. One possible special choice for the
wi (i > 0) are the D normalized eigenvectors of C corresponding to the
largest eigenvalues. In this case, the new parameters ri turn out to be the
projections of the data vectors along D “principal axes” of their distribution
and are called “principal components” of the distribution:

ri = wi · v, i = 1, 2, . . . , D. (14.14)

Geometrically, this implies that the hyperplane passes through the center of
gravity w0 of the data distribution and is spanned by the D eigenvectors or
“principal axes” of the correlation matrix that have the largest eigenvalues.
One can show that the orientation of the hyperplane determined in this way
maximizes the variance of the perpendicular projection of the data points.
The D variables ri can thus be characterized by the property to account for
(with a linear ansatz) the total data variation as much as possible . However,
for the quality of such a description the adequacy of the underlying linearity
assumption is crucial: the more the actual distribution of data points deviates
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Abb. 14.1: Description of a two-
dimensional data distribution (shaded
region) by a straight line (one-
dimensional “hyperplane”). The best
description of the distribution results
if the line passes through the center of
gravity w0 and is directed parallel to
the “principal eigenvector” w1 (i.e.,
the eigenvector with largest eigen-
value) of the correlation matrix C.

Abb. 14.2: If the form of the data
distribution is too “nonlinear,” no
straight line (lowerdimensional hyper-
plane) leading to a good description
of the data can be found.

from a hyperplane, the worse the description resulting from a projection onto
the principal axes of the distribution (Fig. 14.2).
Topology-preserving maps overcome this problem by replacing the linear
principal axes or hyperplanes with curved surfaces, which enable a better
description of nonlinear data distributions. Here, the maps approximate so-
called principal curves or principal surfaces, which represent a generalization
of linear principal axes or eigenspaces. In the following section, we discuss
this generalization and its relation to topology-preserving maps.

14.5 Principal Curves, Principal Surfaces and Topology
Preserving Maps

Principal component analysis yields a linear description of a prescribed data
distribution by a hyperplane that is characterized by the property (14.12),
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(14.11). This can be interpreted geometrically as a minimization of the
“mean squared perpendicular distance” 〈dw(v)2〉 between the data points
and the hyperplane. This property motivates a generalization from a hyper-
plane to nonlinear manifolds (Hastie and Stuetzle 1989). Let us first con-
sider the one-dimensional case. Let f(s) be a “smooth” curve in the space
V parametrized by arc length. To every point v ∈ V one can define then a
distance df (v) to the curve f . Thus, for any such curve and for any density
distribution P (v) of points in V we can define a mean squared distance Df ,
given by

Df =
∫
d2
f (v)P (v) dLv. (14.15)

We call the curve f a principal curve of the density distribution P (v), if Df

is extremal, i.e., if the curve is stationary with respect to small, “sufficiently
smooth” deformations of the curve.2

Abb. 14.3: Principal curve as nonlinear generalization of the concept of principal
axes of a density distribution (shaded). We consider the center of gravity of the
density distribution in the region between two “infinitesimally seperated” curve
normals. For a principal curve, this center of gravity must always lie on the curve
itself.

Intuitively, this requirement demands that a principal curve pass “right
through the middle” of its defining density distribution. For better illustra-
tion of this situation, we consider a principal curve for the two-dimensional

2 A precise mathematical discussion requires consideration of the special situation at
the curve endpoints. We will not go into this problem here. The reader interested in
a more thorough discussion is refered to Hastie and Stuetzle (1989).
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distribution presented in Fig. 14.3. The figure demonstrates that for the
principal curve the center of gravity of the density distribution enclosed by
two “infinitesimally” distant normals lies on the principal curve. This prop-
erty must hold, in fact, for every such pair of normals since, otherwise, the
mean squared distance Df could be decreased by a local deformation of the
curve in the direction of the deviation, which would contradict the extremal
property of Df . Conversely, the extremality of Df follows from the fact that
the center of gravity of every such “normal strip” coincides with a point on
the curve f .
Principal axes arise as a special case of principal curves. One has the following
theorem: If P (v) has zero mean and a straight line as principal curve, then
this principal curve coincides with one of the principal axes of the distribution
P (Hastie and Stuetzle 1989).
The generalization to principal surfaces and higher-dimensional “principal
manifolds” proceeds analogously to the one-dimensional case:

Definition of a principal surface: Let f(s) be a surface in the vector
space V , i.e., dim(f) = dim(V) – 1, and let df (v) be the shortest
distance of a point v ∈ V to the surface f . f is a principal surface
corresponding to a density distribution P (v) in V , if the “mean squared
distance”

Df =
∫
d2
f (v)P (v) dLv (14.16)

is extremal with respect to local variations of the surface.

Thus, Kohonen’s algorithm can be interpreted as an approximation proce-
dure for the computation of principal curves, surfaces, or higher-dimensional
principal manifolds. The approximation consists in the discretization of the
function f defining the manifold. The discretization is implemented by means
of a lattice A of corresponding dimension, where each weight vector wr indi-
cates the position of a surface point in the embedding space V . In Kohonen’s
algorithm, a volume region Fr was assigned to each point r of the surface,
containing all those points v for which wr is the surface point with the short-
est distance (Eq.(99)). Fr is thus the realization of a volume region which
in the continuous limit would be bounded by a “bundle of normals” of in-
finitesimal cross section penetrating the surface perpendicularly at the point
wr (Fig. 14.4). The crucial property of Kohonen’s algorithm now consists in
iteratively deforming the discretized surface in such a way that the center of
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Abb. 14.4: 2d-Kohonen lattice as discrete approximation to a “principal sur-
face”. To each lattice point wr, a volume Fr is assigned which is bounded
by planes perpendicularly bisecting the distances to the lattice neighbors. The
lattice possesses the property of a principal surface, if each lattice point wr co-
incides with the center of gravity of the part of the density distribution enclosed
within the volume Fr. This state is approximately achieved as a result of the
adaptation procedure of Kohonen’s algorithm.

gravity of the density distribution P (v) contained within the volume Fr co-
incides with the surface point wr for every r. But this is just the (discretized
form) of the condition leading to extremality of the mean squared distance
Df and thus to the “principal surface property” of the stationary state.
As we saw in Section 14.3, however, this property results if and only if
hrs = δrs holds for the neighborhood function. Otherwise, in addition to
Fr, other volumes Fs contribute to the calculation of the equilibrium loca-
tion of wr. These volumes lie in a neighborhood about Fr whose extension
is determined by the size of the region within which hrs differs significantly
from zero. This has the effect of “broadening” the volume region over which
the averaging of the probability density is performed in order to obtain the
equilibrium location of the center of gravity for the determination of wr. This
is a desirable property for the practical application of the procedure, because
most of the data are not given as continuous distributions, but rather as
discrete distributions of a finite number of “trials.” Strictly speaking, con-
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tinuous principal manifolds can no longer be defined for such discrete data. A
way out of this predicament consists in “smearing out” the data to obtain a
better approximation of their underlying probability distribution. The neigh-
borhood function hrs has just such a “smearing effect,” where the amount of
“smearing ” can be adjusted through the range σ of the neighborhood func-
tion. The optimal choice of σ depends on the density of the available data:
the principal surfaces thus obtained yield a good description of the data if
the neighborhood determined by σ contains sufficiently many data points.
For values of the “smearing ” that are too small, the surface attempts to
touch every single data point, and the desired “smooth” interpolation of the
data by a principal surface is lost. In the case of a one-dimensional lattice
A, we encountered this behavior (which in that context was desired) in the
“traveling salesman problem” of Chapter 6: the curve obtained at the end
of the simulation touched every one of the prescribed “cities.” The “Peano
curve” which, as discussed in Section 4.3, results for a one-dimensional lat-
tice of an infinite number of nodes embedded in a two-dimensional space is
another example. For a further discussion of this problem, see also Hastie
and Stuetzle (1989).
This section can thus be summarized as follows. Kohonen’s algorithm for
topology-preserving maps leads to a generalization of standard principal com-
ponent analysis. The mathematical background of this generalization con-
sists of a nonlinear extension of the concept of principal axes and eigenspaces
to so-called principal curves and principal manifolds. These nonlinear con-
cepts allow one to find dimensionally reduced descriptions even for very
nonlinear data distributions, and Kohonen’s model can be regarded as an
implementation of the required calculations in a neural network.

14.6 Learning as a Stochastic Process

Many learning systems, including Kohonen’s self-organizing maps, achieve
their goal by means of a sequence of finite adaptation steps. Every single
adaptation step results from an “interaction” with the environment. Through
these “interactions” information about the environment is obtained. To en-
sure that the whole sensory space V is explored a random process is employed
to generate the sequence of adaptation steps. For example, in the case of sen-
sory maps each of the sensory stimuli v are chosen at random.
Nevertheless, the assumption of some probability distribution P (v) (usually
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unknown to the system) for the sensory stimuli frequently provides a reason-
able idealization (at least in a stationary environment). The random sequence
of input stimuli v leads to a corresponding random sequence of adaptation
steps. Let us denote by w the ensemble of system parameters which are
subject to the learning process (in our case w = (wr1 ,wr2 , . . . ,wrN ) is again,
as in Section 5.4, the ensemble of all synaptic strengths of a network). Each
adaptation step then induces a transformation

wnew = T(wold,v). (14.17)

Here, v is a random variable with probability distribution P (v). Equa-
tion (14.17) does not describe a fixed, deterministic sequence, but rather a
“stochastic process.” The simulation of such a process provides in each case
only one of its infinitely many realizations, a so-called “sample,” of the pro-
cess. To what extent a specific realization represents a “typical” case can
only be judged by sufficiently frequent repetition of the simulation. In this
way, an “ensemble” of realizations is created, by means of which typical re-
alizations can be identified through their particularly frequent occurrence.
Thus, ideally one would like to know the distribution function S̃(w, t) of the
realizations of an ensemble of infinitely many simulation runs after t time
steps, t = 1, 2, . . .. An intuitive picture of S̃(w, t) can be given as follows:
We consider the space spanned by the synaptic strengths of a network and
regard each network of the ensemble as a point with position vector w in this
space (for a network with N neurons and D synaptic strengths per neuron,
this space is a N ·D-dimensional space). The ensemble can thus be regarded
as a cloud of points in this space, and S̃(w, t) is the density distribution of
the points in the cloud. Thus, after t adaptation steps, an “infinitesimal”
volume element dNw centered at w contains a fraction S̃(w, t) dNw of all
ensemble members.
If S̃(w, t) is known, then all of the statistical properties of the stochastic
process can be calculated from it. A typical question can be posed as follows:
one has some function F (w) of the synaptic strengths w and is interested
in the average value 〈F 〉t to be expected after t adaptation steps. This
“expectation value” is then given by

〈F 〉t =
∫
F (w)S̃(w, t) dNw. (14.18)

Hence, S̃(w, t) contains all information to calculate the expectation values
of arbitrary functions of the system parameters w. If, for example, one
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wishes to know the average value w̄ of the synaptic strengths, one chooses
F (w) = w, whereas the choice F (w) = (w − w̄)2 yields their mean squared
deviation due to the statistical sequence of adaptation steps.
By sufficiently many simulations, one can in principle generate a large en-
semble and with it the approximate distribution function S̃(w, t). However,
the required computational effort rapidly rises to an unfeasible level as the
desired accuracy and the complexity of the stochastic process increase. In
that case, the derivation of analytic results becomes indispensable. This will
be the aim of the following sections. The technical point of departure is the
derivation of a so-called Fokker-Planck equation, which describes the evo-
lution of the distribution function S̃(w, t) in the vicinity of an equilibrium
state and which is valid in the limit of small learning step size ε. From this
we obtain a necessary and sufficient condition for convergence of the learning
procedure to an asymptotic equilibrium state during the final phase of the
algorithm. The condition involves an appropriate decrease of the learning
step size ε(t). Provided the distribution P (v) is restricted to a multidimen-
sional box volume and is constant there, the statistical fluctuations about the
asymptotic equilibrium state can be computed explicitly. From this result,
one can conclude that the learning step size must be chosen inversely propor-
tional to the number of lattice points in order that the remaining fluctuations
not exceed a fixed tolerance threshold. We also investigate the ability of the
algorithm to automatically use the directions of maximal signal variation as
the primary map dimensions. We show that this property derives from an
instability which arises when the variance of the sensory events v along a
direction which is “poorly” represented by the map exceeds a critical value.
The occurrence of this instability manifests itself by strong fluctuations of a
characteristic wavelength. Both the critical variance and the characteristic
wavelength are computed for the case of a multidimensional box volume.

14.7 Fokker-Planck Equation
for the Learning Process

For the derivation of a Fokker-Planck equation that governs the stochastically
driven learning process, we consider an ensemble of systems whose states w
after t learning steps are distributed according to a distribution function
S̃(w, t). As in Chapter 5, we assume that all systems are close to the same
asymptotic equilibrium state w̄ and that the learning step size ε is sufficiently
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small so that transitions into the neighborhood of different equilibrium states
can be neglected. We thus restrict our attention to the asymptotic phase of
the convergence behavior which, actually, takes up the largest part of the
total computing time in simulations. We obtain the new distribution S̃(w, t+
1) after an additional learning step from the previous distribution S̃(w, t) by
integrating over all transitions from states w′ to states w. Each transition
contributes with a weight given by the product of the transition probability
Q(w,w′) from w′ to w to the probability S̃(w′, t) of the occurrence of the
state w′ in the ensemble. Both factors were first introduced in Section 5.4.
This yields

S̃(w, t+ 1) =
∫
dNw′ Q(w,w′)S̃(w′, t)

=
∑
r

∫
dNw′

∫
Fr(w′)

dv P (v)δ(w −T(w′,v, ε))S̃(w′, t)(14.19)

where P (v) and T(w′,v, ε) are defined in Section 5.4. In order to carry out
the w′-integration, which is taken over all N vector variables w′r, r ∈ A, we
require the inverse Jacobian

J(ε) =

[
det

∂T

∂w

]−1

. (14.20)

By assuming for the moment v ∈ Fs(w
′), we obtain

J(ε) =

[∏
r

(1− εh0
rs)

]−d
. (14.21)

Here, d is the dimension of the input vectors v and we have denoted the
excitatory response by h0

rs. Since h0
rs should only depend on the difference

r− s, J is independent of s and depends only on ε.
The w′-integration yields

S̃(w, t+ 1) = J(ε)
∑
r

∫
χr

(
T−1(w,v, ε),v

)
×P (v)S̃

(
T−1(w,v, ε), t

)
dv. (14.22)

Here, χr(w,v) is the characteristic function of the region Fr(w), i.e.,

χr(w,v) =
{

1, if v ∈ Fr(w);
0, otherwise.

(14.23)
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T−1 denotes the inverse of the transformation T( . ,v, ε). For v ∈ Fs(w),
T−1(w,v, ε) is given by[

T−1(w,v, ε)
]
r

= wr + εhrs(wr − v), (14.24)

where we have introduced the new function hrs := h0
rs/(1 − εh0

rs). In this
section hrs stands for a rescaled excitatory response differing from the original
excitatory response h0

rs only in order ε.
For ε� 1 and v ∈ Fs(w), we can expand S̃(T−1(w,v, ε), t) as

S̃(T−1( w ,v, ε), t) = S̃(w, t) + ε
∑
rm

hrs(wrm − vm)
∂S̃

∂wrm

+

+
1

2
ε2
∑
rm

∑
rn

hrshr′s(wrm − vm)(wr′n − vn)
∂2S̃

∂wrm∂wr′n

+ O(ε3) (14.25)

Correspondingly, J(ε) can be expanded as

J(ε) = 1 + εJ1 +
1

2
ε2J2 + . . . , (14.26)

where
J1 = d ·

∑
r

hrs = d ·
∑
r

hr0 (14.27)

is independent of s. Substituting Eq.(14.25) and (14.26) into (14.22) while
keeping derivatives up to second order and of these only the leading order in
ε, we obtain

1

ε

[
S̃(w, t + 1)− S̃(w, t)

]
= J1S̃(w, t)

+
∑
s

∫
Fs(w)

dv P (v)
∑
rm

hrs(wrm − vm)
∂S̃

∂wrm

+
ε

2

∑
s

∫
Fs(w)

dv P (v)

×
∑
rm

∑
rn

hrshr′s(wrm − vm)(wr′n − vn)
∂2S̃

∂wrm∂wr′n
. (14.28)
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In the vicinity of the stationary state we expect S̃(w, t) to be peaked around
the asymptotic equilibrium value w̄. Therefore, we shift variables and define

S(u, t) := S̃(w̄ + u, t), (14.29)

i.e., S(u, t) is the distribution function of the deviations u from the asymp-
totic equilibrium value w̄. In what follows it is useful to introduce the quan-
tities

P̂r(w) : =
∫

Fr(w)

dvP (v), (14.30)

v̄r : =
1

P̂r(w)

∫
Fr(w)

dvP (v)v, (14.31)

Vrm(w) : =
∑
s

(wrm − v̄sm)hrsP̂s(w), (14.32)

Drmr′n(w) : =
∑
s

hrshr′s

[
(wrm − v̄sm)(wr′n − v̄sn)P̂s(w)

+
∫
Fs(w)

(~vm~vn − v̄smv̄sn)P (v)dv
]

(14.33)

P̂r(w) is the probability for neuron r to be selected as excitation center,
and v̄r is the expectation value of all input signals giving rise to this case.
−Vrm(w) can be interpreted as the expectation value for the change δwrm

(change of the synapse between incoming axon m and neuron r) under
an infinitesimal learning step, but normalized to ε = 1. Correspondingly,
Drmr′n(w) is the expectation value of the product δwrmδwr′n, also normal-
ized to ε = 1.
For sufficiently small ε we can evaluate the O(ε)-term in (14.28) directly
at w = w̄ and replace S(u, t + 1) − S(u, t) by ∂tS(u, t). This yields the
Fokker-Planck equation

1

ε
∂tS(u, t) = J1S(u, t) +

∑
rm

Vrm(w̄ + u)
∂S(u, t)

∂urm

+
ε

2

∑
rmr′n

Drmr′n(w̄)
∂2S(u, t)

∂urm∂ur′n
. (14.34)

The term with the first derivative represents a “back driving force.” It van-
ishes for u = 0 and must therefore be kept up to linear order in u. This
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gives

∑
rm

Vrm(w̄ + u)
∂S(u, t)

∂urm

= −
∑
rm

∂Vrm

∂wrm

S +

+
∑

rmr′n

∂

∂urm

(
∂Vrm

∂wr′n
(w̄)ur′nS

)
. (14.35)

In order to obtain a more convenient form of
∑

rm ∂Vrm/∂wrm, we make use
of

Vr(w) =
∑
s

hrs

∫
Fs(w)

dvP (v)(wr − v)

=
1

ε

∫
dv P (v)

(
wr −T(w,v, ε)r

)
(14.36)

and obtain ∑
rm

∂Vrm

∂wrm

=
1

ε

∫
dv P (v) Tr

(
1− ∂T

∂w

)
(14.37)

where Tr denotes the trace operation. The deviation of the Jacobi matrix
∂T/∂w from the unit matrix is of order ε. Hence, ∂T

∂w
= 1+εA, and together

with (14.20), one has

J(ε) = det(1− εA) +O(ε2) = 1− ε · Tr A +O(ε2). (14.38)

Comparison with (14.26) yields

J1 = − Tr A =
1

ε
Tr

(
1− ∂T

∂w

)
. (14.39)

Substituting this into Eq. (14.37), we obtain the relation

∑
rm

∂Vrm

∂wrm

= J1. (14.40)

This leads us to the final form of our equation for the distribution density
S(u, t)

1

ε
∂tS(u, t) =

∑
rmr′n

∂

∂urm

Brmr′nur′nS(u, t)

+
ε

2

∑
rmr′n

Drmr′n
∂2S(u, t)

∂urm∂ur′n
(14.41)
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where the constant matrix B is given by

Brmr′n :=

(
∂Vrm(w)

∂wr′n

)
w=w̄

. (14.42)

(14.41 is the desired Fokker-Planck equation for the asymptotic phase of the
map formation process.
One can derive explicit expressions for the expectation value ūrm(t) = 〈urm〉S
and the correlation matrix Crmsn(t) = 〈(urm − ūrm)(usn − ūsn)〉S of the dis-
tribution S (see, for example, van Kampen 1981; Gardiner 1985). Defining

Y(t) = exp
(
−B

∫ t

0
ε(τ) dτ

)
, (14.43)

one obtains for ū(t), The vector with components ūrm,

ū(t) = Y(t)ū(0). (14.44)

Here, ū(0) is the expectation value at t = 0. The quantity ū(t) gives the
trajectory of the expectation value of the synaptic strengths and provides a
good approximation for the evolution of the system in the limit of sufficiently
small learning step size ε. For the correlation matrix C(t), one has (van
Kampen, 1981)

C(t) = Y(t)
[
C(0) +

t∫
0

ε(τ)2Y(τ)−1D(Y(τ)−1)T dτ
]
Y(t)T . (14.45)

If the initial distribution is δ-like, i.e., if S(u, 0) =∏
rm δ(urm − u(0)rm) and C(t) is positive definite, then S(u, t), the solution

of Eq. (14.410, is a Gaussian distribution

S(u, t) = det(2πC)−1/2 exp

(
−1

2
(u− ū)TC−1(u− ū)

)
. (14.46)

If ε(t) is chosen such that the initial conditions become irrelevant in the limit
t→∞, for example if ε = constant, the stationary solution can by obtained
by substituting the asymptotic values for C and ū. If B and D commute and
ε is constant, a further simplification occurs. In this case, one can carry out
the integration of (14.45) explicitly and obtains for the stationary distribution
the Gaussian (14.46) with

C = ε (B + BT )−1D. (14.47)
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14.8 Convergence Condition on Sequences of Learning
Step Sizes

The goal of the algorithm is convergence to an asymptotic equilibrium state
w̄. In order for this to occur with probability one for every member of the
ensemble, the sequence of learning step sizes ε(t) must decrease sufficiently
slowly with the number t of learning steps, so that both the variance of the
distribution function and the average ū(t) of its deviation w̄ vanish in the
limit t→∞. In the following, we derive a necessary and sufficient condition
for this.
From (14.45), one has (van Kampen 1981)

Ċ = −ε(t)
(
BC + CBT

)
+ ε(t)2D. (14.48)

Hence, one obtains for the time derivative of the Euclidean matrix norm
‖C‖2 :=

∑
rmr′n C2

rmr′n

1

2
∂t‖C‖2 = −ε(t) Tr C(B + BT )C + ε(t)2 Tr DC. (14.49)

In the following, we require that C remains bounded if ε(t) is constant and the
initial correlation matrix C(0) is sufficiently small, but otherwise arbitrarily
chosen. This is a stability requirement on the equilibrium state w̄. Since C
and D are both symmetric and nonnegative, one has Tr DC ≥ 0. Hence,
by the stability requirement, (B + BT ) must be positive. Thus, there exist
constants β > 0 and γ > 0 such that

Tr C
[
B(w̄) + B(w̄)T

]
C > β‖C‖2/2, (14.50)

and, hence,
∂t‖C‖2 ≤ −ε(t)β‖C‖2 + ε(t)2γ. (14.51)

Integration yields the inequality

‖C(t)‖2 ≤ γ

t∫
0

ε(t′)2 exp
(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′. (14.52)

Every positive function ε(t) for which the RHS of (14.52) vanishes asymp-
totically guarantees the desired convergence of C to zero. In the appendix
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at the end of this chapter, it is shown that this condition is equivalent to the
requirement limt→∞ ε(t) = 0, together with

lim
t→∞

∫ t

0
ε(t′) dt′ =∞. (14.53)

With limt→∞C(t) = 0, this also guarantees limt→∞ ū(t) = 0 and, hence,
convergence to the equilibrium average w̄ with probability one. This crite-
rion cannot be weakened: because of Eq.(14.28), limt→∞ ε(t) = 0 is neces-
sary for the asymptotic vanishing of the variance, and according to (14.43)
and (14.44), condition (14.53) is required for limt→∞ ū(t) = 0. Hence, for
convergence to an asymptotic equilibrium state w̄ satisfying the stability
requirement, we have shown the following:

Let ε(t) > 0 for all sufficiently small t so that the Markov process
(4.15) can be described by the Fokker-Planck equation (14.41) in the
neighborhood of an equilibrium state. Then the two conditions

lim
t→∞

t∫
0

ε(t′) dt′ = ∞, (14.54)

lim
t→∞

ε(t) = 0 (14.55)

together are necessary and sufficient for the convergence to w̄ of any
initial state lying sufficiently close to w̄.

The demand (14.54) is identical to the first convergence condition of Cottrell
and Fort (1986) for a closely related process. Their second condition, the re-
quirement

∫∞
0 ε(t)2 dt <∞, is overly strict in the present case and has been

replaced by the weaker condition (14.55). In particular, (14.54) and (14.55)
are satisfied for all functions ε(t) ∝ t−α with 0 < α ≤ 1. In contrast, the con-
ditions of Cottrell and Forts require 1/2 < α ≤ 1. For α > 1 or exponential
vanishing of ε(t), (14.54) is no longer satisfied, and a nonvanishing residual
deviation remains even in the limit t→∞. Nevertheless, (14.44) and (14.45)
show that the residual error ū of the average becomes exponentially small
with increasing

∫∞
0 ε(t) dt. For

∫ t
0 ε(t

′) dt′ � 1, the main contributions to
the residual error come from the equilibrium fluctuations of the correlation
matrix C. Hence this error is of order ε. Thus, in practical applications,
aside from a small residual ε(t), the condition,

∫
ε(t)dt� 1 is sufficient, and

the precise behavior of ε(t) is of little importance as long as the decrease is
monotonic.
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14.9 Uniform Signal Density Restricted to a Rectangular
Box

In the following sections we consider a Kohonen net which is a two-dimensional
lattice A with a three-dimensional input space V . The probability density
P (v), v ∈ V is assumed to be uniform and restricted to the region of a rect-
angular box. We also assume that the learning step size ε varies sufficiently
slowly with the number of learning steps such that at any time t the density
S(u, t) may be replaced by its stationary value for fixed ε. Since the input
vectors v are drawn from a volume of dimension three, i.e., larger than the di-
mension two of the Kohonen net, the Markov process will attempt to project
onto the Kohonen net those two directions along which the distribution has
its largest variance. In this way, the resulting map is a two-dimensional pro-
jection reproducing the higher-dimensional region V as faithfully as possible.
Figure 14.5 illustrates this for a three-dimensional rectangular box V of size
40×40×10 and a 40×40-lattice A. Figure 14.5a shows the resulting map
again as an “imbedding” in the box V . Since the box is relatively flat, the
map is basically a simple projection onto the subspace that is aligned with
the two longest sides of the rectangular box.
For nonvanishing ε, the learning steps cause continual fluctuations about
an average “equilibrium map.” These fluctuations appear in Fig. 14.5a as
shallow “bumps” and as weak tangential distortions of the lattice. These
“bumps”are destortions which will be described quantitatively in this section.
If inputs in case of a d-dimensional input space scatter too much along some
or all of the additional d−2 dimensions not represented by a two-dimensional
Kohonen net, then for many vectors v the restriction of the projection to a
reproduction of the two principal directions of V would be unsatisfactory. In
this case, the simple projection just described loses its stability and changes
into a more complicated equilibrium map. Usually, this new map possesses a
lower symmetry and corresponds to an imbedding of the lattice A in V that
is strongly folded in the direction of the additional dimensions. This prop-
erty, known as “automatic choice of feature dimensions,” (Kohonen 1984a)
is apparent in Fig. 14.5b. In comparison to Fig. 14.5a, the height of the
box was increased from 10 to 14 units. The symmetric projection is now no
longer stable, and the corresponding imbedding seeks a new configuration.
This new configuration breaks the symmetry of the probability distribution
P (v) in order to enable a better reproduction of the vertical variation of v
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by means of an appropriate folding. In the following, we will show that this
change to a new equilibrium state arises at a critical value 2s∗ of the height
of the box and that, approaching that value from below, the maps exhibit
increasing equilibrium fluctuations of a typical wavelength λ∗. Both values
s∗ and λ∗ will be calculated in the following.

Abb. 14.5: “Snapshot” of a Monte Carlo simulation for a 40×40-Kohonen net
A and a 40 × 40 × 10 units large rectangular box representing the input space
V . Due to the sufficiently small box height (10 units), the resulting mapping is
essentially a projection perpendicular to the two principal (long) directions of the
box. Fluctuations about the equilibrium value due to the statistical sequence of
learning steps are evident as shallow “bumps.”

In the mapping of a multidimensional box volume (dimension d) onto a two-
dimensional neural net A, each of the d−2 “height dimensions” contributes in
the same manner and independently of the other dimensions to the instability
and to the equilibrium fluctuations. Hence, there is no loss of generality if
we consider a three-dimensional box V . We choose for A a square lattice
of N×N points3 and for V the volume 0 ≤ x, y ≤ N, − s ≤ z ≤ s. This
yields P (v) = [2sN2]−1 as a homogeneous distribution. In order to avoid
boundary effects, we assume periodic boundary conditions along the x- and
y-directions. From symmetry considerations, we expect that for sufficiently
small s the assignment w̄r = r, r = mex + ney represents the average
for S̃(w, t → ∞). In this case, the state w̄ is stable up to equilibrium
fluctuations. The equilibrium fluctuations can be computed from Eq. (14.46).
In the following, let S(u) = limt→∞ S(u, t) be the stationary distribution

3 Note that the number of lattice points is now N2 instead of N .
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Abb. 14.6: The same simulation as in
Fig. 14.5a, but for a box height of 14 units. In this case, the state of
the net in Fig. 14.5a is no longer stable and a less symmetric configuration
emerges. The resulting imbedding achieves a better reproduction of the vertical
direction of the map by means of folds extending along this direction.

of the deviations u = w − w̄ from the average value (let ε be constant).
Due to translational invariance , both Drmr′n and Brmr′n depend only on the
difference r− r′ and on n and m. Hence, we can decouple Eq. (14.41) if we
express S(u) in terms of Fourier amplitudes

ûk =
1

N

∑
r

eik·rur. (14.56)

In fact, the individual amplitudes are distributed independently of one an-
other, i.e., one can express

S(u) =
∏
k

Ŝk(ûk), (14.57)

and obtains a set of mutually independent, stationary Fokker-Planck equa-
tions for the distributions Ŝk of the individual modes∑

mn

B̂(k)mn
∂

∂um
unŜk(u) +

ε

2

∑
mn

D̂(k)mn
∂2

∂um∂un
Ŝk(u) = 0. (14.58)

Here, D̂(k) and B̂(k) are the d×d matrices

D̂(k) =
∑
r

eik(r−r′)Drr′

=
1

N2

[
(∇kĥ(k))(∇kĥ(k))T + M ĥ(k)2

]
(14.59)
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and

B̂(k) =
ĥ(0)

N2

[
1− ĥ(k)

ĥ(0)
â(k)

]
− 1

N2

(
i∇kĥ(k)

)
b̂(k)T . (14.60)

For a more compact notation, we defined k := (kx, ky, 0)T . M is given by

M =
1

2s

∫
Fr(w̄)

dv (vvT − v̄rv̄r
T ) =

 1/12 0 0
0 1/12 0
0 0 s2/3

 , (14.61)

i.e., M is the correlation matrix of the distribution P̂ (v) restricted to one
of the regions Fr(w̄). Since all of the Fr(w̄) are equal and since P̂ (v) is
constant, M is independent of the choice of r. The function ĥ(k) is the
discrete Fourier transform of the neighborhood function hrs, i.e.,

ĥ(k) =
∑
r

eik·rhr0. (14.62)

The matrix â(k) and the vector b̂(k) are the Fourier transforms of the func-
tions

arr′ : =
∂v̄r(w)

∂wr′

∣∣∣∣∣
w̄

, (14.63)

brr′ : =
1

P̂r

∂P̂r(w)

∂wr′

∣∣∣∣∣
w̄

. (14.64)

respectively. The quantities â and b̂ depend only on the geometry of the
vectors wr in the equilibrium state, but not on the excitatory response h. The
matrix â describes the shift of the center of gravity of a region Fr under an
infinitesimal change of the equilibrium state, and b̂ describes essentially the
corresponding volume change of Fr. In the present case, Fr(w) is the volume
that is enclosed by the four planes perpendicularly bisecting the distances
wr − wr′ (r′ are the nearest lattice neighbors of r) together with the two
planes z = ±s. For this geometry and after some calculation, one obtains

arr′ = δrr′

 2/3 0 0
0 2/3 0
0 0 4s2/3


−

−1/4 0 0
0 1/12 0
0 0 s2/3

 · (δr+ex,r′ + δr−ex,r′)
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−

 1/12 0 0
0 −1/4 0
0 0 s2/3

 · (δr+ey ,r′ + δr−ey ,r′) (14.65)

and

brr′ =
1

2

∑
n=±ex,ey

n (δr+n,r′ − δrr′). (14.66)

The corresponding Fourier transforms are then

â(k) =
1

6
(4 + 3 cos kx − cos ky)exe

T
x

+
1

6
(4− cos kx + 3 cos ky)eye

T
y

+
2s2

3
(2− cos kx − cos ky)eze

T
z , (14.67)

b̂(k) = − i · (ex sin kx + ey sin ky). (14.68)

With this, we can discuss the behavior of the system in the vicinity of the
state w̄. We can see from limk→0 b̂(k) = 0 and limk→0 âmn(k) = δmn(1 −
δm,3) that, in the limit of small wavenumbers, for deviations of w̄ along
the x- and y-directions the restoring force vanishes, which is consistent with
the two vanishing eigenvalues of B̂(k) in this limit. Hence, long-wavelength
fluctuations of these modes can become very large. In contrast, the restoring
force to displacements along the z-direction is always nonvanishing even at
k = 0.
However, displacements in the z-direction are subject to a different insta-
bility. Since â33(k) ∝ s2, B̂(k) according to (14.60) can develop a negative
eigenvalue for these modes, if s becomes too large. Hence, some or all of these
modes can become unstable if s exceeds a critical value s∗. If the variance of
P (v) along the “transverse” dimensions is too large, this causes the system
to assume a new equilibrium state which as a rule breaks the symmetry of
the distribution P (v). A precursor to this symmetry breaking is an increase
of fluctuations of a characteristic wavelength λ∗.
For a more detailed analysis and calculation of λ∗ and s∗ we now turn to the
two cases of long- and short-range interactions (neighborhood functions) hrs.
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14.9.1 Long-Range Interaction

We consider as the interaction a Gaussian

hrr′ =
∑
s

δr+s,r′ exp

(
− s2

2σ2

)
(14.69)

with range σ, where we require 1� σ � N . In this case, we can replace the
discrete Fourier series to a good approximation by the continuous transform
and obtain

ĥ(k) = 2πσ2 exp(−σ2k2/2). (14.70)

Substitution of (14.70 into (14.51) yields

D̂(k) =
4π2σ4

N2

[
kkTσ4 + M

]
exp(−k2σ2). (14.71)

The nonvanishing elements of B̂(k) are

B̂11 =
2πσ2

N2

[
1− 1

6
(4 + 3 cos kx − 6kxσ

2 sin kx − cos ky) · e−
1
2
k2σ2

]
,

(14.72)

B̂22 =
2πσ2

N2

[
1− 1

6
(4− cos kx − 6kyσ

2 sin ky + 3 cos ky) · e−
1
2
k2σ2

]
,

(14.73)

B̂33 =
2πσ2

N2

[
1− 2s2

3
(2− cos kx − cos ky) exp(−k2σ2/2)

]
, (14.74)

B̂12 =
2πσ4

N2
· kx sin ky · exp(−k2σ2/2), (14.75)

B̂21 =
2πσ4

N2
· ky sin kx · exp(−k2σ2/2). (14.76)

In order to simplify these expressions, we use the fact that for σ � 1 either
e−σ

2k2
is very small or kx and ky admit an expansion of the angular functions.

Neglecting as well the k2-terms compared to k2σ2-terms, we obtain for B̂ the
simpler form

B̂(k) ≈ 2πσ2

N2

[
1−

(
1− σ2kkT +

s2k2

3
eze

T
z

)
exp

(
−k2σ2/2

)]
. (14.77)
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In this approximation, B̂(k) and D̂(k) commute with each other and, in fact,

possess the same eigenvectors, i.e., ~ξ3 = ez, ~ξ2 = k and the vector ~ξ1 = k⊥

perpendicular to both of these. The corresponding eigenvalues λBn and λDn
for B̂(k) and D̂(k) are

λB1 (k) =
2πσ2

N2

(
1− e−k2σ2/2

)
;

λD1 (k) =
π2σ4

3N2
e−k

2σ2

; (14.78)

λB2 (k) =
2πσ2

N2

(
1− (1− k2σ2)e−k

2σ2/2
)
;

λD2 (k) =
π2σ4

3N2
(12k2σ4 + 1)e−k

2σ2

; (14.79)

λB3 (k) =
2πσ2

N2

(
1− s2k2

3
e−k

2σ2/2
)
;

λD3 (k) =
4π2σ4

3N2
s2e−k

2σ2

. (14.80)

B̂ gives the strength of the “drift term” driving the expectation value of the
distribution toward the equilibrium average. Hence, by (14.78) and (14.79),

the system exhibits more “stiffness” against displacements along the ~ξ2-mode
and, thus, parallel to k than against displacements along the ~ξ1-mode and,
thus, perpendicular to k. For wavelengths large compared to the range σ
of hrs, we have asymptotically λB2 (k) = 3λB1 (k) = O(k2), i.e., the ~ξ2-mode

is three times stiffer as the ~ξ1-mode, and both “stiffnesses” vanish in the
limit k → 0. However, this does not hold for the ~ξ3-mode, which owes its
stability to sufficiently small values of s. If s becomes too large, then λB3 (k)
can become negative for a whole band of k-values. The corresponding modes
~ξ3(k) then become unstable, the chosen state w̄ no longer represents the
average equilibrium value, and the system seeks a new equilibrium. This can
be seen even more clearly from the fluctuations of the corresponding mode
amplitudes un. From (14.47) follows

〈un(k)2〉 =
ελDn (k)

2λBn (k)
, n = 1, 2, 3. (14.81)
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All other correlations vanish. We thus obtain

〈u1(k)2〉 = επσ2 exp(−k2σ2)

12(1− exp(−k2σ2/2))
, (14.82)

〈u2(k)2〉 = επσ2 (12k2σ4 + 1) exp(−k2σ2)

12− 12(1− k2σ2) exp(−k2σ2/2)
, (14.83)

〈u3(k)2〉 = επσ2 s2 exp(−k2σ2)

3− s2k2 exp(−k2σ2/2)
. (14.84)

For the fluctuations of u1 and u2, the deviation of wr from the equilibrium
w̄r lies along one of the two principal directions of the map. In the map,
these fluctuations affect the image locations r of the region Fr and, therefore,
are called “longitudinal” in what follows. From (14.82) and (14.83), we see
that these fluctuations for wavelengths shorter than σ are practically absent.
Hence, the main contribution to statistical distortions of the map comes from
fluctuations of long wavelength, whose amplitudes are subject to a 1/k2-
singularity. For an estimate of the influence of these fluctuations, we expand
(14.82) for the lowest possible wavenumber k = 2π/N , where we assume
kσ = 2πσ/N << 1. This yields

〈u2
1〉1/2 ≈ N

√
ε/24π ≈ 0.12Nε1/2. (14.85)

In order for this not to exceed a fixed, prescribed number of lattice constants,
ε must be chosen inversely proportional to the number N2 of lattice points
of A. For practical applications, these distortions, which are smooth and
distributed over large distances, are not disturbing, since one is often mainly
interested in the correct, two-dimensional reproduction of the neighborhood
relationships in the original higher-dimensional space V . Therefore, for many
applications, a significantly larger learning step size ε is allowable even in the
final phase of the algorithm.
The u3-mode describes the deviation of each wr along the direction perpen-
dicular to the local imbedding plane of A in V . According to (14.84), its
amplitude remains bounded, in contrast to u1 and u2, even at k = 0, but, as
mentioned previously, its stability depends crucially on s. Instability occurs
for s-values for which the denominator of (14.84) no longer is positive for

all k-values. This is the case for s > s∗ = σ
√

3e/2 ≈ 2.02 σ. For s = s∗,

the wavelength of the marginally unstable mode is λ∗ = σπ
√

2 ≈ 4.44 σ.
A mapping is hence stable if and only if the variance of P (v) transverse to
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the imbedding plane does not exceed a maximal value that is proportional
to the range σ of hrs. If necessary, the algorithm enforces this condition by
an appropriate folding of the imbedding. By the choice of σ, one can control
what variance will be tolerated before folds occur. If s approaches the limit-
ing value s∗ from below, the system exhibits fluctuations which grow as the
difference to s∗ becomes smaller, and which are particularly evident in the
vicinity of the wavelength λ∗. The fluctuations, in case of further increasing
s, lead to a destabilization of the symmetric equilibrium distribution above
s∗.

14.9.2 Short-Range Interaction

We consider now the short-range limit, in which hrs extends only as far as
the nearest neighbors, i.e.,

hrs = δrs +
∑

n=±ex,ey

δr+n,s. (14.86)

In this case holds
ĥ(k) = 1 + 2 cos kx + 2 cos ky. (14.87)

For the representative case ky = 0, k := kx, one has

〈u1(k)2〉 =
ε · (3 + 2 cos k)2

4(1− cos k)(9− 2 cos k)
, (14.88)

〈u2(k)2〉 =
ε · (44 sin2 k + 12 cos k + 13)

12(1− cos k)(11 + 6 cos k)
, (14.89)

〈u3(k)2〉 =
εs2 · (1 + 2κ)2

2(4s2κ2 − 6s2κ+ 15− 4s2)
, (14.90)

with κ := cos kx + cos ky. Expression (14.90) also holds for ky 6= 0. There is

again a 1/k2-singularity of the longitudinal fluctuations. As before, B̂11(k) >
B̂22(k), i.e., the restoring force for displacements in the direction of k is again
higher than for displacements perpendicular to it. Due to D̂11(k) = D̂22(k),
this behavior arises also for the smaller fluctuations of the “stiffer” mode.
By considerations similar to those of section 14.9.1, one has 〈u1(k)2〉1/2max ≈
0.2ε1/2N . Hence, the limitation of the fluctuations to a fixed number of lattice
constants requires ε ∝ 1/N2. The critical limit for the occurrence of the

transverse instability becomes s∗ =
√

12/5 = 1.549, and the corresponding
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first unstable modes belong to κ∗ = 3/4. For ky = 0, this corresponds to the
relatively small wavelength of 3.45 lattice constants, i.e., again as in the long
wavelength case, a wavelength of the order of the range of hrs.

14.9.3 Comparison with Monte-Carlo Simulations

In this section, we compare the analytical results obtained in Sections 14.9.1
and 14.9.2 with data from Monte-Carlo simulations of the Markov process
(4.15) for the cases of long-range (Eq.(14.39) and short-range (Eq.(14.86))
excitatory response hrs.

Abb. 14.7: Dependence of the fluctuations of the “soft” mode u1 for a short-
range excitatory response of Eq. (272) on the wavenumber k. The data points
are from a Monte-Carlo simulation of the Markov process (70) with fixed ε = 0.01
and s = 10−4. Superimposed is the dependence according to Eq.(274).

In the first simulation, we use a square 32×32-lattice (i.e., N = 32) with
the short-range excitatory response (14.86) and constant learning step size
ε = 0.01. Beginning with the equilibrium state w̄r = mex + ney, m, n =
1, 2, . . . , 32, 20,000 “snapshots” of the Markov process described by (4.15)
were generated in intervals of 2,000 Markov steps for the evaluation of the
correlation function 〈un(k)2〉. For the ensemble of states obtained in this
manner, the correlation function fn(k) := 〈un(k)2〉1/2, n = 1, 2, 3 was eval-
uated at the discrete wave vectors k = ex · 2πl/N , l = 1, . . . , 32. The
data points, thus obtained for the “hard” mode u1 and the “soft” mode u2,
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Abb. 14.8: Fluctuations of the “hard” mode u2, obtained from the same simu-
lation as in Fig.14.6 (analytic result according to Eq.(275)). For small wavenum-
bers, the fluctuations are smaller than for u1.

Abb. 14.9: Fluctuations of the
“transverse” mode u3 (analytic results according to Eq. (276)) for three
different values of the height parameter s: for s = 10−4, i.e., an essentially two-
dimensional probability distribution, there are only small transverse fluctuations.
For s = 1.3, the fluctuations begin to show a broad maximum near k = 0.58π.
This is quite evident for s = 1.5, i.e., just below s∗.
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Abb. 14.10: Dependence of the longitudinal fluctuations on the wavenumber
k for a Gaussian excitatory response (255) with σ = 5. The data points pertain
to a Monte-Carlo simulation of a chain with N = 128 points. Superimposed is
the theoretical graph according to Eq.(277). The exponential fall-off at large
wavenumbers is correctly reproduced by the data.

are presented for s = 10−4 in Fig. 14.6 and Fig. 14.7. Also shown are the
predictions on the basis of (14.88) and (14.89). Obviously, the analytical
description agrees very well with the simulation data. Figure 14.8 shows
the dependence of the transverse fluctuations (in units of s) on the height
2s of the box for parameter values s = 10−4, s = 1.3, and s = 1.5. The
transverse fluctuations are described by the correlation function f3(k) and
were obtained through simulations and from Eq. (14.90). For s = 10−4,
i.e., essentially a very flat, two-dimensional box, the fluctuations decrease
monotonically with wavelength. As s approaches the critical value s∗, the
fluctuations of the modes near k∗ = 0.58π increase markedly. At s = 1.5, i.e.,
just below s∗ ≈ 1.54, the fluctuations already take up a significant fraction
of the box volume height and, thus, indicate the incipient instability. For all
three parameter values, the agreement between the theoretical graphs and
simulation data is very good.
A similar Monte-Carlo simulation for the long-range excitatory response is
difficult to perform because of the considerably higher computational effort.
Therefore, for this case we have carried out a simulation for a one-dimensional
lattice consisting of N = 128 points. The box volume is replaced by a
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Abb. 14.11: The corresponding transversale fluctuations for three different
values of s (analytical results according to Eq.(278)). In comparison to Fig. 14.8,
the critical value is now s∗ ≈ 10.1, and the fluctuations show an exponential fall-
off for larger k-values. The maximum, related to the transverse instability, is
shifted in comparison to Fig. 14.8 toward lower k-values.

rectangular strip of length N and vertical extension 2s. The learning step size
was again ε = 0.01. In this case, we generated an ensemble of states consisting
of 10, 000 “snapshots” at intervals of 1000 Markov steps. The derivations of
the preceding Section are easily adapted to the present situation and yield
for the equilibrium fluctuations of the longitudinal (u1) and transverse (u2)
modes (here the only ones):

〈u1(k)2〉 =
εσ
√

2π(12k2σ4 + 1) exp(−k2σ2)

12(2− [1 + cos k − 2σ2k sin k] exp(−k2σ2/2))
, (14.91)

〈u2(k)2〉 =
εσ
√

2πs2 exp(−k2σ2)

6− 4s2(1− cos k) exp(−k2σ2/2)
. (14.92)

These expressions are, up to an additional factor of (σ
√

2π)−1, identical to
the results (14.82) and (14.84) for the two-dimensional lattice in the limit
k → 0. In particular, for s∗ and λ∗ we obtain the same values as before.
Figure 14.9 and Fig. 14.10 show a comparison of the shape of the theoretical
correlation functions according to (14.91) and (14.92) with the data from a
Monte-Carlo simulation at σ = 5. Figure 14.9 shows the data points of the
simulation for the longitudinal fluctuations f1(k) and s = 0.1. The expected
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exponential fall off for k2σ2 > 1 is reproduced well. On the other hand, the
expected 1/k-singularity for f1(k) is not visible, since the very small k-values
required are possible only for considerably longer chains. Figure 14.10 shows
the transverse fluctuations f2(k) for the three cases s = 0.1, i.e., essentially
a one-dimensional input vector distribution, s = 9.0 (still significantly below
the critical value s∗ ≈ 2.02σ ≈ 10.1), and s = 9.9 which is just below s∗. The
main differences between the present case and the short-range case presented
in Fig. 14.8 turn out to be the shift of the instability (maximum of f2(k))
to shorter wavenumbers and the exponential fall-off of the fluctuations for
kσ >> 1.

14.10 Interpretation of Results

In this section, we summarize the results of the preceding sections 14.8–14.9
and interpret them in terms of biological maps.
The situation analysed in Section 14.8 can be regarded as the simplest possi-
ble “scenario” in which a “dimensionality conflict” arises between the mani-
fold of input signals (3-dimensional rectangular box) and the topology of the
map (two-dimensional surface). The quantity determining the “strength” of
the “conflict” is the height dimension 2s of the box volume. For small values
of s, the variation of the input signal along the vertical dimension is hardly
noticeable, and the structure of the resulting map is not affected by this part
of the input signal variation. In this case the map corresponds geometrically
to a vertical projection of the box onto a horizontal plane.
However, as shown by our analysis, this map only remains stable as long as

s ≤ s∗ = σ
√

3e/2 is satisfied. In this stability region, the components wr3

of all weight vectors fluctuate about their common average value zero, and
the size of the fluctuations decreases with the square root of the adaptation
step size. The “stability threshold” s∗ can be interpreted essentially as that
distance in the space of input signals which corresponds to the range of the
neighborhood function hrs in the lattice. For s > s∗, a map with periodic
“distortions” develops. Mathematically, these “distortions” stem from those
components wr3 the average values of which are no longer spatially constant
above the stability threshold, but rather vary with position r in the map.
This variation exhibits a periodic pattern and begins to makes itself felt even
below the threshold s∗ by an increase of wavelike fluctuations about the equi-
librium value wr3 = 0. Here, contributions from fluctuations of wavelength
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λ∗ = σπ
√

2 dominate, that is, the scale of the dominant wavelengths is also
determined by the range of the neighborhood function.
In the context of a pattern processing task, the x- and y-coordinate would
have the interpretation of two “primary” features, characterized by large
variations. In contrast, the z-coordinate would correspond to a “secondary”
feature with less strongly evident variation. As long as s < s∗, the system
converges to a topographic map of the two “primary” features alone, and the
“secondary” feature remains completely invisible in the map. As soon as the
variation of the “secondary” feature exceeds the threshold value given by s∗, a
map is created in which the “secondary” feature is also visible. This happens
in such a way that the components of the weight vector wr become position
dependent in the direction of the “secondary” feature. If one represents the
values wr3 of these components by gray levels, one finds an irregular pattern
consisting of black and white stripes, as shown in Fig. 14.11.
Interestingly enough, in the brain one finds a whole series of two-dimensional
arrangements of neurons whose response properties are distributed in qual-
itatively similar spatial patterns. The best-known examples of this are the
“ocular dominance stripes,” an irregular pattern of stripes containing neu-
rons that prefer either the left or the right eye as their input, as well as
the “orientation columns,” along which neurons reacting to stimulation of
the retina by brightness edges of the same orientation are grouped. In both
cases, the response behavior of the neurons is described (to a first approxima-
tion) by three “stimulus variables,” and there is a “dimensionality conflict”
for the distribution of these parameters on the two-dimensional visual cortex:
in addition to the two “primary” stimulus variables “retinal position” (x- and
y-coordinates), the relative weight of the input of both eyes is a “secondary”
feature in the case of the ocular dominance stripes. On the other hand, in the
orientation stripes, the “secondary” feature is the orientation of the bright-
ness edge, and each neuron — in addition to its specialization to a particular
retinal position — will respond well to a small range of edge orientations
only. Several models for the description of such spatial patterns of neural
stimulus variables have been suggested in the past. The papers of von der
Malsburg (1979, 1982), Willshaw and von der Malsburg (1976), Takeuchi
and Amari (1979), as well as Miller et al. (1989) represent some selected
contributions to this area. In particular, the ability of Kohonen’s model to
generate such striped patterns was noticed very early by Kohonen himself in
computer simulations (Kohonen 1982a). However, until recently this impor-
tant property of the model received only little attention by other researchers.
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Abb. 14.12: Topographic map with periodic structure of stripes. The input
signals came from a three-dimensional feature space 0 ≤ x, y ≤ 40, −4 ≤
z ≤ 4. The map was generated by Kohonen’s algorithm on a 40×40-lattice
(σ = 1.4, 104 steps). The height (z-dimension) plays the role of the “secondary”
feature, whose distribution in the map is represented by gray levels. The resulting
pattern qualitatively resembles the pattern of ocular dominance stripes observed
in the visual cortex, into which cells with a preference for the same eye become
segregated, or of orientation columns in the striate cortex separating cells with
receptive fields of different orientation.

The derivation given here augments the earlier simulation results by means
of a mathematical analysis that can serve as a point of departure for the
mathematical treatment of more realistic versions of Kohonen’s model. It
shows that stripe formation can be regarded as an instability against wave-
like “distortions” resulting from a ‘dimensionality conflict” between input
signals and the neuron layer.

14.11 Appendix

In this appendix, we show that for every positive function ε(t) the conditions

lim
t→∞

∫ t

0
ε(τ) dτ = ∞



14. Mathematical Analysis of Kohonen’s Model 261

lim
t→∞

ε(t) = 0 (14.93)

and

lim
t→∞

∫ t

0
ε(t′)2 exp

(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′ = 0. (14.94)

are equivalent for arbitrary β > 0.
Proof: (14.94)→ (14.93) is obvious for ε > 0; (14.93)→ (14.94):
Choose δ > 0 arbitrarily small and a > 0 such that ε(t) < βδ holds for
all t > a. Let εmax := maxt ε(t). Then a b > a can be chosen such that
exp(−β

∫ t
a ε(τ) dτ) < βδ/εmax holds for all t > b. It then follows for all t > b

that: ∫ t

0
ε(t′)2 exp

(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′ =

=
1

β

(∫ a

0
+
∫ t

a

)[
ε(t′)

∂

∂t′
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]
dt′

≤ εmax
β

[
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]t′=a
t′=0

+ δ ·
[
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]t′=t
t′=a

≤ εmax
β
· 2βδ

εmax
+ δ = 3δ.

Since δ may be chosen arbitrarily small, (ii) must hold.




