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13. LEARNING BALLISTIC MOVEMENTS
OF A ROBOT ARM

13.1 Problem and Model Approach

After a sufficiently long training phase, the network described in the pre-
ceding chapters can provide the required joint angles for any desired arm
position. However, setting the joints to these angles is left to the joint servo
motors of the arm. Such motors achieve the target position by changing their
torque in opposite direction to any angular deviation from the target joint
settings. For slow movements, this is an appropriate strategy because the
individual joint movements can then be regarded to good approximation as
independent of one another. However, for rapid movements, the inertia of
the arm segments leads to a coupling between movements of different joints.
For example, the movement of an inner (proximal) joint leads to an accelera-
tion of all outer (more distal) joints and, hence, to the occurrence of torques,
which must additionally be overcome by the joint motors. Conversely, the
inner joint motors must counterbalance the action of outer joint motors.
In summary, inertial, centrifugal, and gyroscopic forces occur, the interplay
of which leads to a complex, nonlinear coupling of all joints. In this situ-
ation, a single motor can no longer determine its torque from the present
and given joint position alone, but rather its torque must also depend on the
movements of all the other joints. Thus, to achieve the desired movement,
it is no longer sufficient to take into account the connection between arm
position and joint angles alone, i.e., the kinematics of the arm. The Newto-
nian equations of motion of the arm, i.e., its dynamics, must be included as
well. Although the Newtonian equations can be given in closed form, they
become enormously complicated for multi-joint systems. A closed solution is
possible only in exceptional cases, and even approximate solutions require a
knowledge of the inertia tensors of the individual arm segments. In this case,
a real-time computation of the arm torques is possible by means of recent
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algorithms whose computational effort grows only linearly with the number
of arm joints. However, the inertia tensors required for such a computation
are frequently known only imprecisely. This is due to the fact that the spatial
mass distribution of the arm, which is described by these tensors, in general
is very complicated for real systems. Hence, adaptive algorithms with the
ability to learn these properties of the arm are highly desirable.
equations. the arm are
In this chapter we show how the extended Kohonen algorithm can also be
applied to the problem of moving a robot arm by accounting for the arm’s
dynamics. We choose the task to control a three-link robot arm as introduced
in Section 11.1 by means of briefly applied torque pulses at its joints in such
a way as to accelerate its end effector to a prescribed velocity. During the
remaining time, the arm is to move freely. The relationship between arm
configuration, desired velocity, and required torque pulse is to be learned
by a network again through trial movements. In contrast to the previous
situation, this requires taking into account not only arm kinematics but also
arm dynamics, i.e., effects of inertia. Since we have shown in Chapter 12 how
a network may learn to compute the transformation from visual information
to joint angles, we will not consider this part of the problem here anymore
and encode arm configuration directly by joint angles. As before, the arm
can move its end effector freely in every spatial direction and reach any point
on the working area which is now the planar surface of a table located in
front of it. In the simulation, the relationship between end effector motion
and joint torques is to be learned for those configurations for which the end
effector is located directly above the working area. The configuration of
the arm is again specified by its joint angles, expressed in vector notation
by ~θ = (θ1, θ2, θ3). The movement of the arm is effected by three torques
=. (d1, d2, d3) acting on its joint axes. Let q denote the position of the end
effector in Cartesian coordinates. The equations of motion of the arm are
then given by (see for example Brady et al. 1984)

di(t) =
3∑
j=1

A(~θ)ij”qj +
3∑

j,k=1

B(~θ)ijkq̇j q̇k + gi(~θ). (13.1)

A(~θ) and B̂(~θ) are configuration-dependent matrices which describe the dy-

namical properties of the arm. The term g(~θ) takes the contribution of
gravity into account. If the end effector is initially at rest, a briefly applied
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torque pulse
(.t) = ~τ · δ(t) (13.2)

thus imparts to it the velocity v = q̇ satisfying

~τ = A(~θ)v. (13.3)

Here ~τ = (τ1, τ2, τ3) denotes three torques acting on the three joints of the
robot arm. In particular, the coefficients Bijk and gi do not influence the
velocity attained immediately after the torque pulse (the change in v during
the subsequent force-free motion, which is affected by Bijk and gi, is not
included here). Motions generated by the brief torque pulses described by
(13.3) are termed ballistic movements. Equation (13.3) describes a relation-

ship between configuration ~θ, torque amplitude ~τ , and resulting end effector
velocity v in a form similar to that of Eq.(143). Hence, the learning algo-
rithm developed in Chapter 11 is again applicable. As before, we make use
of a lattice and define a vector wr and a matrix Ar for each lattice site r.
Just as in Chapter 11, each wr specifies an arm configuration, but this time
in terms of joint angles. Thus, wr is now a three-component vector.
In the course of the learning phase, each lattice site r becomes responsible for
a small subregion of the arm’s configuration space, the subregion extending
about the configuration defined by the joint angles wr. The matrix Ar should
converge to the transformation matrix which, according to (13.3) connects
the desired end effector velocity v and the required torque amplitudes ~τ in
this subregion.
The training phase of the robot consists again of a sequence of trial move-
ments. For each trial, the starting configuration ~θ is obtained by requiring
the end effector to be at some randomly chosen position within the working
area. From there, the end effector is to be moved with a prescribed velocity
u (also chosen at random during the learning phase). On the basis of the

initial configuration ~θ, the system selects that transformation matrix As, for
which ‖ws − ~θ‖ = minr ‖wr − ~θ‖. On the basis of the prescribed velocity u,
it then performs the movement resulting from the torque amplitude

~τ = Asu. (13.4)

From the end effector velocity v actually obtained, an improved estimate

A∗ = As +
ε′

‖v‖2
(~τ −Asv)vT (13.5)
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is derived for As, and, taking into account the input quantity ~θ, the learning
steps

w(new)
r = w(old)

r + εhrs(~θ −w(old)
r ) (13.6)

A(new)
r = A(old)

r + h′rs(A
∗ −A(old)

r ) (13.7)

are carried out for the variables wr, Ar, respectively. Subsequently, the next
trial movement is executed.

13.2 A Simulation

In the following simulation hrs and h′rs were again chosen as Gaussians, and
σ(t), σ′(t), ε(t) and ε′(t) were all of the familiar form x(t) = xi · (xf/xi)t/tmax .
The motion of the robot arm was simulated on a computer, using a dynamics
simulation algorithm as suggested by Walker and Orin (1982). The mass
distribution was assumed to consist of three unit point masses located at
the middle and front joints, and at the end of the arm. Let us consider a
Cartesian coordinate system whose origin is located at the base of the arm
and whose xy-plane coincides with the plane of the working surface. The x
and y-axes run parallel to the short and long edges of the working surface,
respectively. For each trial movement, the desired velocity was chosen as a
random vector with an isotropic distribution of direction and its length a
random value uniformly distributed between 0 and 1.
The network consisted of a planar, rectangular 15×24 lattice of 360 neural
units. A random initial state was generated in the following way: For each
lattice site r, an end effector position on the working surface was selected at
random, and wr was set to the corresponding joint angles. For this position,
the correct transformation matrix A was computed. The individual elements
of Ar were then calculated from the elements of A by superposition of random
errors according to

(Ar)ij = Aij + α‖A‖ · η. (13.8)

Here, η ∈ [−1, 1] is a uniformly distributed random variable, and α is a pa-
rameter measuring the deviation of the initial matrices Ar from their correct
values. The simulation data were α = 0.25, εi = 0.8, εf = 0.02, ε′i = 1,
ε′f = 0.5, σi = σ′i = 3, σf = σ′f = 0.2 and tmax = 10, 000.
The initial state of the lattice is shown in Fig. 13.1. To illustrate the cor-
respondence between lattice sites and arm configurations, in Fig. 13.1a a
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Abb. 13.1: Assignment of end ef-
fector positions to lattice sites at the
beginning of the simulation.

Abb. 13.2: The reaction of the end
effector to two test movements along
the horizontal x-direction and vertical
y-direction for the end effector posi-
tions of Fig. 13.1a.

perpendicular view of the working surface is shown. For each of the 360
neural units the end effector position pertaining to the arm configuration
associated with that site is marked and connected in the familiar way with
those other end effector locations that pertain to neighboring neural units.
Since a similar illustration of the matrices Ar is not directly possible, in
Fig. 13.1b we instead show the reaction of the end effector to test move-
ments. For each of the end effector positions of the 360 neural units, the
reaction of the end effector to two different target movements with velocities
in the x- and in the y-direction is shown. Initially, these reactions only show
a small correlation with the desired velocities, due to the considerable errors
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Abb. 13.3: As in Fig. 13.1a, but
after 500 trial movements. By this
time, a recognizable order has already
emerged.

Abb. 13.4: An improved agreement
with the target movements is also vis-
ible in the test movements of the end
effector.

in the matrices Ar (see Fig. 13.1b). Figure 13.2 shows the state of the robot
after 500 trial movements. At this stage, a recognizable, lattice-type corre-
spondence between end effector positions and neural units has emerged, and
the actual velocities resulting for the test movements point approximately
in the x- and y-directions. Finally, Fig. 13.3 shows the result after 10,000
trial movements. In Fig. 13.3a, a regular mapping between lattice sites and
end effector positions can be recognized in the working surface. The test
movements are now carried out with good accuracy (Fig. 13.3b).
The representation chosen can only visualize the reaction to test movements
that lie in the plane of the working surface. Therefore, for the developmental
stages of Fig. 13.2 and Fig. 13.3, the Euclidean matrix norm er := ‖Ar −
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Abb. 13.5: The final result after
10,000 trial movements shows the
formation of a good correspondence
between lattice sites and end effector
positions of the working area.

Abb. 13.6: Now the correspond-
ing test movements of the end effec-
tor agree well with the target move-
ments.

Aexact(wr)‖ of the deviation from the exact transformation matrix is given
in Fig. 13.4 for each lattice site r as a height above the end effector position
in the working surface corresponding to wr. Hence, an “error surface” above
the working surface is created, whose height at each point is a measure of the
discrepancy between desired and actual movement, averaged over all spatial
directions. Figure 13.4 shows that the remaining errors are inhomogeneously
distributed and are largest for those configurations in which the end effector
is located near the base of the arm. This is due to the singular character of
the transformation between torque amplitude and velocity for positions close
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Abb. 13.7: “Error surface” above
the working surface after 500 trial
movements. At this time, the errors
are still relatively large.

Abb. 13.8: After 10,000 trial move-
ments, no significant errors remain
except for end effector positions near
the base of the arm.

to the base,1 near which a convergence of the procedure will take a larger
number of trial movements.
During our discussion of models of oculo-motor control and visuo-motor co-
ordination in Chapters 9, 11, and 12 we repeatedly came to see the important
role of neighborhood cooperation between neurons for the success of learning
the output mapping. Also in the present case, neighborhood cooperation
has a positive effect on the convergence of the learning algorithm. This can
be illustrated by repeating the simulation as before, except that neighbor-
hood cooperation is suppressed for the learning steps of As. This is achieved
by setting the parameters characterizing the range of h′rs to values σ′i = 0
and σ′f = 0 (implying h′rs = δrs). Figure 13.5 illustrates the limited learn-
ing success by showing the reaction to the two test movements in the x- and
y-direction. A closer inspection shows that Ar converges to the correct trans-
formation only for those neural units with sufficiently “good” initial random
values of Ar. The remaining units do not achieve convergence, even if further
learning steps are allowed.

1 The singularity is analogous to the one in the transformation between joint angles
and effector positions encountered in Sect. 11.4.
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Abb. 13.9: Result of the same simulation as in Fig. 13.1-13.3, obtained after
10,000 learning steps, but without lateral interaction between the array variables
Ar, i.e., with h′rs = δrs. In this case, the desired convergence is only achieved
for a fraction of all end effector configurations. This illustrates the important
contribution of lateral interaction to a robust convergence behavior of the system.

Abb. 13.10: Improvement of the convergence behavior by lateral interaction
between the lattice sites. For three different initial ranges σ′i of the lateral in-
teraction h′rs, the diagram shows the decrease, as a function of the number of
learning steps, of the average error between target velocity u and actual velocity
v of the robot end effector. For the two shorter ranges, a considerable error
remains at the end.
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The essential role of neighborhood-based cooperative learning is also evident
in Fig. 13.6 where we present the average error 〈‖v−u‖〉 between the target
movement u and the actual movement v performed as a function of the
number of learning steps carried out. The average was taken over all lattice
points and over isotropically distributed, unit target velocities u. The three
curves correspond to three simulations with the same disordered initial state
but distinct initial ranges σ′i = 0.5, σ′i = 1.0, and σ′i = 2.0 for the lateral
interaction h′rs. The initial state was generated according to Eq. (13.8)
with a value α = 2, i.e., the deviations of the initial matrices from their
correct values were significantly higher than in the simulations of Figs. 13.1-
13.4. The remaining simulation data were chosen as before. In the case of
the long-range interaction σ′i = 2 the error decreases fastest and the system
achieves a very small residual error. In the case of shorter ranges σ′i = 1,
σ′i = 0.5, the decay of the error during training is slowed down and only some
of the matrices Ar manage to converge to their correct values. The residual
errors are correspondingly larger, the smaller of the two occurring for the
longer of the two ranges.
The procedure described here is not restricted to the learning of ballistic
movements. Another conceivable application would be to learn in this man-
ner the relationship between joint torques and the force exerted by the end
effector. This would be of interest for movements in which the end effector
is guided in its motion by contact with a surface and in which the contact
is to be maintained with a specified contact force (“compliant motions”).
Similarly, it would be possible to learn configuration-dependent joint torques
compensating for the influence of gravity on the arm, thus eliminating one of
the main factors responsible for changes in the end effector velocity during
force-free, ballistic phases of the motion.
This concludes our investigation of the capabilities of Kohonen’s model and
its extensions by means of computer simulations. In the subsequent chapters,
we will take a closer look at important mathematical aspects of the model
and analyze some of its properties that became evident in the simulations.




