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FOREWORD

The wave of interest in the artificial neural networks (ANNs) that started
in the mid-1980s was inspired by new prospects not visible ten years earlier.
First of all it should be realized that ANNs have been intended for a new
component technology. There are many computation-intensive tasks such
as preprocessing of natural signals, pattern classification and recognition,
coordination of movements in complex mechanisms, decision making on the
basis of extensive but uncertain data, and high-definition animated graphics
that can no longer be handled by digital computers. Even supercomputers
are soon unable to cope with the growing dimensionality of such problems. It
has become more and more obvious that one has to resort to special analog
computing methods; with the aid of modern VLSI technology and optics it
will be possible to produce analog picowatt circuits by the billions, and so
the cost of massively parallel computation can be cut to a fraction. The
breakthroughs in the analog semiconductor and active optical component
technology around 1980 were thus crucial for the acceptance of the ANN
computing principles.

Before digital technology can be replaced or at least augmented by the “neu-
romorphic” technology in practice, one must fully understand what and how
to compute. As even the most fundamental operations are different from
those of digital computing, and the innumerable system parameters of the
ANNs are time variable, designers are faced with new phenomena, and they
have to learn how to deal with them. This revolution in the paradigms
and standards will not be easy; however, if the ANNs prove cost-effective in
practice, this change will be inevitable. Therefore, we must welcome every
teaching effort in this new field. Books, especially monographs, of which the
present one is an excellent example, are invaluable aids in education of these
new technologies.

The excitement about the ANNs has also been accompanied by certain beliefs
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that we finally understand how the brain works. The collective computations
thereby performed, and the automatic adaptive changes of the system pa-
rameters and structures have often been identified with mental processes
and learning ability. However, it may already have become clear even to the
most enthusiastic supporter of these ideas that mere increase in the parallel
computing capacity is not sufficient for the duplication or even imitation of
the brain functions. Every biological cell makes use of tens of informations
processing principles of which only two or three have been utilized in the
ANNs and the immensely complex structures of the biological nervous net-
works have been formed in innumerable cycles of evolution, under continuous
bombardment of complex signals from the environment and other sources of
natural information. There exists yet nothing similar in the ANNs, which
are usually only dedicated to some restricted tasks.

While it is obvious that the ANNs cannot accurately imitate even the sim-
plest biological circuits, it is also necessary to realize that the functions and
processes at work in the nervous systems are not at all that mysterious; since
they are based on physical and chemical phenomena, it is possible to ap-
proximate their behavior, at least on some level of abstraction. For their
understanding it will then be sufficient to set up a model that takes into ac-
count a number of the basic operations and relationships of the elementary
functions in the spatial and temporal domain. If certain essential model-
ing assumptions are made, one cannot avoid starting to see phenomena that
very much resemble those observed in the biological systems. This is an
irrefutable fact, and can certainly be interpreted as partial explanation of
these phenomena.

When working with the ANNs, it is therefore necessary to realize that while
the principles and components thereby applied have been inspired by brain-
theoretic considerations, the artificial implementations need not necessarily
do exactly the same as their biological counterparts. It may not be possible
to achieve the complexity, flexible learning ability, and capability of high-
level abstraction of experiences characteristic of biological organisms. On
the other hand, the stability and accuracy of the artificial components can
be orders of magnitude higher than those of the biological ones. In some
tasks it can be a significant advantage that the ANNs do not exhibit fatigue,
and are not panicked in alarming situations. It is plausible that in the future
the computing capacity of the ANNs can be increased much beyond that of
the biological systems. All this gives us promises of development that we
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may not yet fully foresee.

Teuvo Kohonen

Professor, Helsinki University of Technology
Research Professor at the Academy of Finland
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PREFACE

The understanding of biological brains—with their capacity for learning as
well as for the processing of sensory impressions and the control of movements—
is one of the most fascinating research challenges of our time. In the still-
young discipline of Neural Computation, scientists from such distinct fields as
biology, information theory, physics, mathematics, psychology, and medicine
have joined forces to pursue this challenge. Neural Computation seeks to
simulate “biological intelligence” in artificial “neural networks” the structure
and dynamics of which attempt to imitate the function of biological neural
systems.

In the past few years, a number of promising successes have been achieved in
this endeavor, triggering lively research activities in diverse research groups.
The present book took shape during this period. Its aim is to provide an
introduction to the field of neural computation and it is equally intended for
those working in the fields of computer science, physics, biology, mathemat-
ics, engineering, psychology, and medicine, as well as for all those readers
with an interest in computer models of neural networks and of the brain.

The first part of the book gives a general overview of the most important
current models of neural nets together with a short sketch of the relevant
biological background. The second part of the book is devoted to the cen-
tral question of how functional neural circuitry in the brain can arise by
means of a self-organizing process. It is shown how, by means of a few simple
mechanisms, neural layers can learn representations or “maps” of important
stimulus features under the influence of nothing more than a random se-
quence of sensory stimuli. A series of examples demonstrates the simulation
of observed organization processes in the brain. However, these examples also
show how solutions of abstract tasks from traditional information science can
be obtained by the same mechanisms. The third part of this book is con-
cerned with the question of what extensions of these mechanisms are required
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in order to enable the learning of simple motor skills, such as the balancing
of a pole or the control of eye movements. Building on this foundation, the
fourth part of the book describes several studies concerning problems of robot
control. It is shown how a neural network can implement the coordination of
robot arm movements under visual feedback control. Finally, the last part of
the book treats important theoretical questions connected with the learning
process, in particular the question of convergence and the influence of the
element of chance during the learning phase.

At several points, a basic mathematical knowledge of elementary analysis
and linear algebra may be useful to the reader, but they are not required
in large parts of the book. Only in the last part, which is concerned with a
more thorough mathematical analysis, some familiarity with vector analysis
will be helpful.

Here, we would like to thank all those who have contributed to the creation
of this book. We are grateful to the friendship and advice we received from
Hans-Ulrich Bauer, Joachim Buhmann, Anita Govindjee, Leo van Hemmen,
Karl Hess, Teuvo Kohonen, Christoph von der Malsburg, Sabine Martinetz,
Jeanette Rubner, Zan Schulten, Werner von Seelen, Larry Smarr, Paul Tavan,
and Udo Weigelt. We want to mention particularly our colleague Klaus
Obermayer, whose work on self-organizing maps enriched our own views in
many important ways, and who provided two of the color pictures on the
front cover. Daniel Barsky, Ron Kates, and Markus Tesch have helped us
tremendously with the translation from the original German text. Allan
Wylde and Pam Suwinsky of Addison Wesley have been patient supporters.
The book would have been impossible without grants which we received
over the years from the National Science Foundation, the National Institute
of Health, the State of Illinois, as well as from the German Ministry of
Research and Development. Thomas Martinetz received a fellowship from
the Volkswagen Foundation. Computer time and much good advice had been
available to us from the National Center for Supercomputing supported by
the National Science Foundation.

We are especially grateful to the Beckman Institute of the University of Illi-
nois where we had the privilege to work and in whose stimulating atmosphere
the book could be completed.

This book was written with the TEX typesetting system and the program
Textures. Typesetting and graphics were produced on a Macintosh II com-
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puter.

Urbana, Illinois, and Bielefeld, Germany
October 1991

Thomas Martinetz, Helge Ritter, Klaus Schulten
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0. Introduction and Overview 1

0. INTRODUCTION AND OVERVIEW

The emergence of the electronic computer and its incredibly rapid develop-
ment have revived humankind’s age-old curiosity about the working of the
brain and about the nature of the human mind. The availability of the com-
puter as a research tool has raised hopes of at least partial answers to these
questions. There are three reasons for regarding this hope as justified.

First, the accomplishments of computers have forced us to define, in a precise
manner, our concepts of the phenomenon “mind” — in this context generally
under the heading of “intelligence.” The rapid evolution of computers also
demands a redefinition of the previously clear and unproblematic concept
of “machine.” In particular, the high flexibility made possible through pro-
gramming has led us to regard the capabilities of computers as being separate
from their material substrate, the hardware, but rather as residing in their
program, the software. This “hardware-software duality” has enriched our
conceptual framework on the relationship between mind and matter.

Secondly, as a tool, the computer has tremendously accelerated scientific
progress, including progress in areas that are important for a better under-
standing of the brain. For example, computers made it possible to carry out
and evaluate many neurophysiological, psychophysical, and cognitive exper-
iments. Other relevant branches of science, in particular computer science
and its subfield “ artificial intelligence” (“ AI”) came into being as computers
became available.

Thirdly, with the ability to manufacture computer hardware of high enough
performance, discoveries concerning the functioning of the brain, in addition
to their former purely intellectual benefit, have also become valuable for their
technical applicability. This circumstance has opened up important resources
for theoretical studies of the brain, and will probably continue to do so.

However, the demand for practical applications of artificial intelligence made
evident the limitations of previous concepts of hardware and software. Char-
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acteristically, today’s computers solve problems that are difficult for humans,
but fail miserably at everyday tasks that humans master without a great
deal of effort. This circumstance, so far, has limited the use of computers
to narrow problem areas and indicates a fundamental difference between AI
methods and the operation of biological nervous systems.

Most computers, until recently, were based on the so-called von Neumann
architecture. They derive their performance from one or only a few central
processors which carry out long sequential programs at extremely high speed.
Therefore, signal-propagation times within the computer have already begun
to emerge as limiting factors to further gains in speed. At the same time,
efforts to master multifaceted problem situations, e.g., those encountered
in driving a car, by means of conventional programming techniques lead to
programs of a complexity that can no longer be managed reliably.

A way out of this dilemma requires an abandonment of the von Neumann
architecture used up to now, and instead to apply a large number of compu-
tational processors working in parallel. For the programming of such com-
puters, new kinds of algorithms are required that must allow a distribution of
computational tasks over a great number of processors. In order to keep the
necessary task of integrating such algorithms into complex software systems
manageable, the algorithms must be error tolerant and capable of learning.
These features seem to be realized in biological brains with nerve cells as
processors, which, by technical standards, are slow computational elements
and of only limited reliability, but which on the other hand are present in
huge numbers, processing sensory data and motor tasks concurrently.

In order to make this “biological know-how” available, the interdisciplinary
research area of Neural Computation has developed in the last few years.
While its main aim is an understanding of the principles of information pro-
cessing employed by biological nervous systems, this discipline also seeks to
apply the insights gained to the construction of new kinds of computers with
more flexible capabilities. In the pursuit of this goal, Neural Computation
combines the efforts of computer scientists, neurobiologists, physicists, engi-
neers, mathematicians, psychologists, and physicians.

Although we are still far from a true understanding of how the brain works,
a great deal of progress has been made, especially in the last few years. On
the experimental side, modern techniques are opening new “windows into
the brain”. Today, optical dyes allow one to stain living brain tissue such
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that the optical properties of the dyes provide a measure of the electrical
activation of the nerve cells. In this way, optical recording of neural activity
patterns has become possible. Other staining methods allow precise recon-
structions of the three-dimensional shape of single nerve cells. By means
of modern computer tomographic methods ( PET, NMR) the momentary
metabolic activity level of brain tissue can be recorded up to spatial reso-
lutions in the range of millimeters. Sensitive magnetic field detectors based
on superconducting devices ( SQUID’s) can measure the spatial distribution
of brain currents with a similar resolution from outside the head. This has
made it possible to monitor patterns of brain activity with noninvasive meth-
ods — and, therefore, also in humans — and to investigate its dependence
on experimentally preselected mental tasks.

Nevertheless, the task of integrating the multitude of experimental data col-
lected up to now into predictive theories of information processing in the
brain is anything but simple. The first efforts go back to 1943, when McCul-
loch and Pitts originally postulated that nerve cells play the role of “ logical
elements,” i.e., evaluate Boolean (logical) functions. With the advent of dig-
ital computers, a strong additional motivation for the further development of
these ideas arose, since quantitatively formulated models were suddenly no
longer dependent on mathematical analysis alone, often both very difficult
and feasible only to a limited degree, but could now be investigated in com-
puter simulations. At this time the “ perceptron” was being developed by
Rosenblatt (1958). Rosenblatt derived a network model capable of learning
to classify patterns making use only of simple principles for the change of
connection strengths between neurons. These resembled the principles pre-
viously suggested by the psychologist Hebb (1949) on theoretical grounds
to explain memory performance. Thus, the “perceptron” represents one of
the first “brain models” that could successfully demonstrate the ability to
“learn.”

At about the same time the availability of computers led to the advent of a
competing research direction, which regarded orientation toward the struc-
ture of biological nerve systems as of little aid in the investigation and simula-
tion of intelligence. Instead, this direction attempted a more direct approach:
by introducing sufficiently elaborate programming based on “problem solu-
tion heuristics,” it was hoped that ultimately the goal of intelligent machines
would be reached. Due to rapid initial successes, this research direction, now
forming most of traditional AI, managed to push the investigation of neural
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networks for a number of years into obscurity. Even so, a series of impor-
tant insights were gained in the theory of neural networks during this period:
examples are the discovery of models for associative memory ( Taylor 1956;
Steinbuch 1961), models for self-organization of feature detectors ( von der
Malsburg 1973) and of ordered neural connections ( Willshaw and von der
Malsburg 1976), as well as pioneering studies concerning mathematical prop-
erties of important classes of network models by Amari, Grossberg, Kohonen,
and numerous other researchers.

A highly significant stimulus for the further development of the subject was
contributed by Hopfield (1982). Exploiting the formal equivalance between
network models with “Boolean” neural units and physical systems consisting
of interacting “elementary magnets” or “spins” ( Cragg and Temperley 1954,
1955; Caianiello 1961; Little 1974; Little and Shaw 1975), he showed that
the dynamic of such networks can be described by an energy function and
that patterns stored in these networks can be regarded as attractors in a
high-dimensional phase space. As a consequence, a whole arsenal of math-
ematical methods of statistical physics became available for the analysis of
such network models. Many questions previously approachable only by com-
puter simulations found an elegant mathematical solution (see, e.g., Amit et
al. 1985ab, Derrida et al. 1987, Gardner 1988, Buhmann et al. 1989). At the
same time, new kinds of network models were found, two of which deserve
special mention because of their promise: The backpropagation model (redis-
covered several times, most recently by Rumelhart et al. 1986) constituted
a significant improvement of the earlier perceptron models. In spite of a few
aspects that are implausible from a biological point of view, its extremely
broad applicability triggered considerable new research activity. Kohonen’s
model of self-organizing neural maps ( Kohonen 1982a) represented an im-
portant abstraction of earlier models of von der Malsburg and Willshaw; the
model combines biological plausibility with proven applicability in a broad
range of difficult data processing and optimization problems.

All of these models provide us with a much more refined picture of the func-
tion of the brain than could have been anticipated a few decades ago. Nev-
ertheless, most of the work has yet to be done. Compared to the capabilities
of biological systems, the performance of our present “ neurocomputers” is
quite rudimentary. We still are unable to relate more than a relatively small
number of experimental observations to properties of our models. There
are still enormous gaps between the complexity of the brain, our theoret-
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ical models, and the capacity of today’s computers. However, the modest
amount of “biological know-how” which has been accumulated in order to
bridge these gaps is already promising and suggests that further research
will be rewarding. In particular, a new generation of computers with thou-
sands of processors has put us in a position to simulate at least small areas
of the brain in much greater detail than previously possible, and to use for
the first time realistic numbers of neurons and synapses for such simulations
(Obermayer et al. 1990a-c, 1991).

The first part of the book furnishes an overview of the major concepts on
which much of the current work in Neural Computation is based. In Chap-
ter 1, our present view of the brain as a “ neurocomputer” is briefly out-
lined. The second chapter contains a sketch of the biological background,
emphasizing its significance in understanding the various brain models. The
third chapter introduces the most prominent model approaches of neural net-
works, including the perceptron model, the Hopfield model, and the back-
propagation algorithm. A particular type of network, Kohonen’s model of
self-organizing maps, is the focus of Chapter 4. This network model is ca-
pable both of reproducing important aspects of the structure of biological
neural nets and of a wide range of practical applications. It will serve as a
basis for much of the discussion in the later chapters.

The later parts of the book take the reader through a series of typical issues
in neural computation. We devote each chapter to an information-processing
task that is characteristic of those confronting a biological organism in its en-
vironment. It is not our intention in the later chapters to present a complete
survey of the by now large field of neural computation. Rather than a broad
overview of the many different approaches, we present a highly focused and
detailed description of network models based on self-organizing maps.

As an introductory example, it is shown in Chapter 5 how an adaptive “
neural frequency map” can be formed in the cortex of a bat, which enables
the bat to perform an extremely precise analysis of sonar ultrasound sig-
nals. Chapter 6 is concerned with the relationship of this example to the
solution of a task appearing completely different at first glance, namely the
determination of a route that is as short as possible in the “ traveling sales-
man problem.” A further example (Chapter 7) considers the creation of an
ordered connectivity between touch receptors of the hand surface and the
cortical area responsible for the sense of touch in the brain. Here, as in the
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case of the bat, we are concerned with the processing of sensory informa-
tion. However, in nature this is never an end in itself. The processing of
sensory information always has as its eventual goal the triggering and con-
trol of motor functions, probably the oldest task of biological nerve systems.
This points to the need for the investigation of strategies for neural control
and for learning to execute movements; it also brings us to the theme of the
third part of the book.

The task of balancing a pole already contains a number of important features
of motor control problems, and it is therefore discussed thoroughly in Chapter
8. We show how a neural network can learn the task of balancing a pole,
first in a version with the help of a “teacher,” then in an improved version
by “independent trial and error.” The main point of this task is to learn how
to maintain an unstable equilibrium. An equally important aspect of motor
function is the support of our sensory perception. In vision, for example,
this purpose is served by unconscious, sudden eye movements. The precise
“ calibration” of these movements is provided by a permanently operating
adaptation process, and Chapter 9 describes a simple neural network model
demonstrating such capability in a computer simulation.

It is clear that, for the control of their movements, biological organisms and
intelligent robots are confronted with tasks that are in many respects similar.
Hence, in Part IV of the book, we turn our attention to issues of robotics
(Chapter 10). In Chapter 11, it is shown how a robot arm observed by two
cameras can learn in the course of a training phase to position its “hand”
within the field of view of the cameras by means of visual feedback. Here, by
trial and error, the network gradually learns to take properly into account
the geometry of the arm and the visual world “seen” by the cameras.

The capability of proper positioning forms the basis for the more complex
motor behavior of object gripping. Chapter 12 demonstrates that this abil-
ity can also be acquired by a network through learning. However, in view
of the higher complexity of the procedure, a network with a hierarchical
construction is required. Chapter 12 offers an interesting example of the
implementation and training of nets structured in this way.

For the control problems of Chapters 11 and 12, consideration of purely geo-
metrical relationships, i.e., the so-called kinematics of the robot, is sufficient.
However, for sudden movements, arm inertia also plays a role. Chapter 13
shows how the network can take such dynamic aspects into account. Here,
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the network learns the control of “ ballistic arm movements” in a training
phase by triggering short torques about the joints of the robot arm.

The preceding examples attempt to illustrate the multitude of tasks that bi-
ological brains have learned to master in the course of evolution. At best, we
can solve a few isolated tasks today, and in many cases we must develop new
solution heuristics which are often ad hoc and without substantial theoretical
foundation. This may be compared to the situation prevailing in chemistry
during the middle ages, when many chemical reactions were indeed known
empirically, but it was not yet appreciated that the huge number of distinct
chemical substances could be attributed to barely one-hundred chemical el-
ements. The number of different “ neural modules” in the brain appears
to be of the same order of magnitude as the number of chemical elements.
This suggests that in the area of information processing, a reduction of the
great variety of phenomena to a manageable number of “elements” might
also exist.

Our present level of understanding provides us with little more than a vague
idea of which principles might be fundamental in this reduction. However,
we have available some network models that are encouragingly versatile. The
present book illustrates this by demonstrating that the solution of the tasks
discussed above can succeed using only a few variants of a single network
model, Kohonen’s “self-organizing neural map” ( Kohonen 1982a). The bio-
logical basis for this model is the organization encountered in many regions of
the brain in the form of two-dimensional neuron layers. These layers receive
their input signals from nerve fibers emerging either from other neural layers
or from peripheral sensory receptors. As a rule, the activities in the individ-
ual nerve fibers encode different features of the input stimulus. The nerve
fibers coming into contact with a neuron thus determine which input fea-
tures are particularly effective in exciting this neuron. As experiments show,
the connections between neurons and incoming nerve fibers are frequently
structured in such a way that adjacent neurons respond to similar input
features. This corresponds to a mapping of the (usually higher-dimensional)
space of stimulus features, which are coded in the nerve fibre activities, to the
two-dimensional neuron layer. Important similarity relationships of abstract
stimulus features can be translated into spatial relations of excited neurons
of a two-dimensional layer in the manner of a “ topographic map.” Koho-
nen’s model explains the creation of appropriate connection patterns and
the resulting “ maps” of stimulus features as a consequence of a few simple
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assumptions. The connection pattern forms step by step during a learning
process requiring as its only information a sufficiently long sequence of input
stimuli. By means of appropriate variants of the basic model, this procedure
can be exploited for a broad spectrum of interesting information-processing
tasks.

Our book is not limited to the discussion of a series of examples. Rather,
each example serves to introduce a mathematical analysis of some particular
aspect of the model and, in the course of the discussion, serves as an illustra-
tion of the application of a number of important mathematical methods to
concrete questions of Neural Computation. The mathematical aspect takes
center stage in Part V of the book. First, in Chapter 14, the relationship
of the model to procedures for data compression and to factor analysis for
the determination of “hidden variables” is presented. This is followed by a
discussion of those aspects of the model whose investigation requires a higher
degree of mathematical sophistication. The learning process is treated as a
stochastic process and described by means of a partial differential equation.
Statements concerning convergence properties and statistical fluctuations of
the learning process can then be made. The capacity for automatic selec-
tion of the most important feature dimensions is discussed mathematically in
greater depth, and the relationship to the periodic structure of certain sen-
sory maps in the brain is pointed out. Finally, Chapter 15 discusses the use
of local linear transformations as output (needed to solve control tasks), and
provides a mathematical analysis of the improvement of the learning process
as a consequence of “ neighborhood cooperation” between processing units.




