Problem Set 1
Physics 498TBP / Spring 2002
Solutions

Problem 1: Optical Properties of Ring of BChls

(a) Let us first construct the Hamiltonian in the basis of {|a) : & = 1,...,2N} where N = 8.
The diagonal elements are assumed to be the same. The nearest-neighbor interaction energies are
also the same because of the rotational symmetry of the ring structure. Thus, the Hamiltonian has

the form of

€p U (%
vV € VU
V €
H= (1)
€) VU
v vV €

The diagonal elements are ¢y = 1.6eV. We now calculate v:

dy - da B 3(712 - d1)(Fr2 - da)

v=(1|H|2) = : (2)
1o 7o
Here,
r19 =2-25A -sin(n/2N) = 9.75A (3)
dy - dy = —d? cos(n/N) = —92.4 Debye? (4)
(Fra - d1) (712 - dy) = —1r2yd2 cos(m/2N) = —9152.9 Debye?A”. (5)

Plugging these values into Eq. 2 we find v = 0.13eV.
In class we have learned that the eigenstates (stationary states) of the Hamiltonian (Eq. 1) can

be written as

1 2N
) = —— emom/Ngy  p=1,...,2N. (6)
a=1
The corresponding energies are
en:eo+2vcos% = (1.64—2'0.13‘008%)6\[. (7)
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(b) Transition dipole moments:

1 16
(OfFA) = 13 ¢ /5(0}ra)
a=1
1 16
_ = einaﬂ'/Bja/e
4 a=1
13 do I ITay
= 1 2 elnaﬂ/gz(i COS ? + Qsin ?), (8)

where Z and g are the unit vectors in x and y direction, respectively. Evaluating this formula for
n=1,...,16, we find
(do/e)(22 — 2iy) = (20/e)(& — ig) Debye, n =7
(0|71n) = < (do/e)(22 + 2ig) = (20/e)(Z + i) Debye, n =19 9)

0, otherwise.

Transition rates can be calculated from the transition dipole moments through the formula

462w
—n = Nw 1
ko s 0l P, (10)

where NNV, is the number of photons of energy hw. Using the energy spectrum obtained in Eq. 7,

we find
0.32N,,/ns, n=7

ko7 = { 0.32N,,/ns, n=9 (11)

0, otherwise.

In fact, k,_ s = ky_,5 because w7 = wy.

Transition rate for individual BChls can be calculated in a similar way:

4e2w3
I s (12

Here fiwg = € = 1.6V and |(0|F]a)|? = |d,/e|> = (100/€2) Debye. Therefore,

ko—a = 0.065 N, /ns. (13)
Assuming Ny, o & Ny,
k -
0=79 ~ 4.9. (14)
kOHa

Problem 2: Semiclassical Theory of Electron Transfer

(a) po(q) is the Boltzmann distribution corresponding to V.(q) = fq?/2:

ﬂf —B1¢*/2 (15)

po(q) = 5

where the prefactor was determined by the normalization condition, namely [* dgpo(q) = 1. By
inverting

E(q) = Vo(q) = Vala) = f(a — @0)*/2+ Eo — f¢*/2, (16)



we find

1 1
E)=—(=f¢ +E —E)
q(E) a0 <2fQO 0
and
dg|_ 1
dE|  fqo
Therefore,
dg
Sa(E) = pola(E)] ’E
Bf Bf ( 1 2)2 1
2l ~ P (g -E+-> —
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_ 2 2
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(b) .
o o 1 (Eo+ fa5/2)
ka = —|U2Sa(0) = —|U|? ———me s
1= —-1U["Sa(0) h|!\/me)<l 2o

(c) The density operator is
L o,

PO:ZG )

where Z is the partition function. In the basis of energy eigenstates,

poln = il P10 i) = 1

The partition function Z can be determined by the normalization condition:

[e.9]

1 & 1 -1
1 =trpy = Z[p(]]nn = Z o Bhwn —Bhw/2 _ ~ o—Bhw/2 (1 _ e—ﬁhw) '
n=0

n=0
Therefore,

7 — (eﬂhw/2 N efﬁhw/Q)_l 7

and
[pO]nm = dnm (1 - e—ﬁhw) efhw/2—Phw(n+1/2)

|

—BH, l <ﬁ|m>e—ﬁhw(m+1/2) _ 76nme—6hw(n+1/2)‘
VA

(22)



(d)
N — — ) = 1 /oo ix(q—q’)] _ /OO —izq'
Pam(q') = tr[pod(q — ¢')] = tr [,00 o | dre “on ) dze () (28)

®(z) = tr[ppe’™] = <eixq>0, (29)

where (-)g denotes the ensemble average with respect to the density operator py. We now turn to

the second-quantization representation:

(a+a), (30)

7= 2mw

where a is the lowering operator and a is the raising operator. Introducing ¢ = (h/2mw)'/? for
simplicity, we have

izé(atal
B(w) = (eitlot >>0. (31)
Using the identity,

AeB _ (A+B+[A,B]/2

ee if [A, B] is a complex number, (32)

we factorize the exponential function:

—z2¢2 iz€al jiz€a —x2¢2 — 1 . m<>01. n
d(x)=e 5/2<e gal gizg >O:e 5/2<Z m(zx{cﬂ) Zﬁ(zxfa) >0, (33)

m=0 n=0 """
where exponential functions were Taylor-expanded in the last step. Among the possible pairs of

(m,n), only those satisfying m = n survive the ensemble average:

_—x%e2)2 - L . 2n / _in_n
O(x)=e nzo " (1z:€) <a a >0' (34)
By Wick’s theorem, we have
(a™™a™)o = nl{a'a)R, (35)
where the ensemble average (afa)y can be calculated in the energy eigenbasis:
> 1
ata 0= m|=e PHrqlalm
A
m=0
1 1 1 1
_ = —phw(m+1/2), , _ * —pBhw(m+1/2) st
73 = g e ()
1 0 1
- - Y —fhw(m+1/2) + —Bhw(m+1/2)
7 0(—Bhw) ;e 27 %:e
1 0 1 1 Bhw

In the last step we used the partition function obtained in Eq. 26. Combining Eqgs. 34, 35, and 36
we find

=1 1 Bhw n
O(x) = o 7E/2 Z —(i:Lf)Q”—n (coth — = 1)
= n! 2 2
2¢2 A,
= e ¥ 2exp [—x 3 (coth P _ 1)1 — ¢ am??/2, (37)
2 2
where
9 Bhw h Bhw
Oqm = & coth = coth . (38)
mw 2



(e) We calculate pqm(¢') and then Sqm (E). From Eq. 28,

pqm(q/) - 2i h dz e~ %4 g=0amaz?/2
T J—00

2
1 o] v 2
:—/ dx exp _Jam T+ Y ~ 1
2T J—oo 2 Ogm 20qm
12
= (270qm) 2 exp [— 2q ] . (39)

Oqm

Combining Eqs. 17, 18, and 39 leads to

dg

Sqm(E) = pqm[Q(E)] ’dE

= (2770qm)_1/2 exp [_ ! (fqg/2 + Fo — EV] L

20qm fQQ(% fQU

_ (27TO'qu2q(2))_1/2 exp [_ (EO - E+ ng/2)2] ) (40>

2JCQ‘](Q)qu

(f)

kqm — 2%|U|2Sqm(o) — \/ﬂ ‘U|2 p [_ (EO +fqg/2)2]

h \/ Tqm f43 - 2/2430am
—1/2 -1
_ \/%|U\2( I ™ ) exp [_(Eo—FfQ(Q)/Q)Q( h hw ) ] (1)

th
k| fqol 2mwco 2kgT 2f2q3 2mwco 2kpT

Kgm

Take T" — 0 limit of Eqs. 38 and 39:

h
- 42
%a 2mw (42)
1/2 2
N, (1w _mwgT| "2
panld) — () exp[ h] [Yola)P (13)

where 1 is the ground-state wave function for the harmonic oscillator representing the reactant
state. The quantum mechanical transition rate kqy, does not vanish at 1" = 0 because there exists

quantum mechanical fluctuation even at zero temperature; the ground-state wave function is not a

delta function.



Problem 3: End-End Reaction of One-Dimensional Polymer

(a) Let a; be the orientation of ith segment. It takes the value of either +1 or —1 with prob-
ability 1/2. The end-to-end distance z is then given as z = beiVl a;. Since a; are independent
random variables, we can apply the central limit theorem. The theorem states that as N — oo the
distribution for x becomes Gaussian.

In order to determine the actual formula for the Gaussian distribution, we need only the mean

and the variance:

(@) = b (a) =0 (44)
(%) =b? ZZ(&ﬂg) = b? Z(a% = 2NV?. (45)

i
Here we have used the independence, namely (a;a;) = §;j{a?) = §;;. The Gaussian distribution

with the above mean and variance is

po(x) = (47Tb2N>_1/2 exp (—$2/4b2N) . (46)

(b) Any probability distribution that makes the right-hand side of the Smoluchowski equation
vanish is stationary. It is straightforward to show that pg(x) makes the right-hand side vanish:
(ANb*92 + 20,2)po(z)
1 x? x? z?
= (47b®N) "2 ANy | — — 2— —— -
(4rt"N) “\Taew Tz ) T2 e | 9P\ T aew

~0. (47)

The distribution po(z) is therefore a stationary solution.

(c)

_ —2(t—to)/7T\2
— [Ap2 —1/2 . (z — woe )
p(x, t|zo, to) = [Ab"N7S(t,to)] exp [ W2NS(E 1) ] (48)
S(t,tg) = 1 — e 4lt—t0)/7, (49)
A little algebra leads to
TOp(x, tlxo, to) = (ANV*0 + 20,2)p(x, t]zo, to)
B _2b2NS(t, to) + zwo(e2(t10)/T 4 e2(t=10)/T) _ (22 4 42) (@- woe2(1=t0)/7)?2 (50)
- 203 N2 L1281, £ )5 2eA T 10)/7 P WINS(tto) |

which means that p(z, t|zo, to) satisfies the Smoluchowski equation. We now show that it also satis-
fies the initial condition. First, it is normalized at any time ¢ later than to: [0 dx p(z,t|zo, to) = 1.
Second, as t approaches tg, p(z,t|xo,to) gets vanishingly small for x # g :

2
: _ 1 2 —-1/2 (x —wo)”| _
tlir%p(m,t]xg,to) = Slir](r]l+(4b NmS)~ Y2 exp l—ml =0. (51)
These two properties imply that lim:_.;, p(z, t|xo,to) = 6(x — x0) . This completes the proof.

As t — oo, S(t,t9) — 1 and the solution p(z, t|zg,ty) indeed relaxes to the equilibrium distri-

bution pg(x) .



