
Chapter 8

Interaction of Charged Particles with
Electromagnetic Radiation

In this Section we want to describe how a quantum mechanical particle, e.g., an electron in a
hydrogen atom, is affected by electromagnetic fields. For this purpose we need to establish a suitable
description of this field, then state the Hamiltonian which describes the resulting interaction.

It turns out that the proper description of the electromagnetic field requires a little bit of effort.
We will describe the electromagnetic field classically. Such description should be sufficient for high
quantum numbers, i.e., for situations in which the photons absorbed or emitted by the quantum
system do not alter the energy content of the field. We will later introduce a simple rule which
allows one to account to some limited degree for the quantum nature of the electromagnetic field,
i.e., for the existence of discrete photons.

8.1 Description of the Classical Electromagnetic Field / Separa-
tion of Longitudinal and Transverse Components

The aim of the following derivation is to provide a description of the electromagnetic field which is
most suitable for deriving later a perturbation expansion which yields the effect of electromagnetic
radiation on a bound charged particle, e.g., on an electron in a hydrogen atom. The problem is that
the latter electron, or other charged particles, are affected by the Coulomb interaction V (~r) which is
part of the forces which produce the bound state, and are affected by the external electromagnetic
field. However, both the Coulomb interaction due to charges contributing to binding the particle,
e.g., the attractive Coulomb force between proton and electron in case of the hydrogen atom,
and the external electromagnetic field are of electromagnetic origin and, hence, must be described
consistently. This is achieved in the following derivation.

The classical electromagnetic field is governed by the Maxwell equations stated already in (1.27–
1.29). We assume that the system considered is in vacuum in which charge and current sources
described by the densities ρ(~r, t) and ~J(~r, t) are present. These sources enter the two inhomogeneous
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Maxwell equations1

∇ · ~E(~r, t) = 4π ρ(~r, t) (8.1)
∇× ~B(~r, t) − ∂t ~E(~r, t) = 4π ~J(~r, t) . (8.2)

In addition, the two homogeneous Maxwell equations hold

∇× ~E(~r, t) + ∂t ~B(~r, t) = 0 (8.3)
∇ · ~B(~r, t) = 0 . (8.4)

Lorentz Force A classical particle with charge q moving in the electromagnetic field experiences
the so-called Lorentz force q[ ~E(~r, t) + ~v × ~B(~r, t)] and, accordingly, obeys the equation of motion

d

dt
~p = q

{
~E[~ro(t), t] + ~v × ~B[~ro(t), t]

}
(8.5)

where ~p is the momentum of the particle and ~ro(t) it’s position at time t. The particle, in turn,
contributes to the charge density ρ(~r, t) in (8.1) the term qδ(~r − ~ro(t)) and to the current density
~J(~r, t) in (8.2) the term q~̇roδ(~r−~ro(t)). In the non-relativistic limit holds ~p ≈ m~̇r and (8.5) above
agrees with the equation of motion as given in (1.25).

Scalar and Vector Potential Setting

~B(~r, t) = ∇× ~A(~r, t) (8.6)

for some vector-valued function ~A(~r, t), called the vector potential, solves implicitly (8.4). Equation
(8.3) reads then

∇×
(
~E(~r, t) + ∂t ~A(~r, t)

)
= 0 (8.7)

which is solved by
~E(~r, t) + ∂t ~A(~r, t) = −∇V (~r, t) (8.8)

where V (~r, t) is a scalar function, called the scalar potential. From this follows

~E(~r, t) = −∇V (~r, t) − ∂t ~A(~r, t) . (8.9)

Gauge Transformations We have expressed now the electric and magnetic fields ~E(~r, t) and
~B(~r, t) through the scalar and vector potentials V (~r, t) and ~A(~r, t). As is well known, the rela-
tionship between fields and potentials is not unique. The following substitutions, called gauge
transformations, alter the potentials, but leave the fields unaltered:

~A(~r, t) −→ ~A(~r, t) + ∇χ(~r, t) (8.10)
V (~r, t) −→ V (~r, t) − ∂tχ(~r, t) . (8.11)

1We assume so-called Gaussian units. The reader is referred to the well-known textbook ”Classical Electrody-
namics”, 2nd Edition, by J. D. Jackson (John Wiley & Sons, New York, 1975) for a discussion of these and other
conventional units.
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This gauge freedom will be exploited now to introduce potentials which are most suitable for the
purpose of separating the electromagnetic field into a component arising from the Coulomb potential
connected with the charge distribution ρ(~r, t) and the current due to moving net charges, and a
component due to the remaining currents. In fact, the gauge freedom allows us to impose on the
vector potential ~A(~r, t) the condition

∇ · ~A(~r, t) = 0 . (8.12)

The corresponding gauge is referred to as the Coulomb gauge, a name which is due to the form of
the resulting scalar potential V (~r, t). In fact, this potential results from inserting (8.9) into (8.1)

∇ ·
(
−∇V (~r, t) − ∂t ~A(~r, t)

)
= 4π ρ(~r, t) . (8.13)

Using ∇ · ∂t ~A(~r, t) = ∂t∇ · ~A(~r, t) together with (8.12) yields then the Poisson equation

∇2V (~r, t) = − 4π ρ(~r, t) . (8.14)

In case of the boundary condition

V (~r, t) = 0 for ~r ∈ ∂Ω∞ (8.15)

the solution is given by the Coulomb integral

V (~r, t) =
∫

Ω∞

d3r′
ρ(~r ′, t)
|~r − ~r ′|

(8.16)

This is the potential commonly employed in quantum mechanical calculations for the description
of Coulomb interactions between charged particles.
The vector potential ~A(~r, t) can be obtained employing (8.2), the second inhomogeneous Maxwell
equation. Using the expressions (8.6) and (8.9) for the fields results in

∇×
(
∇× ~A(~r, t)

)
+ ∂t

(
∇V (~r, t) + ∂t ~A(~r, t

)
= 4π ~J(~r, t) . (8.17)

The identity
∇×

(
∇× ~A(~r, t)

)
= ∇

(
∇ · ~A(~r, t)

)
− ∇2 ~A(~r, t) (8.18)

together with condition (8.12) leads us to

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) − ∂t∇V (~r, t) = − 4π ~J(~r, t) . (8.19)

Unfortunately, equation (8.19) couples the vector potential ~A(~r, t) and V (~r, t). One would prefer
a description in which the Coulomb potential (8.16) and the vector potential are uncoupled, such
that the latter describes the electromagnetic radiation, and the former the Coulomb interactions
in the unperturbed bound particle system. Such description can, in fact, be achieved. For this
purpose we examine the offending term ∂t∇V (~r, t) in (8.19) and define

~J`(~r, t) =
1

4π
∂t∇V (~r, t) . (8.20)
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For the curl of ~J` holds
∇× ~J`(~r, t) = 0 . (8.21)

For the divergence of ~J`(~r, t) holds, using ∂t∇ = ∇∂t and the Poisson equation (8.14),

∇ · ~J`(~r, t) =
1

4π
∂t∇2V (~r, t) = − ∂tρ(~r, t) (8.22)

or
∇ · ~J`(~r, t) + ∂tρ(~r, t) = 0 . (8.23)

This continuity equation identifies ~J`(~r, t) as the current due to the time-dependence of the charge
distribution ρ(~r, t). Let ~J(~r, t) be the total current of the system under investigation and let
~Jt = ~J − ~J`. For ~J also holds the continuity equation

∇ · ~J(~r, t) + ∂tρ(~r, t) = 0 (8.24)

and from this follows
∇ · ~Jt(~r, t) = 0 . (8.25)

Because of properties (8.21) and (8.25) one refers to ~J` and ~Jt as the longitudinal and the transverse
currents, respectively.
The definitions of ~J` and ~Jt applied to (8.19) yield

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = − 4π ~Jt(~r, t) . (8.26)

This equation does not couple anymore scalar and vector potentials. The vector potential deter-
mined through (8.26) and (8.12) and the Coulomb potential (8.16) yield finally the electric and
magnetic fields. V (~r, t) contributes solely an electric field component

~E`(~r, t) = −∇V (~r, t) (8.27)

which is obviously curl-free (∇× ~E`(~r, t) = 0), hence, the name longitudinal electric field. ~A(~r, t)
contributes an electrical field component as well as the total magnetic field

~Et(~r, t) = − ∂t ~A(~r, t) (8.28)
~Bt(~r, t) = ∇× ~A(~r, t) . (8.29)

These fields are obviously divergence -free (e.g., ∇· ~Et(~r, t) = 0), hence, the name transverse fields.

8.2 Planar Electromagnetic Waves

The current density ~Jt describes ring-type currents in the space under consideration; such current
densities exist, for example, in a ring-shaped antenna which exhibits no net charge, yet a current.
Presently, we want to assume that no ring-type currents, i.e., no divergence-free currents, exist in
the space considered. In this case (8.26) turns into the well-known wave equation

∇2 ~A(~r, t) − ∂2
t
~A(~r, t) = 0 (8.30)
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which describes electromagnetic fields in vacuum. A complete set of solutions is given by the
so-called plane waves

~A(~r, t) = Ao û exp
[
i(~k · ~r ∓ ωt)

]
(8.31)

where the dispersion relationship
|~k| = ω (8.32)

holds. Note that in the units chosen the velocity of light is c = 1. Here the “-” sign corresponds
to so-called incoming waves and the “+” sign to outgoing waves2, the constant ~k is referred to as
the wave vector. The Coulomb gauge condition (8.12) yields

û · ~k = 0 . (8.33)

û is a unit vector (|û| = 1) which, obviously, is orthogonal to ~k; accordingly, there exist two linearly
independent orientations for û corresponding to two independent planes of polarization.
We want to characterize now the radiation field connected with the plane wave solutions (8.31).
The corresponding electric and magnetic fields, according to (8.28, 8.29), are

~Et(~r, t) = ±i ω ~A(~r, t) (8.34)
~Bt(~r, t) = i~k × ~A(~r, t) . (8.35)

The vector potential in (8.31) and the resulting fields (8.34, 8.35) are complex-valued quantities.
In applying the potential and fields to physical observables and processes we will only employ the
real parts.
Obviously, ~Et(~r, t) and ~Bt(~r, t) in (8.34, 8.35), at each point ~r and moment t, are orthogonal to
each other and are both orthogonal to the wave vector ~k. The latter vector describes the direction
of propagation of the energy flux connected with the plane wave electromagnetic radiation. This
flux is given by

~S(~r, t) =
1

4π
Re ~Et(~r, t)× Re ~B(~r, t) . (8.36)

Using the identity ~a× (~b× ~c) = ~b (~a · ~c) − ~c (~a ·~b) and (8.31, 8.32, 8.34, 8.35) one obtains

~S(~r, t) = ±ω
2

4π
|Ao|2 k̂ sin2(~k · ~r − ωt ) (8.37)

where k̂ is the unit vector k̂ = ~k/|~k|. Time average over one period 2π/ω yields

〈 ~S(~r, t) 〉 = ±ω
2

8π
|Ao|2 k̂ . (8.38)

In this expression for the energy flux one can interprete k̂ as the propagation velocity (note c = 1)
and, hence,

〈ε〉 =
ω2

8π
|Ao|2 (8.39)

2The definition incoming waves and outgoing waves is rationalized below in the discussion following Eq. (8.158);
see also the comment below Eqs. (8.38, 8.39).
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as the energy density. The sign in (8.38) implies that for incoming waves, defined below Eqs. (8.31,8.32),
the energy of the plane wave is transported in the direction of −~k, whereas in the case of outgoing
waves the energy is transported in the direction of ~k.
A correct description of the electromagnetic field requires that the field be quantized. A ‘poor
man’s’ quantization of the field is possible at this point by expressing the energy density (8.39)
through the density of photons connected with the planar waves (8.31). These photons each carry
the energy ~ω. If we consider a volume V with a number of photons Nω the energy density is
obviously

〈ε〉 =
Nω~ω
V

. (8.40)

It should be pointed out that Nω represents the number of photons for a specific frequency ω, a
specific k̂ and a specific û. Comparision of (8.39) and (8.40) allows one to express then the field
amplitudes

Ao =

√
8πNω~
ωV

. (8.41)

Inserting this into (8.31) allows one finally to state for the planar wave vector potential

~A(~r, t) =

√
8πNω~
ωV

û exp
[
i(~k · ~r − ωt)

]
, |~k| = ω , û · ~k = 0 . (8.42)

8.3 Hamilton Operator

The classical Hamiltonian for a particle of charge q in a scalar and vector potential V (~r) and ~A(~r, t),
respectively, is

H =

[
~p − q ~A(~r, t)

]2

2m
+ qV (~r)

+
1

8π

∫
Ω∞

d3r′E2
` +

1
16π

∫
Ω∞

d3r
(
|Et|2 + |Bt|2

)
. (8.43)

Here the fields are defined through Eqs. (8.27, 8.28, 8.29) together with the potentials (8.16, 8.31).
The integrals express the integration over the energy density of the fields. Note that ~E`(~r, t) is real
and that ~Et(~r, t), ~Bt(~r, t) are complex leading to the difference of a factor 1

2 in the energy densities
of the lontitudinal and transverse components of the fields.
We assume that the energy content of the fields is not altered significantly in the processes described
and, hence, we will neglect the respective terms in the Hamiltonian (8.43). We are left with a
classical Hamiltonian function which has an obvious quantum mechanical analogue

Ĥ =

[
~̂p − q ~A(~r, t)

]2

2m
+ qV (~r) . (8.44)

replacing the classical momentum ~p by the differential operator ~̂p = ~

i∇. The wave function Ψ(~r, t)
of the particle is then described by the Schrödinger equation

i ~ ∂t Ψ(~r, t) = Ĥ Ψ(~r, t) . (8.45)



8.3: Hamilton Operator 209

Gauge Transformations It is interesting to note that in the quantum mechanical description
of a charged particle the potentials V (~r, t) and ~A(~r, t) enter whereas in the classical equations of
motion

m~̈r = q ~E(~r, t) + q ~̇r × ~B(~r, t) (8.46)

the fields enter. This leads to the question in how far the gauge transformations (8.10, 8.11) affect
the quantum mechanical description. In the classical case such question is mute since the gauge
transformations do not alter the fields and, hence, have no effect on the motion of the particle
described by (8.46).
Applying the gauge transformations (8.10, 8.11) to (8.44, 8.45) leads to the Schrödinger equation

i~∂tΨ(~r, t) =


[
~̂p − q ~A − q((∇χ))

]2

2m
+ qV − q((∂tχ))

 Ψ(~r, t) (8.47)

where ((· · ·)) denotes derivatives in ((∇χ)) and ((∂tχ)) which are confined to the function χ(~r, t)
inside the double brackets. One can show that (8.47) is equivalent to

i~∂te
iqχ(~r,t)/~Ψ(~r, t) =


[
~̂p − q ~A

]2

2m
+ qV

 eiqχ(~r,t)/~Ψ(~r, t) . (8.48)

For this purpose one notes

i~∂t e
iqχ(~r,t)/~Ψ(~r, t) = eiqχ(~r,t)/~ [ i~∂t − q((∂tχ)) ] Ψ(~r, t) (8.49)

~̂p eiqχ(~r,t)/~Ψ(~r, t) = eiqχ(~r,t)/~
[
~̂p + q((∇χ))

]
Ψ(~r, t) . (8.50)

The equivalence of (8.47, 8.48) implies that the gauge transformation (8.10, 8.11) of the potentials
is equivalent to multiplying the wave function Ψ(~r, t) by a local and time-dependent phase factor
eiqχ(~r,t)/~. Obviously, such phase factor does not change the probability density |Ψ(~r, t)|2 and,
hence, does not change expectation values which contain the probability densities3.
An important conceptual step of modern physics has been to turn the derivation given around and
to state that introduction of a local phase factor eiqχ(~r,t)/~ should not affect a system and that,
accordingly, in the Schrödinger equation

i~∂tΨ(~r, t) =


[
~̂p − q ~A

]2

2m
+ qV

 Ψ(~r, t) . (8.51)

the potentials ~A(~r, t) and V (~r, t) are necessary to compensate terms which arise through the phase
factor. It should be noted, however, that this principle applies only to fundamental interactions,
not to phenomenological interactions like the molecular van der Waals interaction.
The idea just stated can be generalized by noting that multiplication by a phase factor eiqχ(~r,t)/~

constitutes a unitary transformation of a scalar quantity, i.e., an element of the group U(1). Ele-
mentary constituents of matter which are governed by other symmetry groups, e.g., by the group

3The effect on other expectation values is not discussed here.
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SU(2), likewise can demand the existence of fields which compensate local transformations de-
scribed by ei~σ·~χ(~r,t) where ~σ is the vector of Pauli matrices, the generators of SU(2). The resulting
fields are called Yang-Mills fields.
The Hamiltonian (8.44) can be expanded

H =
~̂p

2

2m
− q

2m

(
~̂p · ~A + ~A · ~̂p

)
+

q2

2m
A2 + qV (8.52)

For any function f(~r) holds(
~̂p · ~A − ~A · ~̂p

)
f(~r) =

~

i

(
~A · ∇f + f ∇ · ~A − ~A · ∇f

)
=
~

i
f ∇ · ~A . (8.53)

This expression vanishes in the present case since since ∇ ·A = 0 [cf. (8.12)]. Accordingly, holds

~̂p ·Af = ~A · ~̂p f (8.54)

and, consequently,

H =
~̂p

2

2m
− q

m
~̂p · ~A +

q2

2m
A2 + qV . (8.55)

8.4 Electron in a Stationary Homogeneous Magnetic Field

We consider now the motion of an electron with charge q = −e and massm = me in a homogeneous
magnetic field as described by the Schrödinger equation (8.45) with Hamiltonian (8.55). In this
case holds V (~r, t) ≡ 0. The stationary homogeneous magnetic field

~B(~r, t) = ~Bo , (8.56)

due to the gauge freedom, can be described by various vector potentials. The choice of a vector
potential affects the form of the wave functions describing the eigenstates and, thereby, affects the
complexity of the mathematical derivation of the wave functions.

Solution for Landau Gauge A particularly convenient form for the Hamiltonian results for
a choice of a so-called Landau gauge for the vector potential ~A(~r, t). In case of a homogeneous
potential pointing in the x3-direction, e.g., for ~Bo = Bo ê3 in (8.56), the so-called Landau gauge
associates the vector potential

~AL(~r) = Bo x1 ê2 (8.57)

with a homogeneous magnetic field ~Bo. The vector potential (8.57) satisfies ∇ · ~A = 0 and,
therefore, one can employ the Hamiltonian (8.55). Using Cartesian coordinates this yields

H = − ~
2

2me

(
∂2

1 + ∂2
2 + ∂2

3

)
+
eBo~

ime
x1 ∂2 +

e2B2
o

2me
x2

1 (8.58)

where ∂j = (∂/∂xj), j = 1, 2, 3.
We want to describe the stationary states corresponding to the Hamiltonian (8.58). For this purpose
we use the wave function in the form

Ψ(E, k2, k3;x1, x2, x3) = exp(ik2x2 + ik3x3)φE(x1) . (8.59)
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This results in a stationary Schrödinger equation(
− ~

2

2me
∂2

1 +
~

2k2
2

2me
+
~

2k2
3

2me
+

eBo~k2

me
x1 +

e2B2
o

2me
x2

1

)
φE(x1)

= E φE(x1) . (8.60)

Completing the square

e2B2
o

2me
x2

1 +
eBo~k2

me
x1 =

e2B2
o

2me

(
x +

~k2

eBo

)2

− ~
2k2

2

2me
(8.61)

leads to [
− ~

2

2me
∂2

1 +
1
2
meω

2 (x1 + x1o )2 +
~

2k2
3

2me

]
φE(x1) = E φE(x1) . (8.62)

where
x1o =

~k2

eBo
(8.63)

and where
ω =

eBo
me

(8.64)

is the classical Larmor frequency (c = 1). It is important to note that the completion of the square
absorbs the kinetic energy term of the motion in the x2-direction described by the factor exp(ik2x2)
of wave function (8.59).
The stationary Schrödinger equation (8.62) is that of a displaced (by x1o) harmonic oscillator with
shifted (by ~2k2

3/2me) energies. From this observation one can immediately conclude that the wave
function of the system, according to (8.59), is

Ψ(n, k2, k3;x1, x2, x3) = exp(ik2x2 + ik3x3) ×
1√

2n n!

[
meω
π~

] 1
4 exp

[
−meω(x1+x1o)2

2~

]
Hn

(√
mω
~

(x1 + x1o)
)

(8.65)

where we replaced the parameter E by the integer n, the familiar harmonic oscillator quantum
number. The energies corresponding to these states are

E(n, k2, k3) = ~ω(n +
1
2

) +
~

2k2
3

2me
. (8.66)

Obviously, the states are degenerate in the quantum number k2 describing displacement along the
x2 coordinate. Without affecting the energy one can form wave packets in terms of the solutions
(8.65) which localize the electrons. However, according to (8.63) this induces a spread of the wave
function in the x1 direction.

Solution for Symmetric Gauge The solution obtained above has the advantage that the deriva-
tion is comparatively simple. Unfortunately, the wave function (8.65), like the corresponding gauge
(8.57), is not symmetric in the x1- and x2-coordinates. We want to employ , therefore, the so-called
symmetric gauge which expresses the homogeneous potential (8.56) through the vector potential

~A(~r) =
1
2
~Bo × ~r . (8.67)
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One can readily verify that this vector potential satisfies the condition (8.12) for the Coulomb
gauge.
For the vector potential (8.67) one can write

~̂p · ~A =
~

2i
∇ · ~Bo × ~r . (8.68)

Using ∇ · (~u × ~v) = − ~u · ∇ × ~v + ~v · ∇ × ~u yields, in the present case of constant ~Bo, for any
function f(~r)

~̂p · ~Af = − ~Bo · ~̂p× ~r f . (8.69)

The latter can be rewritten, using ∇× (~uf) = −~u×∇f + f∇× ~u and ∇× ~r = 0,

~Bo · ~̂p× ~r f = ~Bo ·
(
~r × ~̂p

)
f . (8.70)

Identifying ~r × ~̂p with the angular momentum operator ~L, the Hamiltonian (8.52) becomes

H =
~̂p

2

2me
+

e

2me

~Bo · ~L +
e2

8me

(
~Bo × ~r

)2
. (8.71)

Of particular interest is the contribution

Vmag =
e

2me

~L · ~Bo (8.72)

to Hamiltonian (8.71). The theory of classical electromagnetism predicts an analogue energy con-
tribution , namely,

Vmag = −~µclass · ~Bo (8.73)

where ~µclass is the magnetic moment connected with a current density ~j

~µclass =
1
2

∫
~r ×~j(~r) d~r (8.74)

We consider a simple case to relate (8.72) and (8.73, 8.74), namely, an electron moving in the
x, y-plane with constant velocity v on a ring of radius r. In this case the current density measures
−e v oriented tangentially to the ring. Accordingly, the magnetic moment (8.74) is in the present
case

~µclass = − 1
2
e r v ê3 . (8.75)

The latter can be related to the angular momentum ~̀
class = rmev ê3 of the electron

~µclass = − e

2me

~̀
class (8.76)

and, accordingly,
Vmag =

e

2me

~̀
class · ~Bo . (8.77)

Comparision with (8.72) allows one to interpret

~µ = − e

2me

~L (8.78)
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as the quantum mechanical magnetic moment operator for the electron (charge −e).
We will demonstrate in Sect. 10 that the spin of the electron, described by the operator ~S, likewise,
gives rise to an energy contribution (8.72) with an associated magnetic moment − g e

2me
~S where

g ≈ 2. A derivation of his property and the value of g, the so-called gyromagnetic ratio of the
electron, requires a Lorentz-invariant quantum mechanical description as provided in Sect. 10.
For a magnetic field (8.56) pointing in the x3-direction the symmetric gauge (8.67) yields a more
symmetric solution which decays to zero along both the ±x1- and the ±x2-direction. In this case,
i.e., for ~Bo = Bo ê3, the Hamiltonian (8.71) is

Ĥ =
~̂p

2

2me
+

e2B2
o

8me

(
x2

1 + x2
2

)
+

eBo
2me

L3 . (8.79)

To obtain the stationary states, i.e, the solutions of

Ĥ ΨE(x1, x2, x3) = EΨE(x1, x2, x3) , (8.80)

we separate the variable x1, x2 from x3 setting

ΨE(x1, x2, x3) = exp(ik3x3)ψ(x1, x2) . (8.81)

The functions ψ(x1, x2) obey then

Ĥo ψ(x1, x2) = E′ψ(x1, x2) (8.82)

where

Ĥo = − ~
2

2me

(
∂2

1 + ∂2
2

)
+

1
2
meω

2
(
x2

1 + x2
2

)
+ ~ω

1
i

(x1∂2 − x2∂1) (8.83)

E′ = E − ~
2k2

3

2me
. (8.84)

We have used here the expression for the angular momentum operator

L̂3 = (~/i)(x1∂2 − x2∂1) . (8.85)

The Hamiltonian (8.83) describes two identical oscillators along the x1-and x2-directions which
are coupled through the angular momentum operator L̂3. Accordingly, we seek stationary states
which are simultaneous eigenstates of the Hamiltonian of the two-dimensional isotropic harmonic
oscillator

Ĥosc = − ~
2

2me

(
∂2

1 + ∂2
2

)
+

1
2
meω

2
(
x2

1 + x2
2

)
(8.86)

as well as of the angular momentum operator L̂3. To obtain these eigenstates we introduce the
customary dimensionless variables of the harmonic oscillator

Xj =
√
meω

~

xj , j = 1, 2 . (8.87)

(8.83) can then be expressed

1
~ω

Ĥo = −1
2

(
∂2

∂X2
1

+
∂2

∂X2
2

)
+

1
2
(
X2

1 + X2
2

)
+

1
i

(
X1

∂

∂X2
− X2

∂

∂X1

)
. (8.88)
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Employing the creation and annihilation operators

a†j =
1√
2

(
Xj −

∂

∂Xj

)
; aj =

1√
2

(
Xj +

∂

∂Xj

)
; j = 1, 2 (8.89)

and the identity

ω L̂3 =
1
i

(
a†1a2 − a†2a1

)
, (8.90)

which can readily be proven, one obtains

1
~ω

Ĥ = a†1a1 + a†2a2 + 11 +
1
i

(
a†1a2 − a†2a1

)
. (8.91)

We note that the operator a†1a2 − a†2a1 leaves the total number of vibrational quanta invariant,
since one phonon is annihilated and one created. We, therefore, attempt to express eigenstates in
terms of vibrational wave functions

Ψ(j,m;x1, x2) =

(
a†1

)j+m
√

(j +m)!

(
a†1

)j−m
√

(j −m)!
Ψ(0, 0;x1, x2) (8.92)

where Ψ(0, 0;x1, x2) is the wave function for the state with zero vibrational quanta for the x1- as
well as for the x2-oscillator. (8.92) represents a state with j + m quanta in the x1-oscillator and
j −m quanta in the x2-oscillator, the total vibrational energy being ~ω(2j + 1). In order to cover
all posible vibrational quantum numbers one needs to choose j, m as follows:

j = 0,
1
2
, 1,

3
2
, . . . , m = −j, −j + 1, . . . ,+j . (8.93)

The states (8.92) are not eigenstates of L̂3. Such eigenstates can be expressed, however, through a
combination of states

Ψ′(j,m′;x1, x2) =
j∑

m=−j
α

(j)
mm′ Ψ(j,m;x1, x2) . (8.94)

Since this state is a linear combination of states which all have vibrational energy (2j+1)~ω, (8.94)
is an eigenstate of the vibrational Hamiltonian, i.e., it holds(

a†1a1 + a†2a2 + 11
)

Ψ′(j,m′;x1, x2) = ( 2j + 1 ) Ψ′(j,m′;x1, x2) . (8.95)

We want to choose the coefficients α(j)
mm′ such that (8.94) is also an eigenstate of L̂3, i.e., such that

1
i

(
a†1a2 − a†2a1

)
Ψ′(j,m′;x1, x2) = 2m′Ψ′(j,m′;x1, x2) (8.96)

holds. If this property is, in fact, obeyed, (8.94) is an eigenstate of Ĥo

Ĥo Ψ′(j,m′;x1, x2) = ~ω
(

2j + 2m′ + 1
)

Ψ′(j,m′;x1, x2) . (8.97)
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In order to obtain coefficients α(j)
mm′ we can profitably employ the construction of angular momentum

states in terms of spin–1
2 states as presented in Sects. 5.9,5.10,5.11. If we identify

a†1, a1, a
†
2, a2︸ ︷︷ ︸

present notation

←→ b†+, b+, b
†
−, b−︸ ︷︷ ︸

notation in Sects. 5.9,5.10,5.11

(8.98)

then the states Ψ(j,m;x1, x2) defined in (8.92) correspond to the eigenstates |Ψ(j,m)〉 in Sect. 5.9.
According to the derivation given there, the states are eigenstates of the operator [we use for the
operator the notation of Sect. 5.10, cf. Eq.(5.288)]

Ĵ3 =
1
2

(
a†1a1 − a†2a2

)
(8.99)

with eigenvalue m. The connection with the present problem arises due to the fact that the operator
J2 in Sect. 5.10, which corresponds there to the angular momentum in the x2–direction, is in the
notation of the present section

Ĵ2 =
1
2i

(
a†1a2 − a†2a1

)
, (8.100)

i.e., except for a factor 1
2 , is identical to the operator L̂3 introduced in (8.84) above. This implies that

we can obtain eigenstates of L̂3 by rotation of the states Ψ(j,m;x1, x2). The required rotation must
transform the x3–axis into the x2–axis. According to Sect. 5.11 such transformation is provided
through

Ψ′(j,m′;x1, x2) = D
(j)
mm′(

π

2
,
π

2
, 0) Ψ(j,m;x1, x2) (8.101)

where D(j)
mm′(

π
2 ,

π
2 , 0) is a rotation matrix which describes the rotation around the x3–axis by π

2
and then around the new x2–axis by π

2 , i.e., a transformation moving the x3–axis into the x2–
axis. The first rotation contributes a factor exp(−imπ

2 ), the second rotation a factor d(j)
mm′(

π
2 ), the

latter representing the Wigner rotation matrix of Sect. 5.11. Using the explicit form of the Wigner
rotation matrix as given in (5.309) yields finally

Ψ′(j,m′;x1, x2) =
(

1
2

)2j ∑j
m=−j

∑j−m′
t=0

√
(j+m)!(j−m)!

(j+m′)!(j−m′)!(
j +m′

m+m′ − t

) (
j −m′
t

)
(−1)j−m

′−t (−i)m Ψ(j,m;x1, x2) . (8.102)

We have identified, thus, the eigenstates of (8.83) and confirmed the eigenvalues stated in (8.97).

8.5 Time-Dependent Perturbation Theory

We want to consider now a quantum system involving a charged particle in a bound state perturbed
by an external radiation field described through the Hamiltonian (8.55). We assume that the
scalar potential V in (8.55) confines the particle to stationary bound states; an example is the
Coulomb potential V (~r, t) = 1/4πr confining an electron with energy E < 0 to move in the well
known orbitals of the hydrogen atom. The external radiation field is accounted for by the vector
potential ~A(~r, t) introduced above. In the simplest case the radiation field consists of a single
planar electromagnetic wave described through the potential (8.31). Other radiation fields can
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be expanded through Fourier analysis in terms of such plane waves. We will see below that the
perturbation resulting from a ‘pure’ plane wave radiation field will serve us to describe also the
perturbation resulting from a radiation field made up of a superposition of many planar waves.
The Hamiltonian of the particle in the radiation field is then described through the Hamiltonian

H = Ho + VS (8.103)

Ho =
~̂p

2

2m
+ q V (8.104)

VS = − q

m
~̂p · ~A(~r, t) +

q2

2m
A2(~r, t) (8.105)

where ~A(~r, t) is given by (8.42). Here the so-called unperturbed system is governed by the Hamil-
tonian Ho with stationary states defined through the eigenvalue problem

Ho |n〉 = εn |n〉 , n = 0, 1, 2 . . . (8.106)

where we adopted the Dirac notation for the states of the quantum system. The states |n〉 are
thought to form a complete, orthonormal basis, i.e., we assume

〈n|m〉 = δnm (8.107)

and for the identity

11 =
∞∑
n=0

|n〉〈n| . (8.108)

We assume for the sake of simplicity that the eigenstates of Ho can be labeled through integers,
i.e., we discount the possibility of a continuum of eigenstates. However, this assumption can be
waved as our results below will not depend on it.

Estimate of the Magnitude of VS

We want to demonstrate now that the interaction VS(t), as given in (8.105) for the case of radiation-
induced transitions in atomic systems, can be considered a weak perturbation. In fact, one can
estimate that the perturbation, in this case, is much smaller than the eigenvalue differences near
typical atomic bound states, and that the first term in (8.105), i.e., the term ∼ ~̂p · ~A(~r, t), is much
larger than the second term, i.e., the term ∼ A2(~r, t). This result will allow us to neglect the
second term in (8.105) in further calculations and to expand the wave function in terms of powers
of VS(t) in a perturbation calculation.
For an electron charge q = −e and an electron mass m = me one can provide the estimate for the
first term of (8.105) as follows4. We first note, using (8.41)

∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ e

me

∣∣∣∣2me
p2

2me

∣∣∣∣
1
2
√

8πNω~
ω V

. (8.109)

4The reader should note that the estimates are very crude since we are establishing an order of magnitude estimate
only.
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The virial theorem for the Coulomb problem provides the estimate for the case of a hydrogen atom∣∣∣∣ p2

2me

∣∣∣∣ ∼ 1
2
e2

ao
(8.110)

where ao is the Bohr radius. Assuming a single photon, i.e., Nω = 1, a volume V = λ3 where λ is
the wave length corresponding to a plane wave with frequency ω, i.e., λ = 2πc/λ, one obtains for
(8.109) using V = λ 4π2c2/ω2 ∣∣∣∣ eme

~̂p · ~A
∣∣∣∣ ∼ e2

4πao

∣∣∣∣ 2π ao
λ

~ω

mec2

∣∣∣∣ 1
2

(8.111)

For ~ω = 3 eV and a corresponding λ = 4000 Å one obtains, with ao ≈ 0.5 Å, and mec
2 ≈

500 keV ∣∣∣∣ 2π ao
λ

~ω

mec2

∣∣∣∣ ≈ 10−8 (8.112)

and with e2/ao ≈ 27 eV, altogether,∣∣∣∣ eme
~̂p · ~A

∣∣∣∣ ∼ 10 eV · 10−4 = 10−3 eV . (8.113)

This magnitude is much less than the differences of the typical eigenvalues of the lowest states of
the hydrogen atom which are of the order of 1 eV. Hence, the first term in (8.105) for radiation
fields can be considered a small perturbation.
We want to estimate now the second term in (8.105). Using again (8.41) one can state∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ e2

2me

1
ω2

8πNω~ω
V

(8.114)

For the same assumptions as above one obtains∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ e2

8πao
·
(
ao
λ

4~ω
mec2

)
. (8.115)

Employing for the second factor the estimate as stated in (8.112) yields∣∣∣∣ e2

2me
A2

∣∣∣∣ ∼ 10 eV · 10−8 = 10−7 eV . (8.116)

This term is obviously much smaller than the first term. Consequently, one can neglect this term as
long as the first term gives non-vanishing contributions, and as long as the photon densities Nω/V
are small. We can, hence, replace the perturbation (8.105) due to a radiation field by

VS = − q

m
~̂p · ~A(~r, t) . (8.117)

In case that such perturbation acts on an electron and is due to superpositions of planar waves
described through the vector potential (8.42) it holds

VS ≈
e

m

∑
~k,û

√
4πNk~
kV

α(~k, û) ~̂p · û exp
[
i(~k · ~r − ωt)

]
. (8.118)
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where we have replaced ω in (8.42) through k = |~k| = ω. The sum runs over all possible ~k vectors
and might actually be an integral, the sum over û involves the two possible polarizations of planar
electromagnetic waves. A factor α(~k, û) has been added to describe eliptically or circularly polarized
waves. Equation (8.118) is the form of the perturbation which, under ordinary circumstances,
describes the effect of a radiation field on an electron system and which will be assumed below to
describe radiative transitions.

Perturbation Expansion

The generic situation we attempt to describe entails a particle at time t = to in a state |0〉 and
a radiation field beginning to act at t = to on the particle promoting it into some of the other
states |n〉, n = 1, 2, . . .. The states |0〉, |n〉 are defined in (8.106–8.108) as the eigenstates of the
unperturbed Hamiltonian Ho. One seeks to predict the probability to observe the particle in one
of the states |n〉, n 6= 0 at some later time t ≥ to. For this purpose one needs to determine the
state |ΨS(t)〉 of the particle. This state obeys the Schrödinger equation

i~ ∂t|ΨS(t)〉 = [Ho + VS(t) ] |ΨS(t)〉 (8.119)

subject to the initial condition
|ΨS(to)〉 = |0〉 . (8.120)

The probability to find the particle in the state |n〉 at time t is then

p0→n(t) = |〈n|ΨS(t)〉|2 . (8.121)

In order to determine the wave function ΨS(t)〉 we choose the so-called Dirac representation defined
through

|ΨS(t)〉 = exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉 (8.122)

where
|ΨD(to)〉 = |0〉 . (8.123)

Using

i~ ∂texp
[
− i
~

Ho(t − to)
]

= Ho exp
[
− i
~

Ho(t − to)
]

(8.124)

and (8.119) one obtains

exp
[
− i
~

Ho(t − to)
]

(Ho + i~ ∂t ) |ΨD(t)〉

= [Ho + VS(t) ] exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉 (8.125)

from which follows

exp
[
− i
~

Ho(t − to)
]
i~ ∂t|ΨD(t)〉 = VS(t) exp

[
− i
~

Ho(t − to)
]
|ΨD(t)〉 . (8.126)

Multiplying the latter equation by the operator exp
[
i
~
Ho(t − to)

]
yields finally

i~∂t|ΨD(t)〉 = VD(t) |ΨD(t)〉 , |Ψ(to)〉 = |0〉 (8.127)
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where

VD(t) = exp
[
i

~

Ho(t − to)
]
VS(t) exp

[
− i
~

Ho(t − to)
]
. (8.128)

We note that the transition probability (8.121) expressed in terms of ΨD(t)〉 is

p0→n(t) = |〈n|exp
[
− i
~

Ho(t − to)
]
|ΨD(t)〉|2 . (8.129)

Due to the Hermitean property of the Hamiltonian Ho holds 〈n|Ho = εn〈n| and, consequently,

〈n|exp
[
− i
~

Ho(t − to)
]

= exp
[
− i
~

εn(t − to)
]
〈n| (8.130)

from which we conclude, using |exp[− i
~
εn(t − to)]| = 1,

p0→n(t) = |〈n |ΨD(t)〉|2 . (8.131)

In order to determine |ΨD(t)〉 described through (8.127) we assume the expansion

|ΨD(t)〉 =
∞∑
n=0

|Ψ(n)
D (t)〉 (8.132)

where |Ψ(n)
D (t)〉 accounts for the contribution due to n-fold products of VD(t) to |ΨD(t)〉. Accord-

ingly, we define |Ψ(n)
D (t)〉 through the evolution equations

i~∂t|Ψ(0)
D (t)〉 = 0 (8.133)

i~∂t|Ψ(1)
D (t)〉 = VD(t) |Ψ(0)

D (t)〉 (8.134)

i~∂t|Ψ(2)
D (t)〉 = VD(t) |Ψ(1)

D (t)〉 (8.135)
...

i~∂t|Ψ(n)
D (t)〉 = VD(t) |Ψ(n−1)

D (t)〉 (8.136)
...

together with the initial conditions

|ψD(to)〉 =
{
|0〉 for n = 0
0 for n = 1, 2. . . .

(8.137)

One can readily verify that (8.132–8.137) are consistent with (8.127, 8.128).
Equations (8.133–8.137) can be solved recursively. We will consider here only the two leading
contributions to |ΨD(t)〉. From (8.133, 8.137) follows

|Ψ(0)
D (t)〉 = |0〉 . (8.138)

Employing this result one obtains for (8.134, 8.137)

|Ψ(1)
D (t)〉 =

1
i~

∫ t

to

dt′ VD(t′) |0〉 . (8.139)
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This result, in turn, yields for (8.135, 8.137)

|Ψ(2)
D (t)〉 =

(
1
i~

)2 ∫ t

to

dt′
∫ t′

to

dt′′VD(t′)VD(t′′) |0〉 . (8.140)

Altogether we have provided the formal expansion for the transition amplitude

〈n|ΨD(t)〉 = 〈n|0〉 +
1
i~

∫ t

to

dt′ 〈n|VD(t′) |0〉 (8.141)

+
∞∑
m=0

(
1
i~

)2∫ t

to

dt′
∫ t′

to

dt′′〈n|VD(t′)|m〉〈m|VD(t′′) |0〉 + . . .

8.6 Perturbations due to Electromagnetic Radiation

We had identified in Eq. (8.118) above that the effect of a radiation field on an electronic system
is accounted for by perturbations with a so-called harmonic time dependence ∼ exp(−iωt). We
want to apply now the perturbation expansion derived to such perturbations. For the sake of
including the effect of superpositions of plane waves we will assume, however, that two planar
waves simulataneously interact with an electronic system, such that the combined radiation field
is decribed by the vector potential

~A(~r, t) = A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
incoming wave (8.142)

+ A2 û2 exp
[
i (~k2 · ~r ∓ ω2 t)

]
incoming or outgoing wave

combining an incoming and an incoming or outgoing wave. The coefficients A1, A2 are defined
through (8.41).
The resulting perturbation on an electron system, according to (8.118), is

VS =
[
V̂1 exp(−iω1t) + V̂2 exp(∓iω2t)

]
eλt , λ → 0+ , to → −∞ (8.143)

where V̂1 and V̂2 are time-independent operators defined as

V̂j =
e

m

√
8πNj~
ωjV︸ ︷︷ ︸

I

~̂p · ûj︸ ︷︷ ︸
II

ei
~k·~r

︸︷︷︸
III

. (8.144)

Here the factor I describes the strength of the radiation field (for the specified planar wave) as
determined through the photon density Nj/V and the factor II describes the polarization of the
planar wave; note that ûj , according to (8.34, 8.142), defines the direction of the ~E-field of the
radiation. The factor III in (8.144) describes the propagation of the planar wave, the direction of
the propagation being determined by k̂ = ~k/|~k|. We will demonstrate below that the the sign of
∓iωt determines if the energy of the planar wave is absorbed (“-” sign) or emitted (“+” sign) by
the quantum system. In (8.144) ~r is the position of the electron and ~̂p = (~/i)∇ is the momentum
operator of the electron. A factor exp(λt), λ → 0+ has been introduced which describes that at
time to → −∞ the perturbation is turned on gradually. This factor will serve mainly the purpose of
keeping in the following derivation all mathematical quantities properly behaved, i.e., non-singular.
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1st Order Processes

We employ now the perturbation (8.143) to the expansion (8.141). For the 1st order contribution
to the transition amplitude

〈n|Ψ(1)
D (t)〉 =

1
i~

∫ t

to

dt′ 〈n|VD(t′) |0〉 (8.145)

we obtain then, using (8.128), (8.130) and (for m = 0)

exp
[
− i
~

Ho(t − to)
]
|m〉 = exp

[
− i
~

εm(t − to)
]
|m〉 , (8.146)

for (8.145)

〈n|Ψ(1)
D (t)〉 = lim

λ→0+
lim

t→−∞

1
i~

∫ t

to

dt′ exp
[
i

~

(εn − εo − i~λ) t′
]
×

×
(
〈n|V̂1|0〉 e−iω1t′ + 〈n|V̂2|0〉 e∓iω2t′

)
. (8.147)

Carrying out the time integration and taking the limit limt→−∞ yields

〈n|Ψ(1)
D (t)〉 = lim

λ→0+
eλt

[
〈n|V̂1|0〉

exp
[
i
~
(εn − εo − ~ω1) t

]
εo + ~ω1 − εn + iλ~

+

+ 〈n|V̂2|0〉
exp

[
i
~
(εn − εo ∓ ~ω2) t

]
εo ± ~ω2 − εn + iλ~

]
. (8.148)

2nd Order Processes

We consider now the 2nd order contribution to the transition amplitude. According to (8.140,
8.141) this is

〈n|Ψ(2)
D (t)〉 = − 1

~
2

∞∑
m=0

∫ t

to

dt′
∫ t′

to

dt′′ 〈n|VD(t′) |m〉 〈m|VD(t′′) |0〉 . (8.149)

Using the definition of VD stated in (8.128) one obtains

〈k|VD(t) |`〉 = 〈k|VS(t)|`〉 exp
[
i

~

(εk − ε`)
]

(8.150)

and, employing the perturbation (8.143), yields

〈n|Ψ(2)
D (t)〉 = − 1

~
2

lim
λ→0+

lim
t→−∞

∞∑
m=0

∫ t

to

dt′
∫ t′

to

dt′′ (8.151){
〈n|V̂1 |m〉 〈m|V̂1 |0〉 exp

[
i

~

(εn − εm − ~ω1 − i~λ)t′
]

exp
[
i

~

(εm − εo − ~ω1 − i~λ)t′′
]

+ 〈n|V̂2 |m〉 〈m|V̂2 |0〉 exp
[
i

~

(εn − εm ∓ ~ω2 − i~λ)t′
]

exp
[
i

~

(εm − εo ∓ ~ω2 − i~λ)t′′
]
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+ 〈n|V̂1 |m〉 〈m|V̂2 |0〉 exp
[
i

~

(εn − εm − ~ω1 − i~λ)t′
]

exp
[
i

~

(εm − εo ∓ ~ω2 − i~λ)t′′
]

+ 〈n|V̂2 |m〉 〈m|V̂1 |0〉 exp
[
i

~

(εn − εm ∓ ~ω2 − i~λ)t′
]

exp
[
i

~

(εm − εo − ~ω1 − i~λ)t′′
] }

Carrying out the integrations and the limit limt→−∞ provides the result

〈n|Ψ(2)
D (t)〉 = − 1

~
2

lim
λ→0+

∞∑
m=0

(8.152){
〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

exp
[
i
~

(εn − εo − 2~ω1 − 2i~λ)t
]

εn − εo − 2~ω1 − 2i~λ

+
〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

exp
[
i
~

(εn − εo ∓ 2~ω2 − 2i~λ)t
]

εn − εo ∓ 2~ω2 − 2i~λ

+
〈n|V̂1 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ

+
〈n|V̂2 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ

}

1st Order Radiative Transitions

The 1st and 2nd order transition amplitudes (8.148) and (8.152), respectively, provide now the
transition probability p0→n(t) according to Eq. (8.131). We assume first that the first order transi-
tion amplitude 〈n|Ψ(1)

D (t)〉 is non-zero, in which case one can expect that it is larger than the 2nd
order contribution 〈n|Ψ(2)

D (t)〉 which we will neglect. We also assume for the final state n 6= 0 such
that 〈n|0〉 = 0 and

p0→n(t) = | 〈n|Ψ(1)
D (t)〉 |2 (8.153)

holds. Using (8.148) and

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z
∗
2) (8.154)

yields

p0→n(t) = lim
λ→0+

e2λt

{
〈n|V̂1|0〉|2

(εo + ~ω1 − εn)2 + (λ~)2

+
〈n|V̂2|0〉|2

(εo ± ~ω1 − εn)2 + (λ~)2
(8.155)

+ 2 Re
〈n|V̂1|0〉〈0|V̂2|n〉 exp

[
i
~
(±~ω2 − ~ω1) t

]
(εo + ~ω1 − εn + iλ~) (εo ± ~ω2 − εn − iλ~)

}

We are actually interested in the transition rate, i.e., the time derivative of p0→n(t). For this rate
holds
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d

dt
p0→n(t) = lim

λ→0+
e2λt

{
2λ 〈n|V̂1|0〉|2

(εo + ~ω1 − εn)2 + (λ~)2
(8.156)

+
2λ 〈n|V̂2|0〉|2

(εo ± ~ω1 − εn)2 + (λ~)2
+
(

2λ +
d

dt

)
×

× 2 Re
〈n|V̂1|0〉〈0|V̂2|n〉 exp

[
i
~
(±~ω2 − ~ω1) t

]
(εo + ~ω1 − εn + iλ~) (εo ± ~ω2 − εn − iλ~)

}

The period of electromagnetic radiation absorbed by electronic systems in atoms is of the order
10−17 s, i.e., is much shorter than could be resolved in any observation; in fact, any attempt to do
so, due to the uncertainty relationship would introduce a considerable perturbation to the system.
The time average will be denoted by 〈 · · · 〉t. Hence, one should average the rate over many periods
of the radiation. The result of such average is, however, to cancel the third term in (8.156) such
that the 1st order contributions of the two planar waves of the perturbation simply add. For the
resulting expression the limit limλ→0+ can be taken. Using

lim
δ→0+

ε

x2 + ε2
= π δ(x) (8.157)

one can conclude for the average transition rate

k = 〈 d
dt
p0→n(t) 〉t =

2π
~

[
|〈n|V̂1|0〉|2 δ(εn − εo − ~ω1) (8.158)

+ |〈n|V̂2|0〉|2 δ(εn − εo ∓ ~ω2)
]

Obviously, the two terms apearing on the rhs. of this expression describe the individual effects of
the two planar wave contributions of the perturbation (8.142–8.144). The δ-functions appearing in
this expression reflect energy conservation: the incoming plane wave contribution of (8.143, 8.144),
due to the vector potential

A1 û1 exp
[
i (~k1 · ~r − ω1 t)

]
, (8.159)

leads to final states |n〉 with energy εn = εo + ~ω1. The second contribution to (8.158), describing
either an incoming or an outgoing plane wave due to the vector potential

A2 û2 exp
[
i (~k1 · ~r ∓ ω2 t)

]
, (8.160)

leads to final states |n〉 with energy εn = εo ± ~ω2. The result supports our definition of incoming
and outgoing waves in (8.31) and (8.142)
The matrix elements 〈n|V̂1|0〉 and 〈n|V̂2|0〉 in (8.158) play an essential role for the transition rates
of radiative transitions. First, these matrix elements determine the so-called selection rules for the
transition: the matrix elements vanish for many states |n〉 and |0〉 on the ground of symmetry and
geometrical properties. In case the matrix elements are non-zero, the matrix elements can vary
strongly for different states |n〉 of the system, a property, which is observed through the so-called
spectral intensities of transitions |0〉 → |n〉.
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2nd Order Radiative Transitions

We now consider situations where the first order transition amplitude in (8.153) vanishes such that
the leading contribution to the transition probability p0→n(t) arises from the 2nd order amplitude
(8.152), i.e., it holds

p0→n(t) = | 〈n|Ψ(2)
D (t)〉 |2 . (8.161)

To determine the transition rate we proceed again, as we did in the the case of 1st order transitions,
i.e., in Eqs. (8.153–8.158). We define

z1 =

( ∞∑
m=0

〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

)
×

×
exp
[
i
~

(εn − εo − 2~ω1 − 2i~λ)t
]

εn − εo − 2~ω1 − 2i~λ
(8.162)

and, similarly,

z2 =

( ∞∑
m=0

〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

)
×

×
exp
[
i
~

(εn − εo ∓ 2~ω2 − 2i~λ)t
]

εn − εo ∓ 2~ω2 − 2i~λ
(8.163)

z3 =

[ ∞∑
m=0

(
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

+
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo ∓ ~ω2 − i~λ

)]
× (8.164)

×
exp
[
i
~

(εn − εo − ~ω1 ∓ ~ω2 − 2i~λ)t
]

εn − εo − ~ω1 ∓ ~ω2 − 2i~λ
(8.165)

It holds

|z1 + z2 + z3|2 = |z1|2 + |z2|2 + |z3|2 +
3∑

j,k=1
j 6=k

zjz
∗
k (8.166)

In this expression the terms |zj |2 exhibit only a time dependence through a factor e2λt whereas the
terms zjz∗k for j 6= k have also time-dependent phase factors, e.g., exp[ i

~
(±ω2−ω1)]. Time average

〈 · · · 〉t of expression (8.166) over many periods of the radiation yields 〈exp[ i
~
(±ω2 − ω1)]〉t = 0

and, hence,
〈 |z1 + z2 + z3|2〉t = |z1|2 + |z2|2 + |z3|2 (8.167)

Taking now the limit limλ→0+ and using (8.157) yields, in analogy to (8.158),

k = 〈 d
dt
p0→n(t) 〉t

=
2π
~

∣∣∣∣∣
∞∑
m=0

〈n|V̂1 |m〉 〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

∣∣∣∣∣
2

δ(εm − εo − 2~ω1)︸ ︷︷ ︸
absorption of 2 photons ~ω1

(8.168)
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+
2π
~

∣∣∣∣∣
∞∑
m=0

〈n|V̂2 |m〉 〈m|V̂2 |0〉
εm − εo ∓ ~ω2 − i~λ

∣∣∣∣∣
2

δ(εm − εo ∓ 2~ω2)︸ ︷︷ ︸
absorption/emission of 2 photons ~ω2

+
2π
~

∣∣∣∣∣
∞∑
m=0

(
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo − ~ω1 − i~λ

+

+
〈n|V̂2 |m〉〈m|V̂1 |0〉
εm − εo ∓ ~ω2 − i~λ

)∣∣∣∣∣
2

δ(εn − εo − ~ω1 ∓ ~ω2)︸ ︷︷ ︸
absorption of a photon ~ω1 and absorption/emission of a photon ~ω2

This transition rate is to be interpreted as follows. The first term, according to its δ-function factor,
describes processes which lead to final states |n〉 with energy εn = εo + 2~ω1 and, accordingly,
describe the absorption of two photons, each of energy ~ω1. Similarly, the second term describes
the processes leading to final states |n〉 with energy εn = εo ± 2~ω2 and, accordingly, describe
the absorption/emission of two photons, each of energy ~ω2. Similarly, the third term describes
processes in which a photon of energy ~ω1 is absorbed and a second photon of energy ~ω2 is
absorbed/emitted. The factors | · · · |2 in (8.168) describe the time sequence of the two photon
absorption/ emission processes. In case of the first term in (8.168) the interpretation is

∞∑
m=0

〈n|V̂1 |m〉︸ ︷︷ ︸
pert. |n〉 ← |m〉

1
εm − εo − ~ω1 − i~λ︸ ︷︷ ︸

virtually occupied state |m〉

〈m|V̂1 |0〉︸ ︷︷ ︸
pert. |m〉 ← |0〉

(8.169)

, i.e., the system is perturbed through absorption of a photon with energy ~ω1 from the initial
state |0〉 into a state |m〉; this state is only virtually excited, i.e., there is no energy conservation
necessary (in general, εm 6= εo + ~ω1) and the evolution of state |m〉 is described by a factor
1/(εm−εo−~ω1−i~λ); a second perturbation, through absorption of a photon, promotes the system
then to the state |n〉, which is stationary and energy is conserved, i.e., it must hold εn = εo + 2~ω1.
The expression sums over all possible virtually occupied states |m〉 and takes the absolute value of
this sum, i.e., interference between the contributions from all intermediate states |m〉 can arise. The
remaining two contributions in (8.168) describe similar histories of the excitation process. Most
remarkably, the third term in (8.168) describes two intermediate histories, namely absorption/
emission first of photon ~ω2 and then absorption of photon ~ω1 and, vice versa, first absorption of
photon ~ω1 and then absorption/ emission of photon ~ω2.

8.7 One-Photon Absorption and Emission in Atoms

We finally can apply the results derived to describe transition processes which involve the absorption
or emission of a single photon. For this purpose we will employ the transition rate as given in
Eq. (8.158) which accounts for such transitions.
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Absorption of a Plane Polarized Wave

We consider first the case of absorption of a monochromatic, plane polarized wave described through
the complex vector potential

~A(~r, t) =

√
8πN~
ωV

û exp
[ ı
~

(~k · ~r − ωt)
]
. (8.170)

We will employ only the real part of this potential, i.e., the vector potential actually assumed is

~A(~r, t) =

√
2πN~
ωV

û exp
[ ı
~

(~k · ~r − ωt)
]

+

√
2πN~
ωV

û exp
[ ı
~

(−~k · ~r + ωt)
]
. (8.171)

The perturbation on an atomic electron system is then according to (8.143, 8.144)

VS =
[
V̂1 exp(−iωt) + V̂2 exp(+iωt)

]
eλt , λ → 0+ , to → −∞ (8.172)

where

V̂1,2 =
e

m

√
2πN~
ωV

~̂p · û e±i~k·~r . (8.173)

Only the first term of (8.143) will contribute to the absorption process, the second term can be
discounted in case of absorption. The absorption rate, according to (8.158), is then

kabs =
2π
~

e2

m2
e

2πN~
ωV

∣∣∣ û · 〈n| ~̂p ei~k·~r |0〉 ∣∣∣2 δ(εn − εo − ~ω) (8.174)

Dipole Approximation We seek to evaluate the matrix element

~M = 〈n| ~̂p ei~k·~r |0〉 . (8.175)

The matrix element involves a spatial integral over the electronic wave functions associated with
states |n〉 and |0〉. For example, in case of a radiative transition from the 1s state of hydrogen to
one of its three 2p states, the wave functions are (n, `,m denote the relevant quantum numbers)

ψn=1,`=0,m=0(r, θ, φ) = 2

√
1
a3
o

e−r/ao Y00(θ, φ) 1s (8.176)

ψn=2,`=1,m(r, θ, φ) = −1
2

√
6
a3
o

r

ao
e−r/2ao Y1m(θ, φ) 2p (8.177)

and the integral is

~M =
~

√
6

ia4
o

∫ ∞
0

r2dr

∫ 1

−1
dcosθ

∫ 2π

0
dφ r e−r/2ao Y ∗1m(θ, φ) ×

×∇ei~k·~re−r/ao Y00(θ, φ) (8.178)

These wave functions make significant contributions to this integral only for r-values in the range
r < 10 ao. However, in this range one can expand

ei
~k·~r ≈ 1 + i~k · ~r + . . . (8.179)
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One can estimate that the absolute magnitude of the second term in (8.179) and other terms are
never larger than 20π ao/λ. Using |~k| = 2π/λ, the value of the wave length for the 1s → 2p
transition

λ =
2π~c

∆E2p−1s
= 1216 Å (8.180)

and ao = 0.529 Å one concludes that in the significant integration range in (8.178) holds ei~k·~r ≈
1 + O( 1

50) such that one can approximate

ei
~k·~r ≈ 1 . (8.181)

One refers to this approximation as the dipole approximation.

Transition Dipole Moment A further simplification of the matrix element (8.175) can then be
achieved and the differential operator ~̂p = ~

i∇ replaced by by the simpler multiplicative operator
~r. This simplification results from the identity

~̂p =
m

i~
[~r, Ho ] (8.182)

where Ho is the Hamiltonian given by (8.104) and, in case of the hydrogen atom, is

Ho =
(~̂p)2

2me
+ V (~r) , V (~r) = − e2

r
. (8.183)

For the commutator in (8.182) one finds

[~r, Ho ] = [~r,
~̂p

2

2me
] + [~r, V (~r) ]︸ ︷︷ ︸

= 0

=
1

2me

3∑
k=1

p̂k [~r, p̂k ] +
1

2me

3∑
k=1

[~r, p̂k ] pk (8.184)

Using ~r =
∑3

j=1 xj êj and the commutation property [xk, p̂j ] = i~ δkj one obtains

[~r, Ho ] =
i~

m

3∑
j,k=1

pk êj δjk =
i~

m

3∑
j,k=1

pk êk =
i~

m
~̂p (8.185)

from which follows (8.182).
We are now in a position to obtain an alternative expression for the matrix element (8.175). Using
(8.181) and (8.182) one obtains

~M ≈ m

i~
〈n| [~r, Ho] |0〉 =

m (εo − εn)
i~

〈n|~r |0〉 . (8.186)

Insertion into (8.174) yields

kabs =
4π2 e2N ω

V

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 δ(εn − εo − ~ω) (8.187)
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where we used the fact that due to the δ-function factor in (8.174) one can replace εn − εo by ~ω.
The δ-function appearing in this expression, in practical situations, will actually be replaced by a
distribution function which reflects (1) the finite life time of the states |n〉, |0〉, and (2) the fact
that strictly monochromatic radiation cannot be prepared such that any radiation source provides
radiation with a frequency distribution.

Absorption of Thermal Radiation

We want to assume now that the hydrogen atom is placed in an evironment which is sufficiently hot,
i.e., a very hot oven, such that the thermal radiation present supplies a continuum of frequencies,
directions, and all polarizations of the radiation. We have demonstrated in our derivation of the
rate of one-photon processes (8.158) above that in first order the contributions of all components of
the radiation field add. We can, hence, obtain the transition rate in the present case by adding the
individual transition rates of all planar waves present in the oven. Instead of adding the components
of all possible ~k values we integrate over all ~k using the following rule∑

~k

∑
û

=⇒ V
∫ +∞

−∞

k2 dk

(2π)3

∫
dk̂
∑
û

(8.188)

Here
∫
dk̂ is the integral over all orientations of ~k. Integrating and summing accordingly over all

contributions as given by (8.187) and using k c = ω results in the total absorption rate

k
(tot)
abs =

e2Nω ω3

2π c3
~

∫
dk̂
∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 (8.189)

where the factor 1/~ arose from the integral over the δ-function.
In order to carry out the integral

∫
dk̂ we note that û describes the possible polarizations of the

planar waves as defined in (8.31–8.35). k̂ and û, according to (8.33) are orthogonal to each other.
As a result, there are ony two linearly independent directions of û possible, say û1 and û2. The unit
vectors û1, û2 and k̂ can be chosen to point along the x1, x2, x3-axes of a right-handed cartesian
coordinate system. Let us assume that the wave functions describing states |n〉 and |0〉 have been
chosen real such that ~ρ = 〈n|~r|0〉 is a real, three-dimensional vector. The direction of this vector
in the û1, û2, k̂ frame is described by the angles ϑ, ϕ, the direction of û1 is described by the
angles ϑ1 = π/2, ϕ1 = 0 and of û2 by ϑ2 = π/2, ϕ2 = π/2. For the two angles α = ∠(û1, ~ρ) and
β = ∠(û2, ~ρ) holds then

cosα = cosϑ1 cosϑ + sinϑ1 sinϑ cos(ϕ1 − ϕ) = sinϑcosϕ (8.190)

and
cosβ = cosϑ2 cosϑ + sinϑ2 sinϑ cos(ϕ2 − ϕ) = sinϑsinϕ . (8.191)

Accordingly, one can express∑
û

| û · 〈n|~r |0〉 |2 = |ρ|2 ( cos2α + cos2β ) = sin2θ . (8.192)

and obtain ∫
dk̂
∑
û

∣∣∣ û · 〈n| ~̂r |0〉 ∣∣∣2 = |~ρ|2
∫ 2π

0

∫ 1

−1
dcosϑ (1 − cos2ϑ) =

8π
3

(8.193)
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This geometrical average, finally, can be inserted into (8.189) to yield the total absorption rate

k
(tot)
abs = Nω

4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 , Nω photons before absorption. (8.194)

For absorption processes involving the electronic degrees of freedom of atoms and molecules this
radiation rate is typicaly of the order of 109 s−1. For practical evaluations we provide an expression
which eliminates the physical constants and allows one to determine numerical values readily. For
this purpose we use ω/c = 2π/λ and obtain

4 e2 ω3

3 c3
~

=
32π3

3
e2

ao~

ao
λ3

= 1.37× 1019 1
s
× ao
λ3

(8.195)

and

k
(tot)
abs = Nω 1.37× 1019 1

s
× ao
λ

| 〈n|~r|0〉 |2

λ2
, (8.196)

where

λ =
2π c ~
εn − εo

(8.197)

The last two factors in (8.194) combined are typically somewhat smaller than (1 Å/1000 Å)3 =
10−9. Accordingly, the absorption rate is of the order of 109 s−1 or 1/nanosecond.

Transition Dipole Moment The expression (8.194) for the absorption rate shows that the
essential property of a molecule which determines the absorption rate is the so-called transition
dipole moment |〈n|~r |0〉|. The transition dipole moment can vanish for many transitions between
stationary states of a quantum system, in particular, for atoms or symmetric molecules. The
value of |〈n|~r |0〉| determines the strength of an optical transition. The most intensely absorbing
molecules are long, linear molecules.

Emission of Radiation

We now consider the rate of emission of a photon. The radiation field is described, as for the
absorption process, by planar waves with vector potential (8.171) and perturbation (8.172, 8.173).
In case of emission only the second term V̂2 exp(+iωt) in (8.173) contributes. Otherwise, the
calculation of the emission rate proceeds as in the case of absorption. However, the resulting total
rate of emission bears a different dependence on the number of photons present in the environment.
This difference between emission and absorption is due to the quantum nature of the radiation field.
The quantum nature of radiation manifests itself in that the number of photons Nω msut be an
integer, i.e., Nω = 0, 1, 2 , . . .. This poses, however, a problem in case of emission by quantum
systems in complete darkness, i.e., for Nω = 0. In case of a classical radiation field one would
expect that emission cannot occur. However, a quantum mechanical treatment of the radiation field
leads to a total emission rate which is proportional to Nω + 1 where Nω is the number of photons
before emission. This dependence predicts, in agreement with observations, that emission occurs
even if no photon is present in the environment. The corresponding process is termed spontaneous
emission. However, there is also a contribution to the emission rate which is proportional to Nω
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which is termed induced emission since it can be induced through radiation provided, e.g., in lasers.
The total rate of emission, accordingly, is

k(tot)
em =

4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (spontaneous emission)

+ Nω
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (induced emission)

= (Nω + 1 )
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (8.198)

Nω photons before emission. (8.199)

Planck’s Radiation Law

The postulate of the Nω + 1 dependence of the rate of emission as given in (8.198) is consistent
with Planck’s radiation law which reflects the (boson) quantum nature of the radiation field. To
demonstrate this property we apply the transition rates (8.195) and (8.198) to determine the
stationary distribution of photons ~ω in an oven of temperature T . Let No and Nn denote the
number of atoms in state |0〉 and |n〉, respectively. For these numbers holds

Nn /No = exp[−(εn − εo)/kBT ] (8.200)

where kB is the Boltzmann constant. We assume εn − εo = ~ω. Under stationary conditions
the number of hydrogen atoms undergoing an absorption process |0〉 → |n〉 must be the same as
the number of atoms undergoing an emission process |n〉 → |0〉. Defining the rate of spontaneous
emission

ksp =
4 e2 ω3

3 c3
~

| 〈n|~r|0〉 |2 (8.201)

the rates of absorption and emission are Nωksp and (Nω+1)ksp, respectively. The number of atoms
undergoing absorption in unit time areNωkspNo and undergoing emission are (Nω+1)kspNn. Hence,
it must hold

Nω ksp N0 = (Nω + 1) ksp Nn (8.202)

It follows, using (8.200),

exp[−~ω/kBT ] =
Nω

Nω + 1
. (8.203)

This equation yields

Nω =
1

exp[~ω/kBT ] − 1
, (8.204)

i.e., the well-known Planck radiation formula.

8.8 Two-Photon Processes

In many important processes induced by interactions between radiation and matter two or more
photons participate. Examples are radiative transitions in which two photons are absorbed or
emitted or scattering of radiation by matter in which a photon is aborbed and another re-emitted.
In the following we discuss several examples.
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Two-Photon Absorption

The interaction of electrons with radiation, under ordinary circumstances, induce single photon
absorption processes as described by the transition rate Eq. (8.187). The transition requires that the
transition dipole moment 〈n|~r |0〉 does not vanish for two states |0〉 and |n〉. However, a transition
between the states |0〉 and |n〉 may be possible, even if 〈n|~r |0〉 vanishes, but then requires the
absorption of two photons. In this case one needs to choose the energy of the photons to obey

εn = εo + 2 ~ω . (8.205)

The respective radiative transition is of 2nd order as described by the transition rate (8.168) where
the first term describes the relevant contribution. The resulting rate of the transition depends on
N 2
ω . The intense radiation fields of lasers allow one to increase transition rates to levels which can

readily be observed in the laboratory.
The perturbation which accounts for the coupling of the electronic system and the radiation field is
the same as in case of 1st order absorption processes and given by (8.172, 8.173); however, in case
of absorption only V̂1 contributes. One obtains, dropping the index 1 characterizing the radiation,

k =
2π
~

(
e2

m2
e

2πNω~
ωV

)2
∣∣∣∣∣
∞∑
m=0

〈n|û · ~̂p ei~k·~r |m〉 〈m|û · ~̂p ei~k·~r |0〉
εm − εo − ~ω1 − i~λ

∣∣∣∣∣
2

×

× δ(εm − εo − 2~ω) . (8.206)

Employing the dipole approximation (8.181) and using (8.182) yields, finally,

k =
(
Nω
V

)2 8π3e4

~

∣∣∣∣∣
∞∑
m=0

(εn − εm) û · 〈n|~̂r |m〉 (εm − εo) û · 〈m|~̂r |0〉
~ω ( εm − εo − ~ω − i~λ )

∣∣∣∣∣
2

× δ(εm − εo − 2~ω) . (8.207)

Expression (8.207) for the rate of 2-photon transitions shows that the transition |0〉 → |n〉 becomes
possible through intermediate states |m〉 which become virtually excited through absorption of a
single photon. In applying (8.207) one is, however, faced with the dilemma of having to sum over
all intermediate states |m〉 of the system. If the sum in (8.207) does not converge rapidly, which is
not necessarily the case, then expression (8.207) does not provide a suitable avenue of computing
the rates of 2-photon transitions.

Scattering of Photons at Electrons – Kramers-Heisenberg Cross Section

We consider in the following the scattering of a photon at an electron governed by the Hamiltonian
Ho as given in (8.104) with stationary states |n〉 defined through (8.106). We assume that a planar
wave with wave vector ~k1 and polarization û1, as described through the vector potential

~A(~r, t) = Ao1 û1 cos(~k1 · ~r − ω1t) , (8.208)

has been prepared. The electron absorbs the radiation and emits immediately a second photon.
We wish to describe an observation in which a detector is placed at a solid angle element dΩ2 =
sinθ2 dθ2 dφ2 with respect to the origin of the coordinate system in which the electron is described.
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We assume that the experimental set-up also includes a polarizer which selects only radiation with
a certain polarization û2. Let us assume for the present that the emitted photon has a wave vector
~k2 with cartesian components

~k2 = k2

 sinθ2 cosφ2

sinθ2 sinφ2

cosθ2

 (8.209)

where the value of k2 has been fixed; however, later we will allow the quantum system to select
appropriate values. The vector potential describing the emitted plane wave is then

~A(~r, t) = Ao2 û2 cos(~k2 · ~r − ω2t) . (8.210)

The vector potential which describes both incoming wave and outgoing wave is a superposition of
the potentials in (8.208, 8.210). We know already from our description in Section 8.6 above that
the absorption of the radiation in (8.208) and the emission of the radiation in (8.210) is accounted
for by the following contributions of (8.208, 8.210)

~A(~r, t) = A+
o1 û1 exp[ i (~k1 · ~r − ω1t) ] + A−o2 û2 exp[ i (~k2 · ~r − ω2t) ] . (8.211)

The first term describes the absorption of a photon and, hence, the amplitude A+
o1 is given by

A+
o1 =

√
8πN1~

ω1V
(8.212)

where N1/V is the density of photons for the wave described by (8.208), i.e., the wave characterized
through ~k1, û1. The second term in (8.211) accounts for the emitted wave and, according to the
description of emission processes on page 229, the amplititude A−o2 defined in (8.211) is

A−o2 =

√
8π (N2 + 1) ~

ω1V
(8.213)

where N2/V is the density of photons characterized through ~k2, û2.
The perturbation which arises due to the vector potential (8.211) is stated in Eq. (8.105). In the
present case we consider only scattering processes which absorb radiation corresponding to the
vector potential (8.208) and emit radiation corresponding to the vector potential (8.210). The
relevant terms of the perturbation (8.105) using the vector potantial (8.211) are given by

VS(t) =
e

2me
~̂p ·
{
A+
o1û1exp[i(~k1 · ~r − ω1t)] + A−o2û2exp[−i(~k2 · ~r − ω2t)]

}
︸ ︷︷ ︸

contributes in 2nd order

+
e2

4me
A+
o1A

−
o2 û1 · û2 exp{i[(~k1 − ~k2) · ~r − (ω1 − ω2) t]}︸ ︷︷ ︸

contributes in 1st order

(8.214)

The effect of the perturbation on the state of the electronic system is as stated in the perturbation
expansion (8.141). This expansion yields, in the present case, for the components of the wave
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function accounting for absorption and re-emission of a photon

〈n|ΨD(t)〉 = 〈n|0〉 + (8.215)

+
1
i~

e2

4me
A+
o1A

−
o2 û1 · û2 〈n|0〉

∫ t

to

dt′ ei(εn−εo−~ω1+~ω2+i~λ)t′

+
∞∑
m=0

(
1
i~

)2 e2

4m2
e

A+
o1A

−
o2 ×

×
{
û1 · 〈n| ~̂p |m〉 û2 · 〈m| ~̂p |0〉 ×

×
∫ t

to

dt′
∫ t′

to

dt′′ei(εn−εm−~ω1+i~λ)t′ei(εm−εo+~ω2+i~λ)t′′

+ û2 · 〈n| ~̂p |m〉 û1 · 〈m| ~̂p |0〉 ×

×
∫ t

to

dt′
∫ t′

to

dt′′ei(εn−εm+~ω2+i~λ)t′ei(εm−εo−~ω1+i~λ)t′′
}

We have adopted the dipole approximation (8.181) in stating this result.
Only the second (1st order) and the third (2nd order) terms in (8.215) correspond to scattering
processes in which the radiation field ‘looses’ a photon ~ω1 and ‘gains’ a photon ~ω2. Hence, only
these two terms contribute to the scattering amplitude. Following closely the procedures adopted in
evaluating the rates of 1st order and 2nd order radiative transitions on page 222–225, i.e., evaluating
the time integrals in (8.215) and taking the limits limto→−∞ and limλ→0+ yields the transition rate

k =
2π
~

δ(εn − εo − ~ω1 + ~ω2)
∣∣∣∣ e2

4m2
e

A+
o1A

−
o2 û1 · û2 〈n|0〉 (8.216)

−
∑
m

e2

4me
A+
o1A

−
o2

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣∣
2

We now note that the quantum system has the freedom to interact with any component of the
radiation field to produce the emitted photon ~ω2. Accordingly, one needs to integrate the rate as
given by (8.216) over all available modes of the field, i.e., one needs to carry out the integration
V(2π)−3

∫
k2

2dk2 · · ·. Inserting also the values (8.212, 8.213) for the amplitudes A+
o1 and A−o2 results

in the Kramers-Heisenberg formula for the scattering rate

k =
N1c

V
r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (8.217)

− 1
me

∑
m

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣2
Here ro denotes the classical electron radius

ro =
e2

mec2
= 2.8 · 10−15 m . (8.218)
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The factor N1c/V can be interpreted as the flux of incoming photons. Accordingly, one can relate
(8.217) to the scattering cross section defined through

dσ =
rate of photons arriving in the the solid angle element dΩ2

flux of incoming photons
(8.219)

It holds then

dσ = r2
o

ω2

ω1
(N2 + 1) dΩ2

∣∣∣∣û1 · û2 〈n|0〉 (8.220)

− 1
me

∑
m

(
〈n|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω2
+
〈n|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω1

) ∣∣∣∣2
In the following we want to consider various applications of this formula.

Rayleigh Scattering

We turn first to an example of so-called elastic scattering, i.e., a process in which the electronic
state remains unaltered after the scattering. Rayleigh scattering is defined as the limit in which the
wave length of the scattered radiation is so long that none of the quantum states of the electronic
system can be excited; in fact, one assumes the even stronger condition

~ω1 << |εo − εm| , for all states |m〉 of the electronic system (8.221)

Using |n〉 = |0〉 and, consequently, ω1 = ω2, it follows

dσ = r2
o (N2 + 1) dΩ2 |û1 · û2 − S(~ω) |2 (8.222)

where

S(~ω) =
1
me

∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

εm − εo + ~ω
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

εm − εo − ~ω

)
. (8.223)

Condition (8.221) suggests to expand S(~ω)

S(~ω) = S(0) + S′(0) ~ω +
1
2
S′′(0)(~ω)2 + . . . (8.224)

Using
1

εm − εo ± ~ω
=

1
εm − εo

∓ ~ω

(εm − εo)2
+

(~ω)2

(εm − εo)3
+ . . . (8.225)

one can readily determine

S(0) =
∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)

)
(8.226)

S′(0) =
∑
m

(
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)2
− 〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)2

)
(8.227)

S′′(0) = 2
∑
m

(
〈0|û1 ·~̂p |m〉〈m|û2 ·~̂p |0〉

me (εm − εo)3
+
〈0|û2 ·~̂p |m〉〈m|û1 ·~̂p |0〉

me (εm − εo)3

)
(8.228)
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These three expressions can be simplified using the expression (8.182) for ~̂p and the expression
(8.108) for the identity operator.
We want to simplify first (8.226). For this purpose we replace ~̂p using (8.182)

〈0|û1 ·~̂p |m〉
me (εm − εo)

=
1
i~
〈0|û1 ·~r |m〉 ,

〈m|û1 ·~̂p |0〉
me (εm − εo)

= − 1
i~
〈m|û1 ·~r |0〉 (8.229)

This transforms (8.226) into

S(0) =
1
i~

∑
m

( 〈0|û1 ·~r |m〉〈m|û2 ·~̂p |0〉 − 〈0|û2 ·~̂p |m〉〈m|û1 ·~r |0〉 ) (8.230)

According to (8.108) this is

S(0) =
1
i~
〈0|û1 ·~r û2 ·~̂p − û2 ·~̂p û1 ·~r |0〉 . (8.231)

The commutator property [xj , p̂k] = i~ δjk yields finally

S(0) =
1
i~

3∑
j,k=1

(û1)j (û2)k 〈0|[xj , p̂k]|0〉 =
3∑

j,k=1

(û1)j(û2)k δjk = û1 ·û2 (8.232)

Obviously, this term cancels the û1 ·û2 term in (8.222).
We want to prove now that expression (8.227) vanishes. For this purpose we apply (8.229) both to
û1 · ~̂p and to û2 · ~̂p which results in

S′(0) =
me

~
2

∑
m

( 〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉 − 〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉 ) . (8.233)

Employing again (8.108) yields

S′(0) =
me

~
2
〈0| [û2 ·~r, û1 ·~r ] |0〉 = 0 (8.234)

where we used for the second identity the fact that û1 ·~r and û2 ·~r commute.
S′′(0) given in (8.228) provides then the first non-vanishing contribution to the scattering cross
section (8.222). Using again (8.229) both for the û1 · ~̂p and the to û2 · ~̂p terms in (8.228) we obtain

S′′(0) =
2me

~
2

∑
m

(
〈0|û1 ·~r |m〉〈m|û2 ·~r |0〉

εm − εo
+
〈0|û2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

)
(8.235)

We can now combine eqs. (8.224, 8.232, 8.234, 8.235) and obtain the leading contribution to the
expression (8.222) of the cross section for Rayleigh scattering

dσ = r2
om

2
e ω

4 (N2 + 1) dΩ2 × (8.236)

×

∣∣∣∣∣∑
m

(
〈0|û∗1 ·~r |m〉〈m|û2 ·~r |0〉

εm − εo
+
〈0|û∗2 ·~r |m〉〈m|û1 ·~r |0〉

εm − εo

) ∣∣∣∣∣
2

We have applied here a modification which arises in case of complex polarization vectors û which
describe circular and elliptical polarizaed light.
Expression (8.236) is of great practical importance. It explains, for example, the blue color of
the sky and the polarization pattern in the sky which serves many animals, i.e., honey bees, as a
compass.
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Thomson Scattering

We consider again elastic scattering., i.e., |n〉 = |0〉 and ω1 = ω2 = ω in (8.220), however, assume
now that the scattered radiation has very short wave length such that

ω >> |εo − εm| , for all states |m〉 of the electronic system . (8.237)

The resulting scattering is called Thomson scattering. We want to assume, though, that the dipole
approximation is still valid which restricts the applicability of the following derivation to

k1 >>
1
ao

, ao Bohr radius . (8.238)

One obtains immediately from (8.220)

dσ = r2
o (N2 + 1) dΩ2 |û1 · û2|2 . (8.239)

We will show below that this expression decribes the non-relativistic limit of Compton scattering.
To evaluate |û1 · û2|2 we assume that ~k1 is oriented along the x3-axis and, hence, the emitted
radiation is decribed by the wave vector

~k2 = k1

 sinθ2 cosφ2

sinθ2 sinφ2

cosθ2

 (8.240)

We choose for the polarization of the incoming radiation the directions along the x1- and the x2-axes

û
(1)
1 =

 1
0
0

 , û
(2)
1 =

 0
1
0

 (8.241)

Similarly, we choose for the polarization of the emitted radiation two perpendicular directions û(1)
2

and û
(2)
2 which are also orthogonal to the direction of ~k2. The first choice is

û
(1)
2 =

~k2 × ~k1

|~k2 × ~k1|
=

 sinφ2

−cosφ2

0

 (8.242)

where the second identity follows readily from ~k1 = ê3 and from (8.240). Since û(2)
2 needs to be

orthogonal to ~k2 as well as to û(1)
2 the sole choice is

û
(2)
2 =

~k2 × û(1)
2

|~k2 × û(1)
2 |

=

 cosθ2 cosφ2

cosθ2 sinφ2

−sinθ2

 (8.243)

The resulting scattering cross sections for the various choices of polarizations are

dσ = r2
o (N2 + 1) dΩ2 ×



sin2φ2 for û1 = û
(1)
1 , û2 = û

(1)
2

cos2θ2 cos2φ2 for û1 = û
(1)
1 , û2 = û

(2)
2

cos2φ2 for û1 = û
(2)
1 , û2 = û

(1)
2

cos2θ2 sin2φ2 for û1 = û
(2)
1 , û2 = û

(2)
2

(8.244)
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In case that the incident radiation is not polarized the cross section needs to be averaged over
the two polarization directions û(1)

1 and û
(2)
1 . One obtains then for the scattering cross section of

unpolarized radiation

dσ = r2
o (N2 + 1) dΩ2 ×

 1
2 for û2 = û

(1)
2

1
2 cos2θ2 for û2 = û

(2)
2

(8.245)

The result implies that even though the incident radiation is unpolarized, the scattered radiation
is polarized to some degree. The radiation scattered at right angles is even completely polarized
along the û(1)

2 -direction.
In case that one measures the scattered radiation irrespective of its polarization, the resulting
scattering cross section is

dσtot =
r2
o

2
(N2 + 1) ( 1 + cos2θ2 ) dΩ2 . (8.246)

This expression is the non-relativistic limit of the cross section of Compton scattering. The Comp-
ton scattering cross section which is derived from a model which treats photons and electrons as
colliding relativistic particles is

dσ
(rel)
tot =

r2
o

2
(N2 + 1)

(
ω2

ω1

)2 ( ω1

ω2
+

ω2

ω1
− sin2θ2

)
dΩ2 (8.247)

where
ω−1

2 − ω−1
1 =

~

mec2
( 1 − cosθ2 ) (8.248)

One can readily show that in the non-relativistic limit, i.e., for c → ∞ the Compton scattering
cross section (8.247, 8.247) becomes identical with the Thomson scattering cross section (8.246).

Raman Scattering and Brillouin Scattering

We now consider ineleastic scattering described by the Kramers-Heisenberg formula. In the case
of such scattering an electron system absorbs and re-emits radiation without ending up in the
initial state. The energy deficit is used to excite the system. The excitation can be electronic,
but most often involves other degrees of freedom. For electronic systems in molecules or crystals
the degrees of freedom excited are nuclear motions, i.e., molecular vibrations or crystal vibrational
modes. Such scattering is called Raman scattering. If energy is absorbed by the system, one speaks
of Stokes scattering, if energy is released, one speaks of anti-Stokes scattering. In case that the
nuclear degrees of freedom excited absorb very little energy, as in the case of excitations of accustical
modes of crystals, or in case of translational motion of molecules in liquids, the scattering is termed
Brillouin scattering.
In the case that the scattering excites other than electronic degrees of freedom, the states |n〉 etc.
defined in (8.220) represent actually electronic as well as nuclear motions, e.g., in case of a diatomic
molecule |n〉 = |φ(elect.)n, φ(vibr.)n〉. Since the scattering is inelastic, the first term in (8.220)
vanishes and one obtains in case of Raman scattering

dσ = r2
o (N2 + 1)

ω2

ω1
dΩ2 | û2 ·R · û1 |2 (8.249)
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where R represents a 3× 3-matrix with elements

Rjk =
1
me

∑
m

(
〈n| p̂j |m〉〈m| p̂k |0〉
εm − εo + ~ω2

+
〈n| p̂k |m〉〈m| p̂j |0〉
εm − εo − ~ω1

)
(8.250)

ω2 = ω1 − (εn − εo)/~ (8.251)

We define ~x ·R · ~y =
∑

j,k xjRjk yk.
In case that the incoming photon energy ~ω1 is chosen to match one of the electronic excitations,
e.g., ~ω1 ≈ εm − εo for a particular state |m〉, the Raman scattering cross section will be much
enhanced, a case called resonant Raman scattering. Of course, no singlularity developes in such
case due to the finite life time of the state |m〉. Nevertheless, the cross section for resonant Raman
scattering can be several orders of magnitude larger than that of ordinary Raman scattering, a
property which can be exploited to selectively probe suitable molecules of low concentration in
bulk matter.


