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In this chapter we want to consider the theory of the Fokker-Planck equation for molecules moving
under the influence of random forces in force-free environments. Examples are molecules involved
in Brownian motion in a fluid. Obviously, this situation applies to many chemical and biochemical
system and, therefore, is of great general interest. Actually, we will assume that the fluids considered
are viscous in the sense that we will neglect the effects of inertia. The resulting description, referred
to as Brownian motion in the limit of strong friction, applies to molecular systems except if one
considers very brief time intervals of a picosecond or less. The general case of Brownian motion for
arbitrary friction will be covered further below.

3.1 Derivation and Boundary Conditions

Particles moving in a liquid without forces acting on the particles, other than forces due to random
collisions with liquid molecules, are governed by the Langevin equation

m r̈ = − γ ṙ + σ ξ(t) (3.1)

In the limit of strong friction holds

|γ ṙ| � |m r̈| (3.2)

and, (3.1) becomes

γ ṙ = σ ξ(t) . (3.3)
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38 Einstein Diffusion Equations

To this stochastic differential equation corresponds the Fokker-Planck equation [c.f. (2.138) and
(2.148)]

∂t p(r, t|r0, t0) = ∇2 σ2

2γ2
p(r, t|r0, t0) . (3.4)

We assume in this chapter that σ and γ are spatially independent such that we can write

∂t p(r, t|r0, t0) =
σ2

2γ2
∇2 p(r, t|r0, t0) . (3.5)

This is the celebrated Einstein diffusion equation which describes microscopic transport of material
and heat.
In order to show that the Einstein diffusion equation (3.5) reproduces the well-known diffusive
behaviour of particles we consider the mean square displacement of a particle described by this
equation, i.e.,

〈
( r(t) − r(t0) )2

〉 ∼ t. We first note that the mean square displacement can be
expressed by means of the solution of (3.5) as follows〈(

r(t) − r(t0)
)2〉 =

∫
Ω∞

d3r
(
r(t) − r(t0)

)2
p(r, t|r0, t0) . (3.6)

Integration over Eq. (3.5) in a similar manner yields

d

dt

〈(
r(t) − r(t0)

)2〉 =
σ2

2γ2

∫
Ω∞

d3r
(
r(t) − r(t0)

)2 ∇2 p(r, t|r0, t0) . (3.7)

Applying Green’s theorem for two functions u(r) and v(r)∫
Ω∞

d3r
(
u∇2v − v∇2u

)
=

∫
∂Ω∞

da·(u∇v − v∇u
)

(3.8)

for an infinite volume Ω and considering the fact that p(r, t|r0, t0) must vanish at infinity we obtain

d

dt

〈(
r(t) − r(t0)

)2〉 =
σ2

2γ2

∫
Ω∞

d3r p(r, t|r0, t0) ∇2
(
r − r0

)2
. (3.9)

With ∇2 ( r − r0 )2 = 6 this is

d

dt

〈(
r(t) − r(t0)

)2〉 = 6
σ2

2γ2

∫
Ω∞

d3r p(r, t|r0, t0) . (3.10)

We will show below that the integral on the r.h.s. remains constant as long as one does not assume
the existence of chemical reactions. Hence, for a reaction free case we can conclude〈(

r(t) − r(t0)
)2〉 = 6

σ2

2 γ2
t . (3.11)

For diffusing particles one expects for this quantity a behaviour 6D(t− t0) where D is the diffusion
coefficient. Hence, the calculated dependence describes a diffusion process with diffusion coefficient

D =
σ2

2 γ2
. (3.12)
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3.1: Derivation and Boundary Conditions 39

One can write the Einstein diffusion equation accordingly

∂t p(r, t|r0, t0) = D ∇2 p(r, t|r0, t0) . (3.13)

We have stated before that the Wiener process describes a diffusing particle as well. In fact, the
three-dimensional generalization of (2.47)

p(r, t|r0, t0) =
(
4π D (t − t0)

)− 3
2 exp

[
− (r − r0)2

4D (t − t0)

]
(3.14)

is the solution of (3.13) for the initial and boundary conditions

p(r, t → t0|r0, t0) = δ(r − r0) , p(|r| → ∞, t|r0, t0) = 0 . (3.15)

One refers to the solution (3.14) as the Green’s function. The Green’s function is only uniquely
defined if one specifies spatial boundary conditions on the surface ∂Ω surrounding the diffusion
space Ω. Once the Green’s function is available one can obtain the solution p(r, t) for the system
for any initial condition, e.g. for p(r, t → 0) = f(r)

p(r, t) =
∫

Ω∞
d3r0 p(r, t|r0, t0) f(r0) . (3.16)

We will show below that one can also express the observables of the system in terms of the Green’s
function. We will also introduce Green’s functions for different spatial boundary conditions. Once
a Green’s function happens to be known, it is invaluable. However, because the Green’s function
entails complete information about the time evolution of a system it is correspondingly difficult to
obtain and its usefulness is confined often to formal manipulations. In this regard we will make
extensive use of Green’s functions later on.
The system described by the Einstein diffusion equation (3.13) may either be closed at the surface
of the diffusion space Ω or open, i.e., ∂Ω either may be impenetrable for particles or may allow
passage of particles. In the latter case ∂Ω describes a reactive surface. These properties of Ω are
specified through the boundary conditions on ∂Ω. In order to formulate these boundary conditions
we consider the flux of particles through consideration of the total number of particles diffusing in
Ω defined through

NΩ(t|r0, t0) =
∫

Ω
d3r p(r, t|r0, t0) . (3.17)

Since there are no terms in the diffusion equation (3.13) which affect the number of particles (we
will introduce such terms later on) the particle number is conserved and any change of NΩ(t|r0, t0)
must be due to particle flux at the surface of Ω. In fact, taking the time derivative of (3.17) yields,
using (3.13) and ∇2 = ∇·∇,

∂tNΩ(t|r0, t0) =
∫

Ω
d3r D ∇·∇ p(r, t|r0, t0) . (3.18)

Gauss’ theorem ∫
Ω
d3r ∇·v(r) =

∫
∂Ω

da·v(r) (3.19)

for some vector-valued function v(r), allows one to write (3.18)

∂t NΩ(t|r0, t0) =
∫

∂Ω
da·D ∇ p(r, t|r0, t0) . (3.20)
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40 Einstein Diffusion Equations

Here

j(r, t|r0, t0) = D ∇ p(r, t|r0, t0) (3.21)

must be interpreted as the flux of particles which leads to changes of the total number of particles
in case the flux does not vanish at the surface ∂Ω of the diffusion space Ω. Equation (3.21) is also
known as Fick’s law. We will refer to

J0(r) = D(r)∇ (3.22)

as the flux operator. This operator, when acting on a solution of the Einstein diffusion equation,
yields the local flux of particles (probability) in the system.
The flux operator J0(r) governs the spatial boundary conditions since it allows one to measure
particle (probability) exchange at the surface of the diffusion space Ω. There are three types of
boundary conditions possible. These types can be enforced simultaneously in disconnected areas of
the surface ∂Ω. Let us denote by ∂Ω1, ∂Ω2 two disconnected parts of ∂Ω such that ∂Ω = ∂Ω1∪∂Ω2.
An example is a volume Ω lying between a sphere of radius R1 (∂Ω1) and of radius R2 (∂Ω2). The
separation of the surfaces ∂Ωi with different boundary conditions is necessary in order to assure
that a continuous solution of the diffusion equation exists. Such solution cannot exist if it has to
satisfy in an infinitesimal neighbourhood entailing ∂Ω two different boundary conditions.
The first type of boundary condition is specified by

â(r) · J 0(r) p(r, t|r0, t0) = 0 , r ∈ ∂Ωi , (3.23)

which obviously implies that particles do not cross the boundary, i.e., are reflected. Here â(r)
denotes a unit vector normal to the surface ∂Ωi at r (see Figure 3.1). We will refer to (3.23) as the
reflection boundary condition.
The second type of boundary condition is

p(r, t|r0, t0) = 0 , r ∈ ∂Ωi . (3.24)

This condition implies that all particles arriving at the surface ∂Ωi are taken away such that the
probability on ∂Ωi vanishes. This boundary condition describes a reactive surface with the highest
degree of reactivity possible, i.e., that every particle on ∂Ωi reacts. We will refer to (3.24) as the
reaction boundary condition.
The third type of boundary condition,

â(r) · J0 p(r, t|r0, t0) = w p(r, t|r0, t0) , r on ∂Ωi , (3.25)

describes the case of intermediate reactivity at the boundary. The reactivity is measured by the
parameter w. For w = 0 in (3.25) ∂Ωi corresponds to a non-reactive, i.e., reflective boundary. For
w → ∞ the condition (3.25) can only be satisfied for p(r, t|r0, t0) = 0, i.e., every particle impinging
onto ∂Ωi is consumed in this case. We will refer to (3.25) as the radiation boundary condition.
In the following we want to investigate some exemplary instances of the Einstein diffusion equation
for which analytical solutions are available.

3.2 Free Diffusion in One-dimensional Half-Space

As a first example we consider a particle diffusing freely in a one-dimensional half-space x ≥ 0.
This situation is governed by the Einstein diffusion equation (3.13) in one dimension

∂t p(x, t|x0, t0) = D ∂2
x p(x, t|x0, t0) , (3.26)
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3.2: Diffusion in Half-Space 41

Figure 3.1: depicts the reflection of a partilcle at ∂Ω. After the reflection the particle proceeds
on the trajectory of it’s mirror image. The probability flux j(r, t|r0, t0) of the particle prior to
relfection and the probability flux j̃(r, t|r0, t0) of it’s mirror image amount to a total flux vector
parallel to the surface ∂Ω and normal to the normalized surface vector â(r) which results in the
boundary condition (3.23).

where the solution considered is the Green’s function, i.e., satisfies the initial condition

p(x, t → 0|x0, t0) = δ(x − x0) . (3.27)

One-Dimensional Half-Space with Reflective Wall

The transport space is limited at x = 0 by a reflective wall. This wall is represented by the boundary
condition

∂x p(x, t|x0, t0) = 0 . (3.28)

The other boundary is situated at x → ∞. Assuming that the particle started diffusion at some
finite x0 we can postulate the second boundary condition

p(x → ∞, t|x0, t0) = 0 . (3.29)

Without the wall at x = 0, i.e., if (3.28) would be replaced by p(x → −∞, t|x0, t0) = 0, the solution
would be the one-dimensional equivalent of (3.14), i.e.,

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp
[
− (x − x0)2

4D (t − t0)

]
. (3.30)

In order to satisfy the boundary condition one can add a second term to this solution, the Green’s
function of an imaginary particle starting diffusion at position −x0 behind the boundary. One
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42 Einstein Diffusion Equations

obtains

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp
[
− (x − x0)2

4D (t − t0)

]
(3.31)

+
1√

4π D (t − t0)
exp
[
− (x + x0)2

4D (t − t0)

]
, x ≥ 0 ,

which, as stated, holds only in the available half-space x ≥ 0. Obviously, this function is a solution
of (3.26) since both terms satisfy this equation. This solution also satisfies the boundary condition
(3.29). One can easily convince oneself either on account of the reflection symmetry with respect
to x = 0 of (3.31) or by differentiation, that (3.31) does satisfy the boundary condition at x = 0.
The solution (3.31) bears a simple interpretation. The first term of this solution describes a diffusion
process which is unaware of the presence of the wall at x = 0. In fact, the term extends with non-
vanishing values into the unavailable half-space x ≤ 0. This “loss” of probability is corrected by
the second term which, with its tail for x ≥ 0, balances the missing probability. In fact, the x ≥ 0
tail of the second term is exactly the mirror image of the “missing” x ≤ 0 tail of the first term.
One can envision that the second term reflects at x = 0 that fraction of the first term of (3.31)
which describes a freely diffusing particle without the wall.

One-Dimensional Half-Space with Absorbing Wall

We consider now a one-dimensional particle which diffuses freely in the presence of an absorbing wall
at x = 0. The diffusion equation to solve is again (3.26) with initial condition (3.27) and boundary
condition (3.29) at x → ∞. Assuming that the absorbing wall, i.e., a wall which consumes every
particle impinging on it, is located at x = 0 we have to replace the boundary condition (3.28) of
the previous problem by

p(x = 0, t|x0, t0) = 0 . (3.32)

One can readily convince oneself, on the ground of a symmetry argument similar to the one employed
above, that

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp
[
− (x − x0)2

4D (t − t0)

]
(3.33)

− 1√
4π D (t − t0)

exp
[
− (x + x0)2

4D (t − t0)

]
, x ≥ 0

is the solution sought. In this case the x ≤ 0 tail of the first term which describes barrierless free
diffusion is not replaced by the second term, but rather the second term describes a further particle
loss. This contribution is not at all obvious and we strongly encourage the reader to consider the
issue. Actually it may seem “natural” that the solution for an absorbing wall would be obtained
if one just left out the x ≤ 0 tail of the first term in (3.33) corresponding to particle removal by
the wall. It appears that (3.33) removes particles also at x ≥ 0 which did not have reached the
absorbing wall yet. This, however, is not true. Some of the probability of a freely diffusing particle
in a barrierless space for t > 0 at x > 0 involves Brownian trajectories of that particle which had
visited the half-space x ≤ 0 at earlier times. These instances of the Brownian processes are removed
by the second term in (3.33) (see Figure 3.2).
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3.2: Diffusion in Half-Space 43

Figure 3.2: Probability density distribution of a freely diffusing particle in half-space with an
absobing boundary at x = 0. The left plot shows the time evolution of equation (3.33) with
x0 = 1 and (t1 − t0) = 0.0, 0.1, 0.3, 0.6, 1.0, 1.7, and 3.0 for D = 1 in arbitrary temporal and spatial
units. The right plot depicts the assembly of solution (3.33) with two Gaussian distributions at
(t1 − t0) = 0.3.

Because of particle removal by the wall at x = 0 the total number of particles is not conserved.
The particle number corresponding to the Greens function p(x, t|x0, t0) is

N(t|x0, t0) =
∫ ∞

0
dx p(x, t|x0, t0) . (3.34)

Introducing the integration variable

y =
x√

4D (t − t0)
(3.35)

(3.34) can be written

N(t|x0, t0) =
1√
π

∫ ∞

0
dy exp

[−(y − y0)2
] − 1√

π

∫ ∞

0
dy exp

[−(y − y0)2
]

=
1√
π

∫ ∞

−y0

dy exp
[−y2

] − 1√
π

∫ ∞

y0

dy exp
[−y2

]
=

1√
π

∫ y0

−y0

dy exp
[−y2

]
(3.36)

=
2√
π

∫ y0

0
dy exp

[−y2
]

. (3.37)

Employing the definition of the so-called error function

erf(z) =
2√
π

∫ z

0
dy exp

[−y2
]

(3.38)

leads to the final expression, using (3.35),

N(t|x0, t0) = erf

[
x0√

4D (t − t0)

]
. (3.39)

Preliminary version November 12, 1999



44 Einstein Diffusion Equations

The particle number decays to zero asymptotically. In fact, the functional property of erf(z) reveal

N(t|x0, t0) ∼ x0√
πD(t − t0)

for t → ∞ . (3.40)

This decay is actually a consequence of the ergodic theorem which states that one-dimensional
Brownian motion with certainty will visit every point of the space, i.e., also the absorbing wall. We
will see below that for three-dimensional Brownian motion not all particles, even after arbitrary
long time, will encounter a reactive boundary of finite size.
The rate of particle decay, according to (3.39), is

∂t N(t|x0, t0) = − x0√
2π D (t − t0) (t − t0)

exp
[
− x2

0

4D (t − t0)

]
. (3.41)

An alternative route to determine the decay rate follows from (3.21) which reads for the case
considered here,

∂t N(t|x0, t0) = −D ∂x p(x, t|x0, t0)
∣∣∣
x=0

. (3.42)

Evaluation of this expression yields the same result as Eq. (3.41). This illustrates how useful the
relationship (3.21) can be.

3.3 Fluorescence Microphotolysis

Fluorescence microphotolysis is a method to measure the diffusion of molecular components (lipids
or proteins) in biological membranes. For the purpose of measurement one labels the particular
molecular species to be investigated, a membrane protein for example, with a fluorescent marker.
This marker is a molecular group which exhibits strong fluorescence when irradiated; in the method
the marker is chosen such that there exists a significant probability that the marker is irreversibly
degraded through irradiation into a non-fluorescent form.
The diffusion measurement of the labelled molecular species proceeds then in two steps. In the first
step at time to , a small, circular membrane area of diameter a (some µm) is irradiated by a short,
intensive laser pulse of 1-100 mW, causing the irreversible change (photolysis) of the fluorescent
markers within the illuminated area. For all practical purposes, this implies that no fluorescent
markers are left in that area and a corresponding distribution w(x, y, to) is prepared.
In the second step, the power of the laser beam is reduced to a level of 10-1000 nW at which
photolysis is negligible. The fluorescence signal evoked by the attenuated laser beam,

N(t|to) = co

∫
Ωlaser

dx dy w(x, y, t) (3.43)

is then a measure for the number of labelled molecules in the irradiated area at time t. Here Ωlaser

denotes the irradiated area (assuming an idealized, homogenous irradiation profile) and co is a
suitable normalization constant. N(t|to) is found to increase rapidly in experiments due diffusion
of unphotolysed markers into the area. Accordingly, the fluorescence recovery can be used to
determine the diffusion constant D of the marked molecules.
In the following, we will assume that the irradiated area is a stripe of thickness 2a, rather than a
circular disk. This geometry will simplify the description, but does not affect the behaviour of the
system in principle.
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3.3: Fluorescence Microphotolysis 45

Figure 3.3: Schematic drawing of a fluorescence microphotolysis experiment.

For t < t0 the molecular species under consideration, to be referred to as particles, is homogeneously
distributed as described by w(x, t) = 1. At t = t0 photolysis in the segment −a < x < a eradicates
all particles, resulting in the distribution

w(x, t0) = θ(a − x) + θ(x − a) , (3.44)

where θ is the Heavisides step function

θ(x) =

{
0 for x < 0
1 forx ≥ 0

. (3.45)

The subsequent evolution of w(x, y, t) is determined by the two-dimensional diffusion equation

∂t w(x, y, t) = D
(
∂2

x + ∂2
y

)
w(x, y, t) . (3.46)

For the sake of simplicity, one may assume that the membrane is infinite, i.e., large compared to
the length scale a. Since the initial distribution (3.44) does not depend on y, once can assume
that w(x, y, t) remains independent of y since distribution, in fact, is a solution of (3.46). However,
one can eliminate consideration of y and describe teh ensuing distribution w(x, t) by means of the
one-dimensional diffusion equation

∂t w(x, t) = D ∂2
x w(x, t) . (3.47)

with boundary condition

lim
|x|→∞

w(x, t) = 0 . (3.48)

The Green’s function solution of this equation is [c.f. (3.14)]

p(x, t|x0, t0) =
1√

4πD(t − t0)
exp

[
− (x − x0)2

4D(t − t0)

]
. (3.49)
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46 Einstein Diffusion Equations

Figure 3.4: Time evolution of the probability distribution w(x, t) for D = 1
a2 in time steps t =

0, 0.1, 0.2, . . . , 1.0.

which satisfies the initial condition p(x, t0|x0, t0) = δ(x−x0). The solution for the initial probability
distribution (3.44), according to (3.16), is then

w(x, t) =
∫ +∞

−∞
dxo p(x, t|xo, to) (θ(a − x) + θ(x − a)) . (3.50)

This can be written, using (3.49) and (3.45),

w(x, t) =
∫ −a

−∞
dx0

1√
4πD(t − t0)

exp
[
− (x − x0)2

4D(t − t0)

]
+
∫ ∞

a
dx0

1√
4πD(t − t0)

exp
[
− (x − x0)2

4D(t − t0)

]
. (3.51)

Identifying the integrals with the error function erf(x) one obtains

w(x, t) =
1
2

erf

[
x − x0

2
√

D(t − t0)

]∣∣∣∣∣
−a

−∞
+

1
2

erf

[
x − x0

2
√

D(t − t0)

]∣∣∣∣∣
∞

a

=

(
1
2

erf

[
x + a

2
√

D(t − t0)

]
+

1
2

)
−
(

1
2

erf

[
x − a

2
√

D(t − t0)

]
− 1

2

)
and, finally,

w(x, t) =
1
2

(
erf

[
x + a

2
√

D(t − t0)

]
− erf

[
x − a

2
√

D(t − t0)

])
+ 1 . (3.52)

The time evolution of the probability distribution w(x, t) is displayed in Figure 3.4 for D = 1
a2 in

time steps t = 0, 0.1, 0.2, . . . , 1.0.
The observable N(t, |to), given in (3.43) is presently defined through

N(t|to) = co

∫ +a

−a
dx w(x, t) (3.53)
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3.3: Fluorescence Microphotolysis 47

Comparision with (3.52) shows that the evaluation requires one to carry out integrals over the error
function which we will, hence, determine first. One obtains by means of conventional techniques∫

dx erf(x) = x erf(x) −
∫

dx x
d

dx
erf(x)

= x erf(x) − 1√
π

∫
2x dx exp(−x2)

= x erf(x) − 1√
π

∫
dξ exp(−ξ) , for ξ = x2

= x erf(x) +
1√
π

exp(−ξ)

= x erf(x) +
1√
π

exp(−x2) . (3.54)

Equiped with this result one can evaluate (3.53). For this purpose we adopt the normalization
factor co = 1

2a and obtain

N(t|t0) =
1
2a

∫ +a

−a
dx

1
2

(
erf

[
x + a

2
√

D(t − t0)

]
− erf

[
x − a

2
√

D(t − t0)

]
+ 2

)

=
1
4a

(
2
√

D (t − t0)
π

exp
[

(x + a)2

4D (t − t0)

]
+ (x + a) erf

[
x + a

2
√

D (t − t0)

]

− 2
√

D (t − t0)
π

exp
[

(x − a)2

4D (t − t0)

]
+ (x − a) erf

[
x − a

2
√

D (t − t0)

]
+ 2x

)∣∣∣∣∣
a

−a

=

√
D(t − t0)
a
√

π

(
exp
[
− a2

D (t − t0)

]
− 1

)
+ erf

[
a√

D (t − t0)

]
+ 1 . (3.55)

The fluorescent recovery signal N(t|to) is displayed in Figure 3.5. The result exhibits the increase
of fluorescence in illuminated stripe [−a, a]: particles with a working fluorescent marker diffuse into
segment [−a, a] and replace the bleached fluorophore over time. Hence, N(t|to) is an increasing
function which approaches asymptotically the value 1, i.e., the signal prior to photolysis at t = t0.
One can determine the diffusion constant D by fitting normalized data of fluorescence measurements
to N(t|to). Values for the diffusion constant D range from 10 µm2 to 0.001 µm2. For this purpose
we simplify expression (3.55) introducing the dimensionless variable

ξ =
a√

D (t − t0)
. (3.56)

One can write then the observable in teh form

N(ξ) =
1

ξ
√

π

(
exp
[−ξ2

] − 1
)

+ erf [ξ] + 1 . (3.57)

A characteristic of the fluorescent recovery is the time th, equivalently, ξh, at which half of the
fluorescence is recovered defined through N(ξh) = 0.5. Numerical calculations, using the regula
falsi or secant method yields ξh provide the following equations.

ξh = 0.961787 . (3.58)
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Figure 3.5: Fluorescence recovery after photobleaching as described by N(t|to). The inset shows
the probability distribution w(x, t) for t = 1 and the segment [−a, a]. (D = 1

a2 )

the definition (3.56) allows one to determine teh relationship between th and D

D = 0.925034
a2

th − t0
. (3.59)

Since a is known through the experimental set up, measurement of th− to provides the value of D.

3.4 Free Diffusion around a Spherical Object

Likely the most useful example of a diffusion process stems from a situation encountered in a
chemical reaction when a molecule diffuses around a target and either reacts with it or vanishes
out of its vicinity. We consider the idealized situation that the target is stationary (the case that
both the molecule and the target diffuse is treated in Chapter ??. Also we assume that the target
is spherical (radius a) and reactions can arise anywwhere on its surface with equal likelyhood.
Furthermore, we assume that the diffusing particles are distributed initially at a distance r0 from
the center of the target with all directions being equally likely. In effect we describe an ensemble
of reacting molecules and targets which undergo their reaction diffusion processes independently of
each other.
The probability of finding the molecule at a distance r at time t is then described by a spherically
symmetric distribution p(r, t|r0, t0) since neither the initial condition nor the reaction-diffusion
condition show any orientational preference. The ensemble of reacting molecules is then described
by the diffusion equation

∂t p(r, t|r0, t0) = D ∇2 p(r, t|r0, t0) (3.60)

and the initial condition

p(r, t0|r0, t0) =
1

4π r2
0

δ(r − r0) . (3.61)

November 12, 1999 Preliminary version



3.4: Diffusion around a Spherical Object 49

The prefactor on the r.h.s. normalizes the initial probability to unity since∫
Ω∞

d3r p(r, t0|r0, t0) =
∫ ∞

0
4π r2dr p(r, t0|r0, t0) . (3.62)

We can assume that the distribution vanishes at distances from the target which are much larger
than r0 and, accordingly, impose the boundary condition

lim
r→∞ p(r, t|r0, t0) = 0 . (3.63)

The reaction at the target will be described by the boundary condition (3.25), which in the present
case of a spherical boundary, can be written

D ∂r p(r, t|r0, t0) = w p(r, t|r0, t0) , for r = a . (3.64)

As pointed out above, w controls the likelyhood of encounters with the target to be reactive: w = 0
corresponds to an unreactive surface, w → ∞ to a surface for which every collision leads to reaction
and, hence, to a diminishing of p(r, t|r0, t0). The boundary condition for arbitrary w values adds
significantly to the complexity of the solution, i.e., the following derivation would be simpler if the
limits w = 0 or w → ∞ would be considered. However, a closed expression for the general case
can be provided and, in view of the frequent applicability of the example we prefer the general
solution.
We first notice that the Laplace operator ∇2, expressed in spherical coordinates (r, θ, φ), reads

∇2 =
1
r2

[
∂r

(
r2 ∂r

)
+

1
sin2 θ

∂2
φ +

1
sin θ

∂θ

(
sin θ ∂θ

)]
. (3.65)

Since the distribution function p(r, t0|r0, t0) is spherically symmetric, i.e., depends solely on r and
not on θ and φ, one can drop, for all practical purposes, the respective derivatives. Employing
furthermore the identity

1
r2

∂r

(
r2 ∂r f(r)

)
=

1
r

∂2
r

(
r f(r)

)
. (3.66)

one can restate the diffusion equation (3.60)

∂t r p(r, t|r0, t0) = D ∂2
r r p(r, t|r0, t0) . (3.67)

For the solution of (3.61, 3.63, 3.64, 3.67) we partition

p(r, t|r0, t0) = u(r, t|r0, t0) + v(r, t|r0, t0), (3.68)

with u(r, t → t0|r0, t0) =
1

4π r2
0

δ(r − r0) (3.69)

v(r, t → t0|r0, t0) = 0 . (3.70)

The functions u(r, t|r0, t0) and v(r, t|r0, t0) are chosen to obey individually the radial diffusion
equation (3.67) and, together, the boundary conditions (3.63, 3.64). We first construct u(r, t|r0, t0)
without regard to the boundary condition at r = a and construct then v(r, t|r0, t0) such that the
proper boundary condition is obeyed.
The function u(r, t|r0, t0) has to satisfy

∂t

(
r u(r, t|r0, t0)

)
= D ∂2

r

(
r u(r, t|r0, t0)

)
(3.71)

r u(r, t → t0|r0, t0) =
1

4π r0
δ(r − r0) . (3.72)
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An admissable solution r u(r, t|r0, t0) can be determined readily through Fourier transformation

Ũ(k, t|r0, t0) =
∫ +∞

−∞
dr r u(r, t|r0, t0) e−i k r , (3.73)

r u(r, t|r0, t0) =
1
2π

∫ +∞

−∞
dk Ũ(k, t|r0, t0) ei k r . (3.74)

Inserting (3.74) into (3.67) yields

1
2π

∫ ∞

−∞
dk
[
∂t Ũ(k, t|r0, t0) + D k2 Ũ(k, t|r0, t0)

]
eikr = 0 . (3.75)

The uniqueness of the Fourier transform allows one to conclude that the coefficients [ · · · ] must
vanish. Hence, one can conclude

Ũ(k, t|r0, t0) = Cu(k|r0) exp
[−D (t − t0) k2

]
. (3.76)

The time-independent coefficients Cu(k|r0) can be deduced from the initial condition (3.72). The
identity

δ(r − r0) =
1
2π

∫ +∞

−∞
dk ei k (r−r0) (3.77)

leads to

1
4π r0

δ(r − r0) =
1

8π2 r0

∫ +∞

−∞
dk ei k (r−r0) =

1
2π

∫ +∞

−∞
dk Cu(k|r0) ei k r (3.78)

and, hence,

Cu(k|r0) =
1

4π r0
e−i k r0 . (3.79)

This results in the expression

r u(r, t|r0, t0) =
1

8π2 r0

∫ ∞

−∞
dk exp

[−D (t − t0) k2
]

ei (r−r0) k (3.80)

The Fourier integral ∫ ∞

−∞
dk e−a k2

ei x k =
√

π

a
exp
[−x2

4 a

]
(3.81)

yields

r u(r, t|r0, t0) =
1

4π r0

1√
4π D (t − t0)

exp
[
− (r − r0)2

4D (t − t0)

]
. (3.82)

We want to determine now the solution v(r, t|r0, t0) in (3.68, 3.70) which must satisfy

∂t

(
r v(r, t|r0, t0)

)
= D ∂2

r

(
r v(r, t|r0, t0)

)
(3.83)

r v(r, t → t0|r0, t0) = 0 . (3.84)
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Any solution of these homogeneous linear equations can be multiplied by an arbitrary constant C.
This freedom allows one to modify v(r, t|r0, t0) such that u(r, t|r0, t0) + C v(r, t|r0, t0) obeys the
desired boundary condition (3.64) at r = a.
To construct a solution of (3.83, 3.84) we consider the Laplace transformation

V̌ (r, s|r0, t0) =
∫ ∞

0
dτ e−s τ v(r, t0 + τ |r0, t0) . (3.85)

Applying the Lapace transform to (3.83) and integrating by parts yields for the left hand side

− r v(r, t0|r0, t0) + s r V̌ (r, s|r0, t0) . (3.86)

The first term vanishes, according to (3.84), and one obtains

s

D

(
r V̌ (r, s|r0, t0)

)
= ∂2

r

(
r V̌ (r, s|r0, t0)

)
. (3.87)

The solution with respect to boundary condition (3.63) is

r V̌ (r, s|r0, t0) = C(s|r0) exp
[
−
√

s

D
r

]
. (3.88)

where C(s|r0) is an arbitrary constant which will be utilized to satisfy the boundary condition(3.64).
Rather than applying the inverse Laplace transform to determine v(r, t|r0, t0) we consider the
Laplace transform P̌ (r, s|r0, t0) of the complete solution p(r, t|r0, t0). The reason is that boundary
condition (3.64) applies in an analogue form to P̌ (r, s|r0, t0) as one sees readily applying the Laplace
transform to (3.64). In case of the function r P̌ (r, s|r0, t0) the extra factor r modifies the boundary
condition. One can readily verify, using

D ∂r

(
r P̌ (r, s|r0, t0)

)
= D P̌ (r, s|r0, t0) + r D ∂r P̌ (r, s|r0, t0)

)
(3.89)

and replacing at r = a the last term by the r.h.s. of (3.64),

∂r r P̌ (r, s|r0, t0)
∣∣∣∣
r=a

=
w a + D

D a
a P̌ (a, s|r0, t0) . (3.90)

One can derive the Laplace transform of u(r, t|r0, t0) using the identity∫ ∞

0
dt e−s τ 1

4π r0

1√
4π D τ

exp
[
−(r − r0)2

4D τ

]
=

1
4π r0

1√
4D s

exp
[
−
√

s

D

∣∣r − r0

∣∣ ] (3.91)

and obtains for r P̌ (r, s|r0, t0)

r P̌ (r, s|r0, t0) =
1

4π r0

1√
4D s

exp
[
−
√

s

D

∣∣r − r0

∣∣ ] + C(s|r0) exp
[
−
√

s

D
r

]
. (3.92)

Boundary condition (3.90) for r = a < r0 is√
s

D

(
1

4π r0

1√
4D s

exp
[
−
√

s

D
(r0 − a)

]
− C(s|r0) exp

[
−
√

s

D
a

])
(3.93)

=
w a + D

D a

(
1

4π r0

1√
4D s

exp
[
−
√

s

D
(r0 − a)

]
+ C(s|r0) exp

[
−
√

s

D
a

])
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or (√
s

D
− w a + D

D a

)
1

4π r0

1√
4D s

exp
[
−
√

s

D
(r0 − a)

]
(3.94)

=
(

w a + D

D a
+
√

s

D

)
C(s|r0) exp

[
−
√

s

D
a

]
.

This condition determines the appropriate factor C(s|r0), namely,

C(s|r0) =

√
s/D − (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1
4π r0

1√
4D s

exp
[
−
√

s

D
(r0 − 2 a)

]
. (3.95)

Combining (3.88, 3.91, 3.95) results in the expression

r P̌ (r, s|r0, t0)

=
1

4π r0

1√
4D s

exp
[
−
√

s

D

∣∣r − r0

∣∣ ]
+

√
s/D − (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1
4π r0

1√
4D s

exp
[
−
√

s

D
(r + r0 − 2 a)

]

=
1

4π r0

1√
4D s

(
exp
[
−
√

s

D

∣∣r − r0

∣∣ ] + exp
[
−
√

s

D
(r + r0 − 2 a)

])
(3.96)

− (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1
4π r0

1√
D s

exp
[
−
√

s

D
(r + r0 − 2 a)

]
Application of the inverse Laplace transformation leads to the final result

r p(r, t|r0, t0)

=
1

4π r0

1√
4π D (t − t0)

(
exp
[
− (r − r0)2

4D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4D (t − t0)

])

− 1
4π r0

w a + D

D a
exp

[(
w a + D

D a

)2

D (t − t0) +
w a + D

D a
(r + r0 − 2 a)

]

× erfc

[
w a + D

D a

√
D (t − t0) +

r + r0 − 2 a√
4D (t − t0)

]
. (3.97)

The substituion

α =
w a + D

D a
(3.98)

simplifies the solution slightly

p(r, t|r0, t0) =
1

4π r r0

1√
4π D (t − t0)

(
exp
[
− (r − r0)2

4D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4D (t − t0)

])
− 1

4π r r0
α exp

[
α2 D (t − t0) + α (r + r0 − 2 a)

]
× erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4D (t − t0)

]
. (3.99)
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Figure 3.6: Radial probability density distribution of freely diffusing particles around a spherical
object according to equation (3.99). The left plot shows the time evolution with w = 0 and
(t1 − t0) = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2. The right plot depicts the time evolution of equation
(eq:fdso27) with w = ∞ and (t1 − t0) = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2. The time units are a2

D .

Reflective Boundary at r = a We like to consider now the solution (3.99) in case of a reflective
boundary at r = a, i.e., for w = 0 or α = 1/a. The solution is

p(r, t|r0, t0) =
1

4π r r0

1√
4π D (t − t0)

(
exp
[
− (r − r0)2

4D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4D (t − t0)

])
− 1

4π a r r0
exp
[

D

a2
(t − t0) +

r + r0 − 2 a

a

]
× erfc

[√
D (t − t0)

a
+

r + r0 − 2 a√
4D (t − t0)

]
. (3.100)

Absorptive Boundary at r = a In case of an absorbing boundary at r = a, one has to set
w → ∞ and, hence, α → ∞. To supply a solution for this limiting case we note the asymptotic
behaviour1

√
π z exp

[
z2
]

erfc[z] ∼ 1 + O
(

1
z2

)
. (3.101)

1Handbook of Mathematical Functions, Eq. 7.1.14
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This implies for the last summand of equation (3.99) the asymptotic behaviour

α exp
[
α2 D (t − t0) + α (r + r0 − 2 a)

]
erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4D (t − t0)

]
= α exp

[
z2
]

exp
[−z2

2

]
erfc[z] , with z = α z1 + z2 ,

z1 =
√

D (t − t0) , and

z2 = (r + r0 − 2 a)/
√

4D (t − t0) .

∼ α√
π z

exp
[−z2

2

] (
1 + O

(
1
α2

))
(3.102)

=
1√
π

α
√

4D (t − t0)
2α D (t − t0) + r + r0 − 2a

exp
[
−(r + r0 − 2 a)2

4D (t − t0)

] (
1 + O

(
1
α2

))

=

(
1√

π D (t − t0)
− r + r0 − 2 a√

4π α
(
D (t − t0)

)3/2
+ O

(
1
α2

))
exp
[
−(r + r0 − 2 a)2

4D (t − t0)

]
.

One can conclude to leading order

α exp
[
α2 D (t − t0) + α (r + r0 − 2 a)

]
erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4D (t − t0)

]

∼
(

2√
4π D (t − t0)

+ O
(

1
α2

))
exp
[
−(r + r0 − 2 a)2

4D (t − t0)

]
. (3.103)

Accordingly, solution (3.99) becomes in the limit w → ∞

p(r, t|r0, t0) =
1

4π r r0

1√
4π D (t − t0)

(
exp
[
− (r − r0)2

4D (t − t0)

]
− exp

[
−(r + r0 − 2 a)2

4D (t − t0)

])
.

(3.104)

Reaction Rate for Arbitrary w We return to the general solution (3.99) and seek to determine
the rate of reaction at r = a. This rate is given by

K(t|r0, t0) = 4π a2 D ∂r p(r, t|r0, t0)
∣∣∣
r=a

(3.105)

where the factor 4πa2 takes the surface area of the spherical boundary into account. According to
the boundary condition (3.64) this is

K(t|r0, t0) = 4π a2w p(a, t|r0, t0) . (3.106)

One obtains from (3.99)

K(t|r0, t0) =
aw

r0

(
1√

π D (t − t0)
exp
[
− (r0 − a)2

4D (t − t0)

]
(3.107)

− α exp
[
α (r0 − a) + α2 D (t − t0)

]
erfc
[

r0 − a√
4D (t − t0)

+ α
√

D (t − t0)
])

.

November 12, 1999 Preliminary version



3.4: Diffusion around a Spherical Object 55

Reaction Rate for w → ∞ In case of an absorptive boundary (w,α → ∞) one can conclude
from the asymptotic behaviour (3.102) with r = a

K(t|r0, t0) =
aw

r0

(
r0 − a√

4π α
(
D (t − t0)

)3/2
+ O

(
1
α2

))
exp
[
− (r0 − a)2

4D (t − t0)

]
.

Employing for the limit w,α → ∞ equation (3.98) as w/α ∼ D one obtains the reaction rate for
a completely absorptive boundary

K(t|r0, t0) =
a

r0

1√
4π D (t − t0)

r0 − a

t − t0
exp
[
− (r0 − a)2

4D (t − t0)

]
. (3.108)

This expression can also be obtained directly from (3.104) using the definition (3.105) of the reaction
rate.

Fraction of Particles Reacted for Arbitrary w One can evaluate the fraction of particles
which react at the boundary r = a according to

Nreact(t|r0, t0) =
∫ t

t0

dt′K(t′|r0, t0) . (3.109)

For the general case with the rate (3.107) one obtains

Nreact(t|r0, t0) =
aw

r0

∫ t

t0

dt′
(

1√
π D (t′ − t0)

exp
[
− (r0 − a)2

4D (t′ − t0)

]
(3.110)

− α exp
[
α(r0 − a) + α2D (t′ − t0)

]
erfc
[

r0 − a√
4D(t′ − t0)

+ α
√

D (t′ − t0)
])

To evaluate the integral we expand the first summand of the integrand in (3.110). For the exponent
one can write

− (r0 − a)2

4D (t′ − t0)︸ ︷︷ ︸
=x2(t′)

= (r0 − a)α + D (t′ − t0)α2︸ ︷︷ ︸
= y(t′)

− (r0 − a + 2D (t′ − t0)α)2

4D (t′ − t0)︸ ︷︷ ︸
= z2(t′)

. (3.111)

We introduce the functions x(t′), y(t′), and z(t′) for notational convenience. For the factor in front
of the exponential function we consider the expansion

1√
π D (t′ − t0)

(3.112)

=
2√

π D α

(
D (r0 − a)

4
(
D (t′ − t0)

)3/2
− D (r0 − a)

4
(
D (t′ − t0)

)3/2
+

D2 (t′ − t0)α

2
(
D (t′ − t0)

)3/2

)

=
2√

π D α

(
D (r0 − a)

4
(
D (t′ − t0)

)3/2︸ ︷︷ ︸
= dx(t′)/dt′

− (r0 − a)
2 (t′ − t0)

√
4D (t′ − t0)

+
D α√

4D (t′ − t0)︸ ︷︷ ︸
= dz(t′)/dt′

)
.
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Figure 3.7: The left plot shows the fraction of particles that react at boundary r = a. The two
cases w = 1 and w = ∞ of equation (3.114) are displayed. The dotted lines indicate the asymptotic
values for t → ∞. The right plot depicts the time evolution of equation (3.114) for small (t − t0).

Note, that the substitutions in (3.112) define the signs of x(t′) and z(t′). With the above expansions
and substitutions one obtains

Nreact(t|r0, t0) =
aw

D αr0

∫ t

t0

dt′
(

2√
π

dx(t′)
dt′

e−x2(t′)

+
2√
π

dz(t′)
dt′

ey(t′) e−z2(t′) − dy(t′)
dt′

ey(t′) erfc[z(t′)]
)

=
aw

D αr0

(
2√
π

∫ x(t)

x(t0)
dx e−x2 −

∫ t

t0

dt′
d

dt′
(
ey(t′) erfc[z(t′)]

))

=
aw

D αr0

(
erf[x(t′) ] − ey(t′) erfc[z(t′)]

)∣∣∣∣∣
t

t0

. (3.113)

Filling in the integration boundaries and taking w a = D (aα − 1) into account one derives

Nreact(t|r0, t0) =
aα − 1

r0 α

(
1 + erf

[
a − r0√

4D (t − t0)

]
(3.114)

− e(r0−a) α + D (t−t0) α2
erfc

[
r0 − a + 2D (t − t0)α√

4D (t − t0)

])
.

Fraction of Particles Reacted for w → ∞ One derives the limit α → ∞ for a completely
absorptive boundary at x = a with the help of equation (3.102).

lim
α→∞ Nreact(t|r0, t0) =

a

r0

(
1 + erf

[
a − r0√

4D (t − t0)

]
(3.115)

− 1
α

(
2√

4π D (t − t0)
+ O

(
1
α2

))
exp
[
− (r0 − a)2

4D (t − t0)

])
.
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3.5. FREE DIFFUSION IN A FINITE DOMAIN 57

The second line of equation (3.115) approaches 0 and one is left with

lim
α→∞ Nreact(t|r0, t0) =

a

r0
erfc

[
r0 − a√

4D (t − t0)

]
. (3.116)

Fraction of Particles Reacted for (t − t0) → ∞ We investigate another limiting case of
Nreact(t|r0, t0); the long time behavior for (t− t0) → ∞. For the second line of equation (3.114) we
again refer to (3.102), which renders for r = a and with respect to orders of t instead of α

exp
[
α2 D (t − t0) + α (r0 − a)

]
erfc

[
α
√

D (t − t0) +
r0 − a√

4D (t − t0)

]

=

(
1√

π D (t − t0)
+ O

(
1

t − t0

))
exp
[
− (r0 − a)2

4D (t − t0)

]
. (3.117)

Equation (3.117) approaches 0 for (t−t0) → ∞, and since erf[−∞] = 0, one obtains for Nreact(t|r0, t0)
of equation (3.114)

lim
(t−t0)→∞

Nreact(t|r0, t0) =
a

r0
− 1

r0 α
. (3.118)

Even for w,α → ∞ this fraction is less than one in accordance with the ergodic behaviour of
particles diffusing in three-dimensional space. In order to overcome the a/r0 limit on the overall
reaction yield one can introduce long range interactions which effectively increase the reaction
radius a.
We note that the fraction of particles N(t|r0) not reacted at time t is 1 − Nreact(t|r0) such that

N(t|r0, t0) = 1 − aα − 1
r0 α

(
1 + erf

[
a − r0√

4D (t − t0)

]
(3.119)

− e(r0−a) α + D (t−t0) α2
erfc

[
r0 − a + 2D (t − t0)α√

4D (t − t0)

])
.

We will demonstrate in a later chapter that this quantity can be evaluated directly without de-
termining the distribution p(r, t|r0, t0) first. Naturally, the cumbersome derivation provided here
makes such procedure desirable.

3.5 Free Diffusion in a Finite Domain

We consider now a particle diffusing freely in a finite, one-dimensional interval

Ω = [0, a] . (3.120)

The boundaries of Ω at x = 0, a are assumed to be reflective. The diffusion coefficient D is assumed
to be constant. The conditional distribution function p(x, t|x0, t0) obeys the diffusion equation

∂t p(x, t|x0, t0) = D ∂2
x p(x, t|x0, t0) (3.121)

subject to the initial condition

p(x, t0|x0, t0) = δ(x − x0) (3.122)
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and to the boundary conditions

D ∂x p(x, t|x0, t0) = 0 , for x = 0, and x = a . (3.123)

In order to solve (3.121–3.123) we expand p(x, t|x0, t0) in terms of eigenfunctions of the diffusion
operator

L0 = D ∂2
x . (3.124)

where we restrict the function space to those functions which obey (3.123). The corresponding
functions are

vn(x) = An cos
[
n π

x

a

]
, n = 0, 1, 2, . . . . (3.125)

In fact, for these functions holds for n = 0, 1, 2, . . .

L0 vn(x) = λn vn(x) (3.126)

λn = −D
(n π

a

)2
. (3.127)

From

∂x vn(x) = −n π

a
An sin

[
n π

x

a

]
, n = 0, 1 2, . . . (3.128)

follows readily that these functions indeed obey (3.123).
We can define, in the present case, the scalar product for functions f, g in the function space
considered

〈 g | f 〉Ω =
∫ a

0
dx g(x) f(x) . (3.129)

For the eigenfunctions (3.125) we choose the normalization

〈 vn | vn 〉Ω = 1 . (3.130)

This implies for n = 0 ∫ a

0
dx A2

0 = A2
0 a = 1 (3.131)

and for n 6= 0, using cos2 α = 1
2(1 + cos 2α),∫ a

0
dx v2

n(x) = A2
n

a

2
+

1
2

A2
n

∫ a

0
dx cos

[
2n π

x

a

]
= A2

n

a

2
. (3.132)

It follows

An =

{ √
1/a for n = 0 ,√
2/a for n = 1, 2, . . . .

(3.133)

The functions vn are orthogonal with respect to the scalar product (3.129), i.e.,

〈vm|vn〉Ω = δmn . (3.134)
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3.5: Diffusion in a Finite Domain 59

To prove this property we note, using

cos α cos β =
1
2
(
cos(α + β) + cos(α − β)

)
, (3.135)

for m 6= n

〈 vm | vn 〉Ω =
Am An

2

( ∫ a

0
dx cos

[
(m + n)π

x

a

]
+
∫ a

0
dx cos

[
(m − n)π

x

a

])

=
Am An

2π

(
a

(m + n)
sin
[
(m + n)π

x

a

]
+

a

(m − n)
sin
[
(m − n)π

x

a

])∣∣∣∣∣
a

0

= 0 .

Without proof we note that the functions vn, defined in (3.125), form a complete basis for the
function space considered. Together with the scalar product (3.129) this basis is orthonormal. We
can, hence, readily expand p(x, t|x0, t0) in terms of vn

p(x, t|x0, t0) =
∞∑

n=0

αn(t|x0, t0) vn(x) . (3.136)

Inserting this expansion into (3.121) and using (3.126) yields

∞∑
n=0

∂t αn(t|x0, t0) vn(x) =
∞∑

n=0

λn αn(t|x0, t0) vn(x) . (3.137)

Taking the scalar product 〈 vm | leads to

∂t αm(t|x0, t0) = λm αm(t|x0, t0) (3.138)

from which we conclude

αm(t|x0, t0) = eλm (t−t0) βm(x0, t0) . (3.139)

Here, βm(x0, t0) are time-independent constants which are determined by the initial condition
(3.122)

∞∑
n=0

βn(x0, t0) vn(x) = δ(x − x0) . (3.140)

Taking again the scalar product 〈 vm | results in

βm(x0, t0) = vm(x0) . (3.141)

Altogether holds then

p(x, t|x0, t0) =
∞∑

n=0

eλn (t−t0) vn(x0) vn(x) . (3.142)
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60 Einstein Diffusion Equations

Let us assume now that the system considered is actually distributed initially according to a
distribution f(x) for which we assume 〈 1 | f 〉Ω = 1. The distribution p(x, t), at later times, is then

p(x, t) =
∫ a

0
dx0 p(x, t|x0, t0) f(x0) . (3.143)

Employing the expansion (3.142) this can be written

p(x, t) =
∞∑

n=0

eλn (t−t0) vn(x)
∫ a

0
dx0 vn(x0) f(x0) . (3.144)

We consider now the behaviour of p(x, t) at long times. One expects that the system ultimately
assumes a homogeneous distribution in Ω, i.e., that p(x, t) relaxes as follows

p(x, t) �
t→∞

1
a

. (3.145)

This asymptotic behaviour, indeed, follows from (3.144). We note from (3.127)

eλn (t−t0) �
t→∞

{
1 for n = 0
0 for n = 1, 2, . . .

. (3.146)

From (3.125, 3.133) follows v0(x) = 1/
√

a and, hence,

p(x, t) �
t→∞

1
a

∫ a

0
dx v(x0) . (3.147)

The property 〈 1 | f 〉Ω = 1 implies then (3.145).
The solution presented here [cf. (3.120–3.147)] provides in a nutshel the typical properties of
solutions of the more general Smoluchowski diffusion equation accounting for the presence of a
force field which will be provided in Chapter 4.

3.6 Rotational Diffusion

Dielectric Relaxation

The electric polarization of liquids originates from the dipole moments of the individual liquid
molecules. The contribution of an individual molecule to the polarization in the z-direction is

P3 = P0 cos θ (3.148)

We consider the relaxation of the dipole moment assuming that the rotational diffusion of the dipole
moments can be described as diffusion on the unit sphere.
The diffusion on a unit sphere is described by the three-dimensional diffusion equation

∂t p(r, t|r0, t0) = D∇2 p(r, t|r0, t0) (3.149)

for the condition |r| = |r0| = 1. In order to obey this condition one employs the Laplace operator
∇2 in terms of spherical coordinates (r, θ, φ) as given in (3.65) and sets r = 1, dropping also
derivatives with respect to r. This yields the rotational diffusion equation

∂t p(Ω, t|Ω0, t0) = τ−1
r

[
1

sin θ
∂θ

(
sin θ ∂θ

)
+

1
sin2 θ

∂2
φ

]
p(Ω, t|Ω0, t0) . (3.150)
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We have defined here Ω = (θ, φ). We have also introduced, instead of the diffusion constant, the
rate constant τ−1

r since the replacement r → 1 altered the units in the diffusion equation; τr has
the unit of time. In the present case the diffusion space has no boundary; however, we need to
postulate that the distribution and its derivatives are continuous on the sphere.
One way of ascertaining the continuity property is to expand the distribution in terms of spherical
harmonics Y`m(Ω) which obey the proper continuity, i.e.,

p(Ω, t|Ω0, t0) =
∞∑

`=0

+∑̀
m=−`

A`m(t|Ω0, t0)Y`m(Ω) . (3.151)

In addition, one can exploit the eigenfunction property[
1

sin θ
∂θ

(
sin θ ∂θ

)
+

1
sin2 θ

∂2
φ

]
Y`m(Ω) = −` (` + 1)Y`m(Ω) . (3.152)

Inserting (3.151) into (3.150) and using (3.152) results in

∞∑
`=0

+∑̀
m=−`

∂t A`m(t|Ω0, t0) Y`m(Ω) = −
∞∑

`=0

+∑̀
m=−`

` (` + 1) τ−1
r A`m(t|Ω0, t0) Y`m(Ω) (3.153)

The orthonormality property ∫
dΩ Y ∗

`′m′(Ω) Y`m(Ω) = δ`′` δm′m (3.154)

leads one to conclude

∂t A`m(t|Ω0, t0) = −` (` + 1) τ−1
r A`m(t|Ω0, t0) (3.155)

and, accordingly,

A`m(t|Ω0, t0) = e−` (`+1) (t−t0)/τr a`m(Ω0) (3.156)

or

p(Ω, t|Ω0, t0) =
∞∑

`=0

+∑̀
m=−`

e−` (`+1) (t−t0)/τr a`m(Ω0) Y`m(Ω) . (3.157)

The coefficients a`m(Ω0) are determined through the condition

p(Ω, t0|Ω0, t0) = δ(Ω − Ω0) . (3.158)

The completeness relationship of spherical harmonics states

δ(Ω − Ω0) =
∞∑

`=0

+∑̀
m=−`

Y ∗
`m(Ω0) Y`m(Ω) . (3.159)

Equating this with (3.157) for t = t0 yields

a`m(Ω0) = Y ∗
`m(Ω0) (3.160)
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and, hence,

p(Ω, t|Ω0, t0) =
∞∑

`=0

+∑̀
m=−`

e−` (`+1) (t−t0)/τr Y ∗
`m(Ω0) Y`m(Ω) . (3.161)

It is interesting to consider the asymptotic, i.e., the t → ∞, behaviour of this solution. All
exponential terms will vanish, except the term with ` = 0. Hence, the distribution approaches
asymptotically the limit

lim
t→∞ p(Ω, t|Ω0, t0) =

1
4π

, (3.162)

where we used Y00(Ω) = 1/
√

4π. This result corresponds to the homogenous, normalized distribu-
tion on the sphere, a result which one may have expected all along. One refers to this distribution
as the equilibrium distribution denoted by

p0(Ω) =
1
4π

. (3.163)

The equilibrium average of the polarization expressed in (3.148) is〈
P3

〉
=

∫
dΩP0 cos θ p0(Ω) . (3.164)

One can readily show 〈
P3

〉
= 0 . (3.165)

Another quantity of interest is the so-called equilibrium correlation function〈
P3(t)P ∗

3 (t0)
〉

= P 2
0

∫
dΩ
∫

dΩ0 cos θ cos θ0 p(Ω, t|Ω0, t0) p0(Ω0) . (3.166)

Using

Y10(Ω) =

√
3
4π

cos θ (3.167)

and expansion (3.161) one obtains〈
P3(t)P ∗

3 (t0)
〉

=
4π
3

P 2
0

+∑̀
m=−`

e−` (`+1) (t−t0)/τr |C10,`m|2 , (3.168)

where

C10,`m =
∫

dΩ Y ∗
10(Ω) Y`m(Ω) . (3.169)

The orthonormality condition of the spherical harmonics yields immediately

C10,`m = δ`1 δm0 (3.170)

and, therefore, 〈
P3(t)P ∗

3 (t0)
〉

=
4π
3

P 2
0 e−2 (t−t0)/τr . (3.171)

Other examples in which rotational diffusion plays a role are fluorescence depolarization as observed
in optical experiments and dipolar relaxation as observed in NMR spectra.
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