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Problem: The U(3) symmetry of the isotropic harmonic oscillator

by Melih Sener

This problem studies the U(3) symmetry of the three dimensional isotropic
harmonic oscillator. The 3D isotropic harmonic oscillator is described by
the following Hamiltonian

H =
3∑

k=1

(
p2
k

2m
+

1
2
mω2x2

k)

= h̄ω
3∑

k=1

(a†kak +
1
2

) (1)

where a†k and ak are the creation and annihilation operators defined as

ak =
√
mω

2h̄
xk + i

1√
2mh̄ω

pk (2)

which satisfy the commutation relations

[aj , a
†
k] = δjk,

[aj , ak] = 0,

[a†j , a
†
k] = 0. (3)

As an early warm up we want to compute the energy levels and the degen-
eracies for this Hamiltonian from the knowledge of the single dimensional
harmonic oscillator.

(a) Show that the energy level En = h̄ω(n + 3
2) is (n + 1)(n + 2)/2 times

degenerate. (Hint: Use induction on the dimension of the oscillator.)

In this exercise we will study the U(3) symmetry of the isotropic harmonic
oscillator.

(b) Show that the Hamiltonian is invariant under transformations of the
form

ak → Uklal (4)
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for a 3× 3 unitary matrix U .

In order ro study the U(3) symmetry of the harmonic oscillator we want to
define the so-called shift operators

Gij =
1
2

(a†iaj + aja
†
i ). (5)

(c) Show that the shift operators satisfy

[Gij , Gkl] = δjkGil − δilGkj . (6)

(d) Show that the Hamiltonian can be written as

H = h̄ω(G11 +G22 +G33), (7)

and that it commutes with all of the Gjk.

Now let us introduce a new basis of generators, λ̃k, as follows

λ̃1 = G12 +G21 (8)
λ̃2 = −iG12 + iG21 (9)
λ̃3 = G11 −G22 (10)
λ̃4 = G13 +G31 (11)
λ̃5 = −iG13 + iG31 (12)
λ̃6 = G23 +G32 (13)
λ̃7 = −iG23 + iG32 (14)

λ̃8 =
1√
3

(G11 +G22 − 2G33). (15)

(e) Show that the set of generators, λ̃k form the same algebra as the λk
operators of the standard SU(3) algebra, introduced in section 12.3. Namely,
show that

[λ̃j , λ̃k] = 2ifjklλ̃l, (16)

where fjkl are the same structure constants as in the SU(3) algebra. ( Hint:
There is a less painful way to show this without computing a single fjkl. Let
Mjk be the matrix all whose elements are zero except for the j− k element,
which is unity. (i.e. [Mjk]mn = δjmδkn.) Then one can show that Mjk and
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Gjk satisfy the same algebra and that λk are just matrix representations of
λ̃k. )

[ The interested reader is invited to experiment with two mathematica note-
books that contain an explicit framework to handle arbitrary Lie algebras.
(They are not necessary for this exercise.) In particular SU(3) has been
studied there in painstaking detail. They are to be found at:
http://www.ks.uiuc.edu/Services/Class/PHYS481/u3 algebra.nb and
http://www.ks.uiuc.edu/Services/Class/PHYS481/u3 algebra II.nb ]

The group U(3) has 9 generators as embodied by Gij . We know that one
linear combination of them is the Hamiltonian (the U(1) part of U(3)) and
three more are the generators of the rotation group (as the problem is spher-
ically symmetric). A natural question would be to ask what the physical
meaning of the other extra symmetry generators are. (e.g. In the case of
the hydrogen atom, studied in the beginning of the chapter, the extra sym-
metry generators were the components of the eccentricity vector.) In order
to answer this question we first need to write the generators Gij in terms of
familiar physical operators:

(f) Show that the shift operators can be expressed as

Gij =
mω

2h̄
xixj +

1
2mh̄ω

pipj −
1
2
εijkLk, (17)

where Lk = 1
ih̄Jk.

Now, we want to express the cartesian tensor, Gij , in the form of a spherical
tensor. (Please refer to section 6.7 for the subject.)
The spherical decomposition of Gij is defined by

Gij =
Gkk

3
δij +

Gij −Gji
2

+
(
Gij +Gji

2
− Gkk

3
δij

)
(18)

In other words, we write a cartesian tensor, respectively, as a trace-only
part, an anti-symmetric part and a traceless symmetric part. (Note that
dimensions add up nicely: 3× 3 = 1 + 3 + 5.)

(g) Show that the first two terms in (18) correspond, respectively, to the
Hamiltonian (times a prefactor), 1

3h̄ωH, and the angular momentum opera-
tor, Lk. (We will shortly prove that the last term is the quadrupole moment
operator, Qm.)
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To study the last term in (18) we define

1
3
Qij ≡

Gij +Gji
2

− Gkk
3
δij , (19)

which is a traceless and symmetric tensor, which therefore has only 5 degrees
of freedom. We want to rewrite the components of Qij as a spherical tensor:

Q0 = Qzz, (20)

Q±1 = −
√

2
3

(iQyz ±Qxz) , (21)

Q±2 =
√

1
6

(Qxx −Qyy)± i
√

2
3
Qxy. (22)

The choice of prefactors are not arbitrary: they are choosen in such a way
to ensure that Qm transform like the spherical harmonics.

(h) Show that the quadrupole moment operator, Qm, is a rank 2 spherical
tensor whose components are given by

Qm =
√

16π
5

(
mω

2h̄
Y 2
m(x̂)x2 +

1
2mh̄ω

Y 2
m(p̂)p2), m = ±2,±1, 0. (23)

For your convenience the necessary spherical harmonics are given below:

Y 2
0 (x̂) =

√
5

16π
3z2 − r2

r2
, (24)

Y 2
±1(x̂) = ∓

√
15
8π

(x± iy)z
r2

, (25)

Y 2
±2(x̂) =

1
4

√
15
2π

(x± iy)2

r2
. (26)

Finally we will try to understand the degeneracy structure of the isotropic
three dimensional harmonic oscillator starting from its symmetries. In order
to accomplish this we will need the following Casimir operator

C =
∑
ij

GijGji, (27)

= −1
2
L2 +

1
6
Q2. (28)

To obtain a more explicit expression one may use the following identity

Q2 = Q2
0 −Q+1Q−1 −Q−1Q+1 +Q+2Q−2 +Q−2Q+2. (29)
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The Casimir operator introduced above can be written in terms of the Hamil-
tonian as follows:

C = −3 +
4

3h̄2ω2
H2. (30)

(This can be proven after a some algebra but you don’t have to do this.)

(i)For a given energy eigenstate with energy h̄ω(n+ 3
2) show that

C =
4
3

(n2 + 3n). (31)

We will state without proof that the value of the Casimir operator on any
given irreducible representation, D(µ, ν), of the SU(3) group is given by1

C =
4
3

(µ2 + µν + ν2 + 3µ+ 3ν). (32)

Comparing (31) with (32) we see that only the representations with (µ, ν) =
(n, 0) are realized by the oscillator. Hence the degeneracy of the energy
levels for a given energy level, En, should be equal to the dimension of the
representation D(n, 0).

(j) Using the formula for the dimension of a representation D(µ = n, ν = 0)
from section 12.3, derive the degeneracy for the energy level h̄ω(n + 3

2).
Compare this with your result from the beginning of the exercise.

1A proof of this relation may be found in Microscopic theory of the nucleus, J. M.
Eisenberg and W. Greiner, 1972, North-Holland, section 8.2. The derivation, which uses
Young tableaux and a fair amount of representation theory, is too long to be included
here.
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